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ABSTRACT 

Residue number system (RNS) is a promising technology for 

high speed, power efficient and fault tolerant hardware design. 

The reason is that in RNS, arithmetic operations are 

performed in parallel, thus reducing delays due to carry 

operations. Additionally, RNS computations are faster than 

binary computations because of the reduced wordlength due 

to modulo operations. Despite the advantages of RNS, its 

performance depends on the moduli set and the reverse 

conversion algorithm used to convert the residue numbers 

back to binary form. There is therefore the need to select the 

moduli set and the reverse conversion algorithm carefully so 

that the performance of the RNS hardware is not 

overshadowed by reverse conversion overheads. This paper 

proposes an 8n bit moduli set  24𝑛 , 22𝑛 + 1, 2𝑛 + 1, 2𝑛 − 1   
and a reverse conversion hardware architecture based on the 

new Chinese remainder theorem I(new CRT I). Compared to 

existing hardware architecture, the proposed architecture 

shows good balance between the hardware cost efficiency and 

speed efficiency. Secondly, the proposed architecture 

outperforms existing systems in terms of cost-delay square 

(Δ𝜏2).   
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1. INTRODUCTION 
Residue number system is characterised by carry free 

operation, modularity, parallelism and fault tolerance [1],[2], 

[3]. This makes RNS a promising technology for high speed, 

power efficient and fault tolerant hardware design. In RNS, 

the binary number is first converted to a set of residues using 

a moduli set. This is called the forward conversion. Once 

converted, all arithmetic operation are performed as modulo 

operations based on the moduli set. After the operations are 

completed, the non-weighted residues are converted back to 

binary numbers. This process is called reverse conversion. 

Figure  1 shows the RNS processor.  

Despite the advantages of RNS, performance of RNS 

hardware depends on the reverse conversion algorithms. 

There is therefore the need to select the moduli sets used for 

RNS reverse conversion as well as the reverse conversion 

algorithms carefully so that the advantages of RNS are not 

overshadowed by the conversion overheads. The works in 

[4],[5],[6]  proposed the moduli sets  2𝑛 − 1, 2𝑛 , 2𝑛 +
1 , 2𝑛−1 − 1, 2𝑛 − 1, 2𝑛 ,  2𝑛−1 − 1, 2𝑛 − 1, 2𝑛 + 1  and 

 2𝑛 − 1, 2𝑛 , 2𝑛+1 − 1  respectively, however these moduli 

sets have a dynamic range(DR) of 3𝑛 bits and are not very 

suitable for digital signal processing(DSP) applications which 

involve large wordlengths. [7]  proposed vertical and 

horizontal extensions which enabled it to increase the 

dynamic range of the moduli set  2𝑛 , 2𝑛 − 1, 2𝑛 + 1, 2𝑛 −

2
 𝑛 +1 

2 + 1, 2𝑛 + 2
 𝑛+1 

2 + 1  from 5𝑛 bits to 8𝑛 + 1 bits. [1] 

and [8] also proposed  2𝑛 − 1, 2𝑛 , 2𝑛 + 1, 2𝑛+1 − 1 , 
 2𝑛 − 1, 2𝑛 + 1, 2𝑛 , 22𝑛 + 1  and  22𝑛 − 1, 24𝑛 , 22𝑛 + 1  
respectively. The moduli sets in [1] have a dynamic range of 

5𝑛 bits and that of [8] has a dynamic range of 8𝑛 bits. 

Because of the high dynamic range, the  moduli set in [7] and 

[8]  are more appropriate for DSP applications. 

The work of [8] proposed two hardware architectures based 

on the Chinese remainder theorem and the moduli set 22𝑛 −
1, 24𝑛 , 22𝑛 + 1 . One architecture is optimized for cost 

efficiency (CE) and the other is optimized for speed efficiency 

(SE). The problem with these architectures is that the CE 

architecture trades speed for cost efficiency whereas the SE 

architecture trades cost for speed efficiency. This does not 

lend itself to real time DSP applications where high speed as 

well as low power and cost are needed.  

This paper proposes an 8𝑛 bit moduli set  24𝑛 , 22𝑛 + 1, 2𝑛 +
1, 2𝑛 − 1  and a balanced hardware architecture based on the 

new Chinese remainder theorem I. This hardware architecture 

is designed to balance both the cost efficiency and the speed 

efficiency of the reverse converter. The proposed architecture 

performs better than the architecture in [7]. Compared to  [8], 

the proposed scheme achieves better speed efficiency than the 

CE scheme as well as better cost efficiency than the SE 

scheme. Due to the balanced nature of the architecture its 

cost-delay (Δ𝜏2)  performance is better than both the CE and 

the SE architecture in [8].   

