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ABSTRACT 

In this paper, the use of TF-IDF stands for (term frequency-

inverse document frequency) is discussed in examining the 

relevance of key-words to documents in corpus. The study is 

focused on how the algorithm can be applied on number of 

documents. First, the working principle and steps which 

should be followed for implementation of TF-IDF are 

elaborated. Secondly, in order to verify the findings from 

executing the algorithm, results are presented, then strengths 

and weaknesses of TD-IDF algorithm are compared. This 

paper also talked about how such weaknesses can be tackled. 

Finally, the work is summarized and the future research 

directions are discussed. 
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1. INTRODUCTION 
The processing of structured or semi—structured data in all 

organizations is becoming very difficult as the data has been 

increased tremendously [1], [2]. There are many techniques or 

algorithms that can be used to process data but this study is 

focused on one of those, known as TF-IDF. TF-IDF is a 

numerical statistic that shows the relevance of keywords to 

some specific documents or it can be said that, it provides 

those keywords, using which some specific documents can be 

identified or categorized. For example, a blogger is running a 

blog with hundreds of contributors and he just hired an 

internee whose main task is to add new blog posts on daily 

basis. It has been observed that most of the times internees 

does not take care of tags due to which many blog posts are 

not categorized. This is one of the ideal condition for applying 

TF-IDF algorithm, which can identify the tags automatically 

for the bloggers. It will save plenty of time for bloggers and 

internees, as they would not need to take care of tags [3].  

The paper organization is as follows: In section 2, the 

background of TF-IDF algorithm will be discussed, then in 

section 3, the procedure and research method will be 

discussed. In section 4, implementation details will be 

explained for TF-IDF along its results, then section 5 will 

discuss the limitations of the algorithm and its related work 

and section 6, will elaborate how those limitations can be 

resolved through some new techniques. Finally, Section 7 will 

conclude the work and will discuss the future prospects. 

2. BACKGROUND 

2.1 Term Frequency (TF) 
TF-IDF is a combination of two different words i.e. Term 

Frequency and Inverse Document Frequency. First, the term 

“term frequency” will be discussed. TF is used to measure 

that how many times a term is present in a document [4]. 

Let’s suppose, we have a document “T1” containing 5000 

words and the word “Alpha” is present in the document 

exactly 10 times. It is very well known fact that, the total 

length of documents can vary from very small to large, so it is 

a possibility that any term may occur more frequently in large 

documents in comparison to small documents. So, to rectify 

this issue, the occurrence of any term in a document is divided 

by the total terms present in that document, to find the term 

frequency. So, in this case the term frequency of the word 

“Alpha” in the document “T1” will be 

TF = 10/5000 = 0.002 

2.2 Inverse Document Frequency (IDF) 
Now, inverse document frequency will be discussed. When 

the term frequency of a document is calculated, it can be 

observed that the algorithm treats all keywords equally, 

doesn’t matter if it is a stop word like “of”, which is incorrect. 

All keywords have different importance. Let’s say, the stop 

word “of” is present in a document 2000 times but it is of no 

use or has a very less significance, that is exactly what IDF is 

for. The inverse document frequency assigns lower weight to 

frequent words and assigns greater weight for the words that 

are infrequent. For example, we have 10 documents and the 

term “technology” is present in 5 of those documents, so the 

inverse document frequency can be calculated as [4] 

IDF = log_e (10/5) = 0.3010 

2.3 Term Frequency - Inverse Document 

Frequency (TF-IDF) 
From Section 2.1 and 2.2, it is understood that, the greater or 

higher occurrence of a word in documents will give higher 

term frequency and the less occurrence of word in documents 

will yield higher importance (IDF) for that keyword searched 

in particular document. TF-IDF is nothing, but just the 

multiplication of term frequency (TF) and inverse document 

frequency (IDF). We have already calculated TF and IDF in 

Section 2.1 and 2.2, respectively. To calculate the TF-IDF we 

can do as [4] 

TF-IDF = 0.002*0.3010 = 0.000602 

3. PROCEDURE & RESEARCH 

METHOD 

3.1 Data Collection 
The data was collected from 20 different random websites that 

belongs to 4 different domains. It was simple website’s 

content that is used in this study which is available to general 

public to consume for free over the internet. 
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Table 1. Domains & Websites 

No. Domains Website’s Count 

1 .biz 5 

2 .com 5 

3 .edu 5 

4 .org 5 

Total 4 20 

 

3.2 Data Preprocessing 
Data is collected from websites hence collected data contained 

HTML/CSS which was not useful hence it was completely 

removed first. Secondly, the data also contained many stop 

words which is never meaningful or useful in this context as 

explained in Section 2.2. Hence in order to filter those stop 

words, a list of 500 stop words was used first which filtered 

the data and removed all stop words from it [1], [4], [5]. A 

large list of stop words can easily be obtained from many 

blogs and websites where it is available for free for general 

public to consume. 

