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ABSTRACT

A lot of recent research works have pointed out that metric learning
is far better as compared to using default metrics such as Euclidean
distance, cosine similarity, etc. Moreover, similarity learning based
on cosine similarity has been proved to work better for many of the
data sets, which are not necessarily textual in nature. Nevertheless,
similarity learning in nearest neighbor algorithms has been inher-
ently slow, owing to their O(d3) complexity. This short-coming is
addressed in this research and a similarity learning algorithm for
many core architectures is proposed; whereby, Similarity Learning
Algorithm (SiLA) is parallelized. The resulting algorithm is faster
than the traditional one on many data sets because of its parallel
nature. The results are confirmed on UCI data sets.
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1. INTRODUCTION

One of the oldest and widely applied classification rule is the k
nearest neighbor (kNN) algorithm. The £ nearest neighbor classifi-
cation rule requires a training data set of labeled instances. It clas-
sifies a new data instance with the class the most represented in the
set of k closest (labeled) training instances. The kNN rule has been
studied from different points of view, such as in machine learning,
pattern recognition, database etc. In an attempt to enhance the stan-
dard kNN rule, the researchers normally take one of the two lines of
research: distance metric learning (e.g. [14]]) or similarity learning
(e.g. [12]). While distance metric learning is focused on learning
a distance function between the points in the space in which the
examples lie, similarity learning focuses on learning a measure of
similarity between two pairs of objects. It has been shown that in
several real cases, similarities between pairs may be preferable than
distances. One of the pioneer works on similarity learning is Simi-
larity Learning for Nearest Neighbor Classification (SiLA) [12]], an
approach that aims to learn a similarity metric for k£ Nearest Neigh-
bor (kNN) classification rule. SiLA algorithm has shown better re-
sults on many data sets than distance metric learning. The aim is to
move the nearest neighbors that belong to the same class nearer to
the input example (known as target neighbors) while pushing away
the nearest examples belonging to different classes (known as im-
postors). Despite its simplicity, kNN algorithm has a high compu-
tational complexity itself, so learning a metric for k-nearest neigh-
bor is also slow (SiLA has got O(d?) complexity). As a result, a
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satisfactory performance in many applications cannot be accom-
plished because of this drawback. When training set and test set
is large, the execution time may be a bottleneck for the applica-
tion [8]]. Therefore, in order to be practically efficient, there is a
need to speed up the execution time of learning process. The re-
cent developments in parallel computing have opened a new era of
computing which delivers tremendous computational power. Thus,
parallel computing provides a way to speed up the execution time
taken to perform large tasks. Various works have partly addressed
the execution issues for kNN, few works address this for distance
metric learning such as [9]] and [13]], but no previous study is known
that has completely addressed it in the similarity learning context.
This is exactly the aim of this research. A CUDA implementation
for learning a similarity metric is proposed, that is a parallel ver-
sion of SiLA algorithm. Besides being faster on large data sets, its
performance is also improved. The rest of this paper is organized as
follows: Section 2 describes the state of the art, a parallel version
of SiLA algorithm is presented in Section 3 whereas Section 4 cov-
ers the experimental results followed by conclusion and the future
work.

2. STATE OF THE ART

Numerous machine learning approaches rely on some metric. On
one hand, it incorporates unsupervised learning like clustering,
grouping together close or similar objects. On the other hand, it
incorporates supervised approaches such as nearest neighbor clas-
sification algorithm, which depends on a representation of the in-
put data, i.e. the labels of nearest objects to decide on the label
of a new object. Metric learning can be divided into two different
types: distance metric learning and similarity learning. Distance
metric learning is a method of learning a distance metric from a
training dataset which consists of a given collection of pair of sim-
ilar/dissimilar points that shows the distance relation among the
training data. Speaking in general, distance metric learning aims
to minimize the distance between a similar pair and to separate a
dissimilar pair with a large distance. Toward this objective, many
researches have been done and a variety of functions and algo-
rithms were proposed. One of the first works on Metric Learning
has been Xing’s distance metric learning [[15]. A widely known
approach for metric learning is Large Margin Nearest Neighbor
(LMNN) [14], which is one of the most widely used Mahanalo-
bis distance learning methods. LMNN is an algorithm that learns
the metric in a supervised fashion to improve the accuracy of the
k nearest neighbor classification rule. During learning, differently
labeled examples (the impostors) are pushed outside the perimeter