The rest of the paper is organized as follows. In section 11, a 

background of residue number system is presented. The 

proposed reverse converter as well as the hardware realization 

and performance analysis is presented in sections 3 and 4 

respectively. Section 5 presents the conclusions drawn from 

the research.  

2. BACKGROUND 
In residue number system, numbers are represented as 

residues of a moduli set  𝑚𝑖 𝑖=1,𝑘  which is chosen such that 

the 𝑔𝑐𝑑 𝑚𝑖 , 𝑚𝑗  = 1 for 𝑖 ≠ 𝑗 where 𝑔𝑐𝑑 𝑚𝑖 , 𝑚𝑗   is the 

greatest common divisor of 𝑚𝑖  and 𝑚𝑗 . The residues are 

derived as 𝑥𝑖 =  𝑋 𝑚 𝑖
 such that the decimal number 𝑋 

becomes 𝑋 = 𝑥1, 𝑥2, 𝑥3 ⋯𝑥𝑘 , 0 ≤ 𝑥𝑖 ≤ 𝑚𝑖 . Such a system has 

a dynamic range (DR) of 𝑀 =  𝑚𝑖
𝑘
𝑖=1 . For the moduli set 

 𝑚𝑖 𝑖=1,𝑘 , the representation 𝑥1, 𝑥2, 𝑥3 ⋯𝑥𝑘  is unique and can 

be converted back to 𝑋 using reverse conversion. 
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Figure 1: RNS Processor 

The major reverse conversion algorithms used in RNS are; the 

Chinese remainder theorem (CRT), the new Chinese 

remainder theorem (new CRT)[4] and the mixed radix 

conversion(MRC)[9] algorithm. The reverse converter 

proposed in this paper is based on the new CRT I which is 

given as [4] 

𝑋 = 𝑥1 + 𝑚
1 

𝐾1 𝑥2−𝑥1 +𝐾2𝑚2 𝑥3−𝑥2 +

𝐾3𝑚2𝑚3 𝑥4−𝑥3 
 
𝑚 2𝑚 3𝑚 4

 

 

(1) 

where  

 𝐾1𝑚1 𝑚2𝑚3𝑚4
= 1  

 𝐾2𝑚1𝑚2 𝑚3𝑚4
= 1  

 𝐾3𝑚1𝑚2𝑚3 𝑚4
= 1  

3. PROPOSED REVERSE CONVERTER 
In this section, the proposed converter is introduced. The 

following lemmas adopted from [8]  and [10] are used to 

derive the hardware architecture. 

Lemma 1.  Modulo 2𝑘  of a number is equivalent to the 𝑘 

least significant bits(LSBs) of the number.[8] 

Lemma 2. Modulo 2𝑘 − 1 of a negative number is 

equivalent to the one's complement of the number which is 

obtained by subtracting it from 2𝑘 − 1 

Lemma 3.  Modulo 2𝑘 − 1 multiplication of a number by 2𝑡  

is equivalent to 𝑡 bit circular shift of the number where both 𝑡 

and 𝑘 are positive integers. 

Lemma 4. The sum of a number 𝑎 and 2𝑘𝑏 can be computed 

by concatenating 𝑎 and 2𝑘𝑏 if and only if 𝑎 is a 𝑘 bit number. 

Using the proposed moduli set, 

𝑚1 = 24𝑛 , 𝑚2 = 22𝑛 + 1, 𝑚3 = 2𝑛 + 1 and 𝑚4 = 2𝑛 − 1. 

The parameters in equation [1] can be computed using the 

theorem below. 

Theorem. For the moduli set  24𝑛 , 22𝑛 + 1, 2𝑛 + 1, 2𝑛 −
1  , the following mathematical statements are true.   

 𝑚1 𝑚2𝑚3𝑚4
= 1 (2) 

 22𝑛−1𝑚1𝑚2 𝑚3𝑚4
= 1 (3) 

 22𝑛−2𝑚1𝑚2𝑚3 𝑚4
= 1 (4) 

Proof.  Equation 2, can be written as 

 24𝑛  24𝑛 −1 = 1 (5) 

The left hand side(LHS) of 5 can be shown to be equal to 1. 

