
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.1, July 2018

25

Text Mining: Use of TF-IDF to Examine the Relevance of

Words to Documents

Shahzad Qaiser

School of Computing
Universiti Utara Malaysia
Sintok, Kedah, Malaysia

Ramsha Ali

School of Quantitative Sciences
Universiti Utara Malaysia
Sintok, Kedah, Malaysia

ABSTRACT

In this paper, the use of TF-IDF stands for (term frequency-

inverse document frequency) is discussed in examining the

relevance of key-words to documents in corpus. The study is

focused on how the algorithm can be applied on number of

documents. First, the working principle and steps which

should be followed for implementation of TF-IDF are

elaborated. Secondly, in order to verify the findings from

executing the algorithm, results are presented, then strengths

and weaknesses of TD-IDF algorithm are compared. This

paper also talked about how such weaknesses can be tackled.

Finally, the work is summarized and the future research

directions are discussed.

Text Mining

Text Analytics

Keywords

TF-IDF, Data Mining, Relevance of Words to Documents

1. INTRODUCTION
The processing of structured or semi—structured data in all

organizations is becoming very difficult as the data has been

increased tremendously [1], [2]. There are many techniques or

algorithms that can be used to process data but this study is

focused on one of those, known as TF-IDF. TF-IDF is a

numerical statistic that shows the relevance of keywords to

some specific documents or it can be said that, it provides

those keywords, using which some specific documents can be

identified or categorized. For example, a blogger is running a

blog with hundreds of contributors and he just hired an

internee whose main task is to add new blog posts on daily

basis. It has been observed that most of the times internees

does not take care of tags due to which many blog posts are

not categorized. This is one of the ideal condition for applying

TF-IDF algorithm, which can identify the tags automatically

for the bloggers. It will save plenty of time for bloggers and

internees, as they would not need to take care of tags [3].

The paper organization is as follows: In section 2, the

background of TF-IDF algorithm will be discussed, then in

section 3, the procedure and research method will be

discussed. In section 4, implementation details will be

explained for TF-IDF along its results, then section 5 will

discuss the limitations of the algorithm and its related work

and section 6, will elaborate how those limitations can be

resolved through some new techniques. Finally, Section 7 will

conclude the work and will discuss the future prospects.

2. BACKGROUND

2.1 Term Frequency (TF)
TF-IDF is a combination of two different words i.e. Term

Frequency and Inverse Document Frequency. First, the term

“term frequency” will be discussed. TF is used to measure

that how many times a term is present in a document [4].

Let’s suppose, we have a document “T1” containing 5000

words and the word “Alpha” is present in the document

exactly 10 times. It is very well known fact that, the total

length of documents can vary from very small to large, so it is

a possibility that any term may occur more frequently in large

documents in comparison to small documents. So, to rectify

this issue, the occurrence of any term in a document is divided

by the total terms present in that document, to find the term

frequency. So, in this case the term frequency of the word

“Alpha” in the document “T1” will be

TF = 10/5000 = 0.002

2.2 Inverse Document Frequency (IDF)
Now, inverse document frequency will be discussed. When

the term frequency of a document is calculated, it can be

observed that the algorithm treats all keywords equally,

doesn’t matter if it is a stop word like “of”, which is incorrect.

All keywords have different importance. Let’s say, the stop

word “of” is present in a document 2000 times but it is of no

use or has a very less significance, that is exactly what IDF is

for. The inverse document frequency assigns lower weight to

frequent words and assigns greater weight for the words that

are infrequent. For example, we have 10 documents and the

term “technology” is present in 5 of those documents, so the

inverse document frequency can be calculated as [4]

IDF = log_e (10/5) = 0.3010

2.3 Term Frequency - Inverse Document

Frequency (TF-IDF)
From Section 2.1 and 2.2, it is understood that, the greater or

higher occurrence of a word in documents will give higher

term frequency and the less occurrence of word in documents

will yield higher importance (IDF) for that keyword searched

in particular document. TF-IDF is nothing, but just the

multiplication of term frequency (TF) and inverse document

frequency (IDF). We have already calculated TF and IDF in

Section 2.1 and 2.2, respectively. To calculate the TF-IDF we

can do as [4]