3.3 Design 
In this study, there are a few steps that has to be followed in 

order to successfully implement the TF-IDF algorithm.  

First of all, data has to be fetched from websites. Secondly, in 

preprocessing phase, one has to look for HTML/CSS and stop 

words and remove all of them as they are unnecessary has no 

importance in this scenario. Third, one need to count total 

number of words and their occurrences in all documents. 

Once these steps are performed, one can apply Term 

Frequency formula to calculate TF as discussed in Section 2.1 

[1], [4], [6]. 

After calculating TF, one has to check, if each word is found 

in every document or not and has to count total number of 

documents in hand. Once these steps are completed, one can 

apply Inverse Document Frequency (IDF) formula to 

calculate IDF as discussed in Section 2.2 [4]. 

In the last, after obtaining TF and IDF, one can easily 

calculate TF-IDF by applying its formula as described in 

Section 2.3. The algorithm can be implemented in any 

programming language of your choice. For this paper, it was 

implemented using PHP for the sake of simplicity [4].  

The TF-IDF process can be observed using a diagram here 

which is showing all major and minor steps that has to be 

taken in order to successfully implement the algorithm using 

computer programming.  

 

Fig 1: TF-IDF Process 
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The Fig 1. Should be followed from top to bottom in order to 

implement TF-IDF. The process is quite simple but one really 

need to take special care on data preprocessing as it is very 

important in order to achieve accurate results. 

4. IMPLEMENTATION & DISCUSSION 
The algorithm is implemented in PHP hence it can be used via 

a web browser. The interface is very easy to use where a user 

has to select document by clicking on browse button. After 

providing the document, the program will execute all the steps 

as mentioned in Fig 1 and will give output as shown below in 

Fig 2. The program gives serial number, word, their 

occurrences, term frequency, inverse document frequency and 

Finally the TF-IDF on which this study is focused on.  

the thing that should be noticed here is, one can sort the 

output of algorithm either in ascending order or descending 

order based on their occurrences or their TF-IDF score so that 

the keywords having greater occurrences or greater TF-IDF 

score would come on the top in decreasing order or the 

keywords having lower occurrences or lower TF-IDF score 

would come on the top in increasing order. That can really 

help in analyzing or slicing the data to generate reports or 

visualizations.  

The program can be executed with minimum, a few 

microseconds time to a few seconds or a minute, depending 

on the size of the provided dataset. 

 

Fig 2: TF-IDF Program interface after providing a dummy documents

Table 2. Results by running algorithm on three documents from each domain 

Domain 
Keyword Rank (TF-IDF) 

Keywords TF IDF TF-IDF 

.biz 
Parts 0.02189781 0.47712125 0.01044791 

Garden 0.02120141 0.47712125 0.01011564 

.com 
Presidential 0.00471698 0.47712125 0.00225057 

Held 0.002105263 0.47712125 0.00100446 

.edu 
Years 0.080519480 0.47712125 0.03841755 

Ms 0.038961038 0.47712125 0.01858913 

.org 
Marking 0.014084507 0.47712125 0.00672001 

Scholarships 0.017414965 0.17609125 0.00306662 

 

 

Fig 3:  Top keywords as per their TF-IDF Score from 3 documents each for all domains
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Table 2. Shows top two keywords according to highest TF-

IDF score for three documents only from each domain. The 

data is fetched from the PHP program after running it on 

dataset collected from all domains as shown in Fig 2. Table 2. 

Depicts the fact that three documents of .biz domain that were 

selected, the most relevant keywords that can describe those 

documents are “parts” and “garden”. Similarly, in three 

documents of .com domain, the top two words are 

“presidential” and “held”, also in .edu domain the top 

keywords are “years” and “Ms”, which shows that these 

keywords can describe those documents and can be used as 

tags to categorize the content. The .org domain also has 

“Marking” and “Scholarships” keywords for the same 

purpose.  

Fig 3. Shows only the top one keyword from each domain for 

three documents. It can be seen here that, the highest TF-IDF 

score is of the keyword “Years” that belongs to “.edu” 

domain. The second highest TF-IDF score is of the keyword 

“parts” that belongs to “.biz” domain and similarly the third 

position goes to “Marking” which belongs to “.org” domain. 