This completes the proof for 2. 

Also 3 can be written as 

 22𝑛−124𝑛 22𝑛 + 1  22𝑛 −1 = 1 (6) 

Simplifying equation 6, we get 

 26𝑛  22𝑛 −1 = 1 (7) 

thus completing the proof of 3 

 22𝑛−224𝑛 22𝑛 + 1  2𝑛 + 1  2𝑛 −1 = 1 

By simplifying, we have 

 26𝑛−2 22𝑛 + 1   2𝑛 − 1 + 2  2𝑛 −1 = 1 

which reduces to 

 26𝑛−1 22𝑛 + 1  2𝑛 −1 = 1 (8) 

By writing 8 as  

 26𝑛−1  2𝑛 + 1  2𝑛 − 1 + 2  2𝑛 −1 = 1 

we have 

 26𝑛  2𝑛 −1 = 1 

completing the proof for 4 

Using the proposed theorem, we have 𝐾1 = 1, 𝐾2 = 22𝑛−1  

and 𝐾3 = 22𝑛−2. Substituting these values in 1, we have 

𝑋 = 𝑥1 + 24𝑛

 
 𝑥2−𝑥1 +22𝑛−1 24𝑛 +1  𝑥3−𝑥2 +

2𝑛−2 24𝑛 +1  22𝑛 +1  𝑥4−𝑥3 
 
24𝑛 −1

 

 

(9) 

This is further simplified as  

𝑋 = 𝑥1 + 24𝑛

 

−𝑥1+ 𝑥2+22𝑛 𝑥3 −22𝑛 𝑥2+

 23𝑛−1𝑥4+2𝑛−1𝑥4 −

 23𝑛−1𝑥3+2𝑛−1𝑥3 

 

24𝑛 −1

 

 

(10) 

Let =  −𝑥1 24𝑛 −1 , 𝑈0 =   𝑥2 + 22𝑛𝑥3  24𝑛 −1,  

𝑈1 =  −22𝑛𝑥2 24𝑛 −1, 𝑈2 =   23𝑛−1𝑥4 + 2𝑛−1𝑥4  24𝑛 −1 and  

𝑈3 =  − 23𝑛−1𝑥3 + 2𝑛−1𝑥3  24𝑛 −1  

Equation 10 can be written as 

𝑋 = 𝑥1 + 24𝑛𝑍 (11) 

where  𝑍 =  𝐴 + 𝑈0 + 𝑈1 + 𝑈2 + 𝑈3 24𝑛 −1 

3.1 Evaluating A 
𝑥1 = 𝑥1,4𝑛−1𝑥1,4𝑛−2 ⋯𝑥1,0             

4𝑛

 (12) 

therefore   

𝐴 = 𝑥 1,4𝑛−1𝑥 1,4𝑛−2 ⋯ 𝑥 1,0             
4𝑛

 (13) 

3.2 Evaluating 𝑼𝟎 
𝑥2 = 00 ⋯ 0   

2𝑛

𝑥2,2𝑛−1𝑥2,2𝑛−2 ⋯𝑥2,0             
2𝑛

 (14) 

𝑥3 = 00 ⋯ 0   
3𝑛

𝑥3,𝑛−1𝑥3,𝑛−2 ⋯𝑥2,0             
𝑛

 (15) 

therefore using lemma 3, 

 22𝑛𝑥3 24𝑛 −1 = 00 ⋯ 0   
𝑛

𝑥3,𝑛−1𝑥3,𝑛−2 ⋯𝑥3,0             00 ⋯ 0   
2𝑛

𝑛

 (16) 
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𝑈0 = 00 ⋯ 0   
𝑛

𝑥3,𝑛−1𝑥3,𝑛−2 ⋯ 𝑥3,0             
𝑛

𝑥2,2𝑛−1𝑥2,2𝑛−2 ⋯𝑥2,0             
2𝑛

 (17) 

3.3 Evaluating 𝑼𝟏 
𝑈1 =  −22𝑛𝑥2 24𝑛 −1 (18) 

Using equation 14 with lemma 2 and 3, we can write 18 as 

𝑈1 = 𝑥 2,2𝑛−1𝑥 2,2𝑛−2 ⋯ 𝑥 2,0             11 ⋯ 1   
2𝑛

2𝑛

 (19) 

3.4 Evaluating 𝑼𝟐 
𝑥4 = 00 ⋯ 0   

3𝑛

𝑥4,𝑛−1𝑥4,𝑛−2 ⋯𝑥4,0             
𝑛

 (20) 