TF-IDF = 0.002*0.3010 = 0.000602

3. PROCEDURE & RESEARCH

METHOD

3.1 Data Collection
The data was collected from 20 different random websites that

belongs to 4 different domains. It was simple website’s

content that is used in this study which is available to general

public to consume for free over the internet.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.1, July 2018

26

Table 1. Domains & Websites

No. Domains Website’s Count

1 .biz 5

2 .com 5

3 .edu 5

4 .org 5

Total 4 20

3.2 Data Preprocessing
Data is collected from websites hence collected data contained

HTML/CSS which was not useful hence it was completely

removed first. Secondly, the data also contained many stop

words which is never meaningful or useful in this context as

explained in Section 2.2. Hence in order to filter those stop

words, a list of 500 stop words was used first which filtered

the data and removed all stop words from it [1], [4], [5]. A

large list of stop words can easily be obtained from many

blogs and websites where it is available for free for general

public to consume.

3.3 Design
In this study, there are a few steps that has to be followed in

order to successfully implement the TF-IDF algorithm.

First of all, data has to be fetched from websites. Secondly, in

preprocessing phase, one has to look for HTML/CSS and stop

words and remove all of them as they are unnecessary has no

importance in this scenario. Third, one need to count total

number of words and their occurrences in all documents.

Once these steps are performed, one can apply Term

Frequency formula to calculate TF as discussed in Section 2.1

[1], [4], [6].

After calculating TF, one has to check, if each word is found

in every document or not and has to count total number of

documents in hand. Once these steps are completed, one can

apply Inverse Document Frequency (IDF) formula to

calculate IDF as discussed in Section 2.2 [4].

In the last, after obtaining TF and IDF, one can easily

calculate TF-IDF by applying its formula as described in

Section 2.3. The algorithm can be implemented in any

programming language of your choice. For this paper, it was

implemented using PHP for the sake of simplicity [4].

The TF-IDF process can be observed using a diagram here

which is showing all major and minor steps that has to be

taken in order to successfully implement the algorithm using

computer programming.

Fig 1: TF-IDF Process

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.1, July 2018

27

The Fig 1. Should be followed from top to bottom in order to

implement TF-IDF. The process is quite simple but one really

need to take special care on data preprocessing as it is very

important in order to achieve accurate results.

4. IMPLEMENTATION & DISCUSSION
The algorithm is implemented in PHP hence it can be used via

a web browser. The interface is very easy to use where a user

has to select document by clicking on browse button. After

providing the document, the program will execute all the steps

as mentioned in Fig 1 and will give output as shown below in

Fig 2. The program gives serial number, word, their

occurrences, term frequency, inverse document frequency and

Finally the TF-IDF on which this study is focused on.

the thing that should be noticed here is, one can sort the

output of algorithm either in ascending order or descending

order based on their occurrences or their TF-IDF score so that

the keywords having greater occurrences or greater TF-IDF

score would come on the top in decreasing order or the

keywords having lower occurrences or lower TF-IDF score

would come on the top in increasing order. That can really

help in analyzing or slicing the data to generate reports or

visualizations.

The program can be executed with minimum, a few

microseconds time to a few seconds or a minute, depending

on the size of the provided dataset.

Fig 2: TF-IDF Program interface after providing a dummy documents

Table 2. Results by running algorithm on three documents from each domain

Domain
Keyword Rank (TF-IDF)

Keywords TF IDF TF-IDF

.biz
Parts 0.02189781 0.47712125 0.01044791

Garden 0.02120141 0.47712125 0.01011564

.com
Presidential 0.00471698 0.47712125 0.00225057

Held 0.002105263 0.47712125 0.00100446

.edu
Years 0.080519480 0.47712125 0.03841755

Ms 0.038961038 0.47712125 0.01858913

.org
Marking 0.014084507 0.47712125 0.00672001

Scholarships 0.017414965 0.17609125 0.00306662

Fig 3: Top keywords as per their TF-IDF Score from 3 documents each for all domains

0.0104

0.0023

0.0384

0.0067

0.000
0.004
0.008
0.012
0.016
0.020
0.024
0.028
0.032
0.036
0.040

parts presidential Years Marking

.biz .com .edu .org

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.1, July 2018

28

Table 2. Shows top two keywords according to highest TF-

IDF score for three documents only from each domain. The

data is fetched from the PHP program after running it on

dataset collected from all domains as shown in Fig 2. Table 2.