The algorithm was tested again, this time with all documents 

that belongs to all domains 

 

 

 

Table 3. Results Top 12 Keywords from all documents 

Domains Keywords TF-IDF 

.edu Nts 0.07120161 

.edu Islamabad 0.06181321 

.edu Karachi 0.05132980 

.edu Bahria 0.04534312 

.edu Campus 0.04223501 

.edu Years 0.04122134 

.com Product 0.03543481 

.biz Goods 0.03212431 

.edu University 0.03012134 

.com Equipments 0.02112122 

.org Engineering 0.01233121 

.org Police 0.01121121 

 

 

Fig 4:  Top keywords as per their TF-IDF Score from all documents for all domains 

Table 3. Shows top 12 keywords as per their highest TF-IDF 

score achieved from all documents and domains. In Fig 4, it 

can be observed that, when content was processed from all 

domains such as .biz, .com, .edu and .org, the most important 

and relevant keywords are displayed as a result in sorted form, 

means that, the keywords with highest TF-IDF score is on top 

and the lowest is at the end. It proves the fact that in TF-IDF 

algorithm you get results from most relevant to most 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

N
ts

 

Is
la

m
ab

ad
 

K
ar

ac
h

i 

B
ah

ri
a

 

C
am

p
u

s 

Y
e

ar
s 

P
ro

d
u

ct
 

G
o

o
d

s 

U
n

iv
e

rs
it

y 

E
q

u
ip

m
e

n
ts

 

E
n

gi
n

e
e

ri
n

g 

P
o

lic
e

 

.edu .edu .edu .edu .edu .edu .com .biz .edu .com .org .org 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No.1, July 2018 

29 

irrelevant keywords [3] which is very important, if one has to 

analyze the data or needs to generate tags for specifying the 

category of some document or blog post. 

5. LIMITATIONS & RELATED WORK 
There are some limitations of TF-IDF algorithm that needs to 

be addressed. The major constraint of TF-IDF is, the 

algorithm cannot identify the words even with a slight change 

in it’s tense, for example, the algorithm will treat “go” and 

“goes” as two different independent words, similarly, it will 

treat “play” and “playing”, “mark” and “marking”, “year” and 

“years” as different words. Due to this limitation, when TF-

IDF algorithm is applied, sometimes it gives some unexpected 

results [7]. Another limitation of TF-IDF is, it cannot check 

the semantic of the text in documents and due to this fact, it is 

only useful until lexical level. It is also unable to check the 

co-occurrences of words. There are many techniques that can 

be used to improve the performance and accuracy as 

discussed by [8], such as Decision Trees, Pattern or rule based 

classifiers, SVM classifiers, Neural Network classifiers and 

Bayesian classifiers. Another author [9] has also detected 

defect in standard TF-IDF that it is not effective if the text that 

needs to be classified is not uniform, so the author has 

proposed an improved TF-IDF algorithm to deal with that 

situation. Another author [10] has mixed TF-IDF with Naïve 

Bayes for proper classification while considering the 

relationships between classes. 

6. SOLUTIONS 
With the passage of time, new algorithms are coming up that 

resolves some limitations of older algorithms. For example, 

stemming process can be used to overcome the issues of TF-

IDF not being able to identify that the “play” and “plays” are 

basically the same words [5]. The stemming process is 

basically used for conflating different forms of any particular 

word such as “play” and “plays” or “played” into a single and 

more generic representation such as “play”. Secondly, the stop 

words can be added as much as possible so that the words that 

are not of any value such as “the” or “a” are filtered and 

removed before the data processing [5]. This will ensure to 

some extent, that you are getting useful words as output.  

7. CONCLUSION 
TF-IDF algorithm is easy to implement and is very powerful 

but one cannot neglect its limitations. In today’s world of big 

data, world requires some new techniques for data processing, 

before analysis is performed. Many researchers has proposed 

an improved form of TF-IDF algorithm known as Adaptive 

TF-IDF. The proposed algorithm incorporated the hill-

climbing for boosting the performance. A variant of TF-IDF 

has also been observed that can be applied in cross-language 

by using statistical translation. Genetic algorithms have also 

been put in work to improve the TF-IDF, as the natural 

genetic concepts of cross over, and mutation was applied 

programmatically, but it did not see the light of sun, as there 

was very slight improvement in performance. Search engine 

giants like Google has adapted latest algorithms such as 

PageRank for bringing out the most relevant results when a 

user place a query. In future research, world is going to 

witness some new techniques that can overcome the 

limitations of TF-IDF, so that the query retrieval can be more 

accurate. TF-IDF can be combined with other techniques such 

as Naïve Bayes to get even better results. 
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