established by the rarger neighbors. A more recent work on metric
learning is Distance Metric Learning using Graph Convolutional
Networks [7] that propose a metric learning method to evaluate
the distance between irregular graphs that leverages the power of
convolutional neural networks [7]]. Another type of metric used to
measure the pairwise relationship between two feature vectors is
similarity metric. In several real world circumstances like infor-
mation retrieval, text analysis etc., similarities were preferred over
distances. Speaking in general, a similarity learning method intends
to increase the similarity between a similar pair and to decrease
the similarity between a dissimilar pair. One of the first works
on similarity learning is Similarity Learning for Nearest Neigh-
bor classification (SiLA) [12], based on the voted perceptron al-
gorithm [5]]. Like LMNN [14], SiLA also aims at moving the target
points closer to the input point, and at the same time pushing away
differently labeled examples. Other works on similarity learning in-
clude good-edit similarity learning by loss minimization (1], Online
Algorithm for Scalable Image Similarity (OASIS) 2], Generalized
Cosine Learning Algorithm (gCosLA) [11] etc.

In serial programming, a single processor executes program in-
structions step-by-step; a problem is broken into a series of instruc-
tions which are executed sequentially one after the other on a sin-
gle processor. However, some operations have multiple steps that
do not have time dependencies and therefore, they can be separated
into multiple smaller tasks that can be executed concurrently. Paral-
lel computing helps in performing large computations by typically
breaking down a computational task into very similar sub-tasks that
can be processed independently, and assigning these tasks to more
than one processor, all of which perform the computation at the
same time. The goal of parallel computing is to increase the perfor-
mance of an application by executing it on multiple processors, thus
reducing the execution time. There are two approaches: the first,
multi-core approach, which integrates a few cores (between two
and ten) into a single microprocessor, seeking to keep the execution
speed of sequential programs [3]]. Actual laptops and desktops in-
corporate this type of processor. The second approach is many-core
which uses a large number of cores. This approach is exemplified
by the Graphical Processing Units (GPUs) available today [3]. One
kind of widely used GPUs are NVIDIA GPUs or CUDA GPUs.
In GPU applications, the sequential section of the workload is ex-
ecuted on a CPU which is optimized for single-threaded perfor-
mance, while CUDA is used to execute the computation intensive
portion of the application on the GPU. CUDA-enabled GPUs have
thousands of cores that can collectively run thousands of comput-
ing threads, thereby speeding up the processes. The parallel ap-
proach of SiLA algorithm leverages the parallel computing nature
to speedup the learning process.

3. PARALLEL SIMILARITY LEARNING
ALGORITHM

This section provides a parallel algorithm for learning the similarity
metric, a parallel version of SiLA algorithm. The core of SiLA (and
its parallel version) is an online update rule in which the current es-
timate of the learned metric is iteratively improved. In SiLA, when
an input instance ¢ is not separated from the impostors, an update
is performed to the current A matrix by the difference between the
coordinates of the target neighbors 7'(¢) and the impostors B(4). If
the input example under focus is correctly classified by the current
A matrix, then A is left unchanged and its weight is incremented by
1, so that the final weights correspond to the number of instances
properly classified by matrix A.
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In order to speed up the learning process, the sets 7'(¢) and B(i) are
found in advance. Since the set B(¢) changes over time, a prede-
termined number of impostors (e.g. 100) is found for each example
before the algorithm has been launched. Later, these impostors are
analyzed to find the most similar one with the example under con-
sideration [T0]. The worst-time complexity of SiLA is O(Mnp?)
where M is the number of iterations, n is the number of train ex-
amples while p stands for the number of dimensions. The most ex-
pensive steps consist of calculating the similarity s4 and f,,,; [10].
Since T'(z) does not change over time, it is computed only once
before the algorithm is launched, and the similarity with the target
neighbors is calculated while considering those in advance. In the
parallel approach, T'(¢) is also found in advance, though in a par-
allel manner. A special CUDA kernel was written for this purpose.
After transferring the arranged data as a matrix and its transpose
from CPU to GPU, each thread performs the similarity calculation
between a pair of points. Thus, each row of the resulting matrix will
contain the similarity of a single instance from the training dataset
with all other instances. In order to find the nearest neighbors, a
stable_sort_by_key over Thrust library (6] was used to sort the
similarity matrix. Since B(7) changes with the passage of time, cal-
culating the similarity function with all the training examples will
be costly and time-consuming.

