
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 12, August 2018

15

An Efficient Key Distribution Scheme in Wireless Sensor

Architecture with Arduino and XBee

A. F. M. Sultanul Kabir
Department of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Canada

ABSTRACT

Since the time of their introduction, Wireless Sensor Networks

(WSN) have been catching the interest of researchers. WSN

have a wide range of applications, some even involving sensitive

and secret information, thereby raising security concerns.

Nevertheless, WSN have some constraints like limited memory,

energy and computational capability, which pose an obstacle for

the addition of proper security in sensor nodes. This paper

introduces a new rekeying design for WSN security framework

whose implementation would dispense effective security in the

sensor nodes. This proposed security framework is endowed

with the capacity to address security issues, such as message

integrity, confidentiality, authenticity and freshness based on

symmetric key cryptography. In addition, this design does not

allow the storage of any key except the initial master key in the

sensor nodes prior to network deployment. This paper also

investigates reconfigurable sensor nodes in terms of execution

time, memory, power consumption, and cost while running the

security framework.

Keywords

WSN, rekeying, security, symmetric cryptography

1. INTRODUCTION
In WSN, data pass through the wireless medium and, hence, are

sensitive to external attacks. In addition, WSN has been

deployed in different process control environments like water,

gas or oil usages, in monitoring and billing. In these

infrastructures, secret information is being passed over the

network. Scientists are proposing different cryptographic

solutions for efficient network security. Key management is one

of the pivotal issues regarding the security of WSN. This

motivates us to introduce a new symmetric rekeying mechanism.

Previous research shows that few numbers of asymmetric and

symmetric key based solution exist [1] [2] where a

cryptographic key is preloaded to the sensor nodes prior to

network deployment. This approach has certain advantages like

less memory and message overhead. However, a single

compromised node leads to the destruction of the whole network

[3]. This shortcoming of the key management has lead us to

design a Wireless Sensor Network based on rekeying. As the

sensor nodes operate for a longer period of time, rekeying is

very important after a certain period. Rekeying is proposed by

[4] [5] [6] which are based on combination of public key and

symmetric key, among which two of them are practically

implemented. The other details of the background research is

discussed in the next section. Moreover, this design also

considers the cost, limited computational and energy resource
facility in the node level along with providing efficient security

in the network.

2. RELATATE WORK
RSA and elliptic curve cryptography are widely used in public

key cryptography. According to some researchers, due to the

limitations of the sensor nodes these two techniques may place a

heavy burden over the network. In spite of this, Gura et al. [7]

and Watro et al. [8] tested public key cryptography in resource

constrained WSN. The authentication and key agreement

between two sensor networks is permitted in this protocol

without letting any rekeying among the nodes.

Minisec [9] was implemented on Telos mote platform. It

provides high level security while consuming less energy. An

encryption key is stored in the sensor node in Minisec but the

actual technique for this is not yet revealed. There is still an

opportunity to upgrade Minisec by improving the key

management strategy. Karlof et al. [10] implemented an efficient

link layer encryption protocol for WSN called TinySec which is

less energy and memory consuming. In this design a network

key was loaded before the network formation. One of the major

drawbacks is, it does not prevent reply attacks. Liu et al. [11]

presented faster and more energy efficient public key

cryptography algorithm for WSN named as TinyECC but some

factors concerned with the patent have limited its use.

Nilsson et al. [5] presented asymmetric key management for the

wireless process control environment. In their design, they

proposed a key changing methodology of sensor nodes after a

certain period of time. Their main intention was to design and

verify the framework. Hu et al.[6] designed and implemented a

sensor node which incorporates a RSA public key and an XTEA

symmetric key. They analyzed the performance in terms of

computation time, memory size, energy and cost. Herrera et al.

[4] published a paper which focused on key distribution in

WSN. They designed and implemented symmetric key

distribution among sensor nodes using public key cryptography.

They claimed their design as energy efficient as well as scalable.

In the design, the proposed framework shows key distribution as

well as data sending which ensures data authentication and

integrity with its real life implementation.

3. PROPOSED KEY DISTRIBUTION

SCHEME
At the time of initiation, the sensor nodes are loaded with the

initial master key and the receiver also possesses the same key.

Rekeying can be instituted in the nodes periodically. Each node

containes a software based real time clock (RTC) to generate a

one time password. To protect against reply attacks, each and

every rekeying initiation is accompanied with this one-time

password. This password is a randomly generated number

depending upon the real time clock of that particular system.

Here F () is a random number generator function which takes the

system time as input and produces a one time password as

output.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 12, August 2018

16

Figure 1: Proposed key Distribution and Data Transfer

between Sensor Node and Receiver

At the time of initiation, the sensor nodes are loaded with the

initial master key and the receiver also possesses the same key.

Rekeying can be instituted in the nodes periodically. Each node

containes a software based real time clock (RTC) to generate a

one time password. To protect against reply attacks, each and

every rekeying initiation is accompanied with this one-time

password. This password is a randomly generated number

depending upon the real time clock of that particular system.

Here F () is a random number generator function which takes the

system time as input and produces a one time password as

output.

One time password (Top) = F (system_time)

The system time is based on the current date and time, so the

password changes after using it once. As previously mentioned,

this one time password protects against reply attacks as well as

defends an attacker to reply to old messages which is a

fundamental requirement for the rekeying operation in proposed

framework.

This unique password