Depicts the fact that three documents of .biz domain that were

selected, the most relevant keywords that can describe those

documents are “parts” and “garden”. Similarly, in three

documents of .com domain, the top two words are

“presidential” and “held”, also in .edu domain the top

keywords are “years” and “Ms”, which shows that these

keywords can describe those documents and can be used as

tags to categorize the content. The .org domain also has

“Marking” and “Scholarships” keywords for the same

purpose.

Fig 3. Shows only the top one keyword from each domain for

three documents. It can be seen here that, the highest TF-IDF

score is of the keyword “Years” that belongs to “.edu”

domain. The second highest TF-IDF score is of the keyword

“parts” that belongs to “.biz” domain and similarly the third

position goes to “Marking” which belongs to “.org” domain.

The algorithm was tested again, this time with all documents

that belongs to all domains

Table 3. Results Top 12 Keywords from all documents

Domains Keywords TF-IDF

.edu Nts 0.07120161

.edu Islamabad 0.06181321

.edu Karachi 0.05132980

.edu Bahria 0.04534312

.edu Campus 0.04223501

.edu Years 0.04122134

.com Product 0.03543481

.biz Goods 0.03212431

.edu University 0.03012134

.com Equipments 0.02112122

.org Engineering 0.01233121

.org Police 0.01121121

Fig 4: Top keywords as per their TF-IDF Score from all documents for all domains

Table 3. Shows top 12 keywords as per their highest TF-IDF

score achieved from all documents and domains. In Fig 4, it

can be observed that, when content was processed from all

domains such as .biz, .com, .edu and .org, the most important

and relevant keywords are displayed as a result in sorted form,

means that, the keywords with highest TF-IDF score is on top

and the lowest is at the end. It proves the fact that in TF-IDF

algorithm you get results from most relevant to most

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N
ts

Is
la

m
ab

ad

K
ar

ac
h

i

B
ah

ri
a

C
am

p
u

s

Y
e

ar
s

P
ro

d
u

ct

G
o

o
d

s

U
n

iv
e

rs
it

y

E
q

u
ip

m
e

n
ts

E
n

gi
n

e
e

ri
n

g

P
o

lic
e

.edu .edu .edu .edu .edu .edu .com .biz .edu .com .org .org

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.1, July 2018

29

irrelevant keywords [3] which is very important, if one has to

analyze the data or needs to generate tags for specifying the

category of some document or blog post.

5. LIMITATIONS & RELATED WORK
There are some limitations of TF-IDF algorithm that needs to

be addressed. The major constraint of TF-IDF is, the

algorithm cannot identify the words even with a slight change

in it’s tense, for example, the algorithm will treat “go” and

“goes” as two different independent words, similarly, it will

treat “play” and “playing”, “mark” and “marking”, “year” and

“years” as different words. Due to this limitation, when TF-

IDF algorithm is applied, sometimes it gives some unexpected

results [7]. Another limitation of TF-IDF is, it cannot check

the semantic of the text in documents and due to this fact, it is

only useful until lexical level. It is also unable to check the

co-occurrences of words. There are many techniques that can

be used to improve the performance and accuracy as

discussed by [8], such as Decision Trees, Pattern or rule based

classifiers, SVM classifiers, Neural Network classifiers and

Bayesian classifiers. Another author [9] has also detected

defect in standard TF-IDF that it is not effective if the text that

needs to be classified is not uniform, so the author has

proposed an improved TF-IDF algorithm to deal with that

situation. Another author [10] has mixed TF-IDF with Naïve

Bayes for proper classification while considering the

relationships between classes.