The independence of similarity function between pairs of data can
be leveraged to speedup the learning process. For each example for
which its nearest neighbors are to be found, its similarity with the
every instance in the training set is calculated separately in parallel.
Here, it is pertinent to mention that the parallel SiLA does not make
the assumption that the nearest impostors must be from the first 100
calculated earlier. Therefore, instead of comparing only 100 impos-
tors found in advance when finding the impostors online, parallel
SiLA will make a comparison with all the training examples.

Also, it can be seen that the function f,,; can be parallelized be-
cause it does not have any dependency between the different target
neighbors / impostors.

So for each target neighbor / impostor, f,,; function can be calcu-
lated concurrently. The parallel training algorithm of SiLA is given
next:

pSiLA - Training
Input: training set
((z®, My, . (2™, (™)) of n vectors
in RP, number of epochs M; A,,; denotes the element of A
at row m and column [
Output: list of weighted (p x p) matrices
((A17 wl)a ) (AQ7wq))
Initialization: t = 1, A = 0 (null matrix), w; = 0
Repeat )M times (epochs)
l.fori=1,---,n
2. B(i) = kKNN(A® 2 &)
2.1 B(#) is computed in parallel - separate thread for
calculating the similarity function with each example,
and parallel sorting of nearest neighbors

3.if ZyeT(i) sa(z®,y) — ZzeB(i) sa(z®,2) <0
4.¥(m,1),1 <m,l <p,
Afvi?_l) = Agrtz)l + ZyeT(i) fml(m(“v Y)
- ZzeB(i) Jm (I(i)7 z)
4.1 Parallel computation of = 7, Fm (2™, ) and

> eniy fmi (2, 2) for each nearest neighbor



5.wt+1:1
6.t=t+1

7. else
8. wy =wy +1

where k nearest neighbors of example = belonging to class s, are
given by kNN(A, z, s), T'(4) are the target neighbors of (i), and
B(4) is the set of impostors. Parallel SiLA is implemented in CUDA
C/C++.

A special CUDA kernel was written for similarity calculation dur-
ing the training, which calculates the similarity between pairs of
example. Then a stable_sort_by_key is used over the similarity
vector to find the nearest neighbors.

While calculating f,,;, the similarity of one example with the rest
of the dataset is calculated in parallel. A special CUDA kernel
is written for this purpose. During the prediction, two rules are
considered by SiLA: the standard kNN, which classifies and finds
the nearest neighbors that belong to the same class; and symmet-
ric kNN (SkNN) which finds nearest neighbors from different
classes. It is important to note that each testing example is indepen-
dent from the rest of the testing examples. Thus, for each testing
point, its similarity calculation with all of the training examples,
sorting of the similarity function to find the nearest neighbors, and
assigning the class can be done by a separate thread for each ex-
ample. Therefore, all the testing examples can be processed con-
currently, eventually speeding up the testing process. However, in
some cases there are only a small number of testing examples e.g. in
face recognition we may have only one test example. In such cases,
assigning the prediction algorithm for each test point to a separate
thread would be inefficient. As a second approach to cover such
cases, the similarity with all the training examples can be calcu-
lated in parallel, as well as the process of sorting to find the nearest
neighbors. Lastly, assigning the class can be done easily in a se-
quential manner. The parallel version of the prediction algorithm is
given next:

pSiLA - Prediction

Input: new example = in RP, list of weighted (p x p) matrices
((Ap,w1), -, (Ag,wq)); Alsdefinedas: A =) L, w4,
Output: list of classes

(1) Standard kNN rule
First approach: for each thread, assign a test example and do
the following:
1. Compute the k nearest neighbors based on s 4;
2. Select the class with the highest weight (or the class which
is the most represented in the nearest neighbor set)
Second approach: for each thread, assign:
1. pair similarity calculation
2. sort in parallel the similarities to find the nearest neighbors
3. assign a class to the test example in a sequential manner
(2) Symmetric classification rule
Let T'(z,s) = kKNN(A, z, s);
First approach: for each thread, assign a test example and as-
sign z to the class for which 3°__.(, .y s4(z, 2) is maximal.
Second approach: for each thread assign
1. pair similarity calculation
2. sort in parallel the similarities to find the nearest neighbors
3. assign a class to the test example in a sequential manner

For the first approach, a CUDA kernel was written, which performs
the similarity calculation with each training example, sorting those
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Table 1. Speedup for finding target neighbors in parallel
for Waveform and Letter datasets