Using lemma 3 and 4  , we can write 𝑈2 as 

𝑈2 = 0 𝑥4,𝑛−1 ⋯𝑥4,0         
𝑛

0 ⋯ 0   
𝑛

𝑥4,𝑛−1 ⋯ 𝑥4,0         
𝑛

0 ⋯ 0   
𝑛−1

 (21) 

3.5 Evaluating 𝑼𝟑 
Using similar approach as in 21  we can derive 𝑈3 as 

𝑈3 = 1 𝑥 3,𝑛−1 ⋯ 𝑥 3,0         
𝑛

1 ⋯ 1   
𝑛

𝑥 3,𝑛−1 ⋯𝑥 3,0         
𝑛

1 ⋯ 1   
𝑛−1

 (22) 

4. HARDWARE REALIZATION AND 

PERFORMANCE ANALYSIS 
The hardware realization is based on equations 11, 13, 17, 19 , 

21  and 22 as shown in figure 2 . The operand preparation 

unit(OPU)1 prepares the operands 𝐴, 𝑈0, 𝑈1, 𝑈2 and 𝑈3 

according to equations 13, 17, 19 , 21  and 22. 𝐴, 𝑈0 and 𝑈1, 

are added using carry-save adder (CSA)1. The sum 𝑆1 and 

carry 𝐶1 of CSA1 are then added to 𝑈2 by CSA2 to yield 𝑆2 

and 𝐶2. These are also added to 𝑈3 by CSA3 to yield 𝑆3 and 

𝐶3. 𝑆3  and 𝐶3 are then added by carry propagate adder(CPA)1 

to get 𝑍, which is right shifted by 4𝑛 bits using OPU2. The 

results of OPU2 are concatenated with 𝑥1 to get 𝑋. 

 

Figure 2 : Proposed Architecture 

The carry save adder(CSA1) is a 4𝑛 bit adder, however 

because 𝑈0 contains 𝑛 0s and 𝑈1 contains 2𝑛 1s, we can 

implement it using 𝑛 Full Adders(FA) and 3𝑛 Half 

Adders(HA). Similarly, 𝑈2 contains 2𝑛 0s and 𝑈3 contains 2𝑛 

1s, therefore we can implement both CSA2 and CSA3 with 

2𝑛 FAs and 2𝑛 HAs. The overall cost of the proposed 

hardware is  9𝑛𝐴𝐹𝐴 + 7𝑛𝐴𝐻𝐴  , where 𝐴𝐹𝐴  is the Area of a 

Full Adder and 𝐴𝐻𝐴   is the area of a Half Adder. The delay in 

terms of Full Adders is 4𝑛 + 3 and the cost-delay square 

(Δ𝜏2) is 400𝑛3.    

 Compared to existing schemes in [7]  and  [8] , the proposed 

scheme outperforms the  speed efficient(SE) scheme and in 

terms of cost and also outperforms the cost efficient(CE) 

scheme in terms of delay. Additionally, the proposed scheme 

outperforms[7]  in terms of speed and cost efficiency as well 

as cost-delay square (Δ𝜏2). Even though the speed efficiency 

optimized (SE) scheme performs better than the proposed 

scheme by two bits in terms of speed and the cost optimized 

(CE) scheme performs better than the proposed scheme by 

one FA in terms of cost, the proposed scheme balances both 

cost and delay efficiently compared to the CE and SE schemes 

which trade speed for cost and cost for speed respectively. As 

a result, the proposed scheme outperforms both the SE and the 

CE schemes in terms of cost-delay square(Δ𝜏2) as shown in 

figure 3. This shows that the proposed scheme is more 

efficient than the existing schemes 

 

Figure3: Cost-Delay Square 

5. CONCLUSION 
This paper proposes an efficient 8n bit reverse converter 

based on the moduli set 24𝑛 , 22𝑛 + 1, 2𝑛 + 1, 2𝑛 − 1 . 
Analysis shows that the proposed scheme is more efficient 

than existing schemes in [7] and [8]. Unlike the SE and CE 

schemes in [8] which trade cost efficiency for speed efficiency 

and speed efficiency for cost efficiency respectively, the 

proposed scheme balances both cost and delay in an efficient 

manner leading to a better performance in cost-delay square. 

It also performs better than the SE and CE schemes in terms 

of cost and speed efficiency respectively. 
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