6. SOLUTIONS
With the passage of time, new algorithms are coming up that

resolves some limitations of older algorithms. For example,

stemming process can be used to overcome the issues of TF-

IDF not being able to identify that the “play” and “plays” are

basically the same words [5]. The stemming process is

basically used for conflating different forms of any particular

word such as “play” and “plays” or “played” into a single and

more generic representation such as “play”. Secondly, the stop

words can be added as much as possible so that the words that

are not of any value such as “the” or “a” are filtered and

removed before the data processing [5]. This will ensure to

some extent, that you are getting useful words as output.

7. CONCLUSION
TF-IDF algorithm is easy to implement and is very powerful

but one cannot neglect its limitations. In today’s world of big

data, world requires some new techniques for data processing,

before analysis is performed. Many researchers has proposed

an improved form of TF-IDF algorithm known as Adaptive

TF-IDF. The proposed algorithm incorporated the hill-

climbing for boosting the performance. A variant of TF-IDF

has also been observed that can be applied in cross-language

by using statistical translation. Genetic algorithms have also

been put in work to improve the TF-IDF, as the natural

genetic concepts of cross over, and mutation was applied

programmatically, but it did not see the light of sun, as there

was very slight improvement in performance. Search engine

giants like Google has adapted latest algorithms such as

PageRank for bringing out the most relevant results when a

user place a query. In future research, world is going to

witness some new techniques that can overcome the

limitations of TF-IDF, so that the query retrieval can be more

accurate. TF-IDF can be combined with other techniques such

as Naïve Bayes to get even better results.

8. ACKNOWLEDGMENT
The authors wish to thank all the respected professors who

helped during experiment, development and writing phase of

this paper.

9. REFERENCES

[1] Bafna, P., Pramod, D., and Vaidya, A. (2016).

"Document clustering: TF-IDF approach," International

Conference on Electrical, Electronics, and Optimization

Techniques (ICEEOT), Chennai, 2016, pp. 61-66

[2] Trstenjak, B., Mikac, S., & Donko, D. (2014). “KNN

with TF-IDF based framework for text categorization” In

Procedia Engineering. Vol. 69, pp. 1356–1364. Elsevier

Ltd

[3] Gautam, J., & Kumar, E.L. (2013). “An Integrated and

Improved Approach to Terms Weighting in Text

Classification,” International Journal of Computer

Science Issues, Vol 10, Issue 1, No 1, January 2013

[4] Hakim, A. A., Erwin, A., Eng, K. I., Galinium, M., &

Muliady, W. (2015). “Automated document

classification for news article in Bahasa Indonesia based

on term frequency inverse document frequency (TF-IDF)

approach,” 6th International Conference on Information

Technology and Electrical Engineering: Leveraging

Research and Technology, (ICITEE), 2014

[5] Gurusamy, V., & Kannan, S. (2014). “Preprocessing

Techniques for Text Mining,” RTRICS, pp. 7-16

[6] Nam, S., and Kim, K. (2017). "Monitoring Newly

Adopted Technologies Using Keyword Based Analysis

of Cited Patents," IEEE Access, vol. 5, pp. 23086-23091

[7] Ramos, J. (2003). “Using TF-IDF to Determine Word

Relevance in Document Queries,” Proceedings of the

First Instructional Conference on Machine Learning, pp.

1–4

[8] Santhanakumar, M., and Columbus, C.C. (2015).

“Various Improved TFIDF Schemes for Term Weighing

in text Categorization: A Survey," International Journal

of Applied Engineering Research, vol. 10, no. 14, pp.

11905-11910

[9] Dai, W. (2018). “Improvement and Implementation of

Feature Weighting Algorithm TF-IDF in Text

Classification,” International Conference on Network,

Communication, Computer Engineering (NCCE 2018),

vol. 147

[10] Fan, H., and Qin, Y. (2018). “Research on Text

Classification Based on Improved TF-IDF Algorithm,”

International Conference on Network, Communication,

Computer Engineering (NCCE 2018), vol. 147

IJCATM : www.ijcaonline.org