Dataset

Finding target neighbors in advance 8.5 80

Waveform  Letter

Table 2. Overall speedup results obtained for
Waveform and Letter datasets

Dataset Waveform Letter
KNN-A  SkNN-A  kNN-A  SkNN-A

Training 2.8 2.8 4 35

Testing 8.3 8.3 27 314

similarities to get the nearest neighbors, and then choosing the class
that is more present in the nearest neighbor set. Each thread fol-
lows these steps for one testing example separately from the other
testing examples, and will run concurrently. A vector containing
the predicted class for each example will be returned to the CPU,
which will calculate the precision depending on these predicted
classes. For the second approach, a CUDA kernel was written to
do the similarity calculation, while the sorting is done through
stable_sort_by_key from Thrust library as in the training part.
Moreover, it is important to note that the parallel prediction algo-
rithm is also used in the validation part of the training, from which
some speedup is gained.

4. EXPERIMENTAL RESULTS

Setup. The computer used to perform the experiments is an Intel
Core i5-52000U CPU @ 2.20 GHz, and a NVIDIA GeForce 920M
graphic card.

Performance. 3 UCI [4] datasets were used to assess the parallel
version of SiLA, ranging from small to larger datasets. Datasets
that were used are Iris, Waveform, and Letter Recognition dataset.
The Iris dataset contains 150 instances, 3 classes and 4 attributes.
Each class contains 50 instances. After 80:20 split, 120 examples
were used for training whereas 30 examples for testing. Waveform
Database Generator (Version 2) dataset has 5000 examples, 40 at-
tributes and 3 classes. After performing the 80-20 split, 4000 ex-
amples were used for training and validation purposes, and 1000
examples for testing. Letter Recognition dataset consists of 20000
instances, 16 attributes and 26 classes. 16000 examples were used
for training and validation while 4000 examples were employed for
testing.

In all of the experiments, the number of iterations is 1, because
with an increase in the iteration there is a uniform increase in the
execution time, thus leading to the same speedup between two ap-
proaches as for 1 iteration. In the Iris dataset, there is no speedup
for the parallel version. In contrast, there is a slowdown as a result
of memory transfer overhead. Before the learning process is started,
the target neighbors are found in advance. Table 1 shows the result-
ing speedup of parallel SiLA for Waveform and Letter datasets.
While observing separately the training and testing phases, the fol-
lowing results were obtained as depicted in Figure[T] Figure[2] Fig-
ure[3] and Figure[d] Table 2 shows the resulting speedup for training
and testing, respectively, and Table 3 shows its associated accuracy.
Note that during the training, the comparison of one example is
done with all training set (e.g. 16000 in the case of Letter dataset).
As the number of examples in the dataset is increased, more work
needs to be done, and more data gets transferred between CPU and
GPU. It is pertinent to mention that there is just a slight difference
between the parallel algorithm with f,,,; sequential and parallel al-
gorithm with f,,; parallel. Therefore, the main speedup comes from
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Fig. 1. Comparison of execution time between sequential and par-
allel kNN-A for training on Waveform (fold 1.0)
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Fig. 2. Comparison of execution time between sequential and par-
allel kNN-A for testing Waveform (fold 1.0)

Table 3. Accuracy results for kNN-A rule when
testing was done for 1 nearest neighbor
Dataset

Waveform Letter
kKNN-A  SKNN-A  kNN-A  SkNN-A
SiLA 0.792 0.792 0.959 0.959
pSiLA 0.792 0.792 0.959 0.959

finding the impostors in parallel and the validation part of training.
Comparing the accuracy for SiLA and its parallel variant while the
number of iterations is 1, results similar to sequential SiLA were
observed while using its parallel version as shown in Table 3.

S. CONCLUSION AND FUTURE WORK

In this paper, a parallel version of SiLA algorithm is proposed. Ex-
perimental results have demonstrated that the proposed algorithm
has faster execution time than the traditional one (excluding smaller
datasets). It is important to note that the algorithm performs bet-
ter on testing than on training because of the algorithm change,
since the new algorithm needs to do more work than the traditional
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Fig. 3. Comparison of execution time between sequential and par-
allel KNN-A for training on Letter (fold 1.0)
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Fig. 4. Comparison of execution time between sequential and par-
allel KNN-A for testing Letter (fold 1.0)

one during training. In the future, larger data sets from UCI repos-
itory, or otherwise, could be added. It is expected that the accuracy
will improve compared to the sequential algorithm as the number
of iterations could be increased which can also be validated using
more experiments. The algorithm could also be applied on bigger
datasets of different type e.g. churn prediction, healthcare data etc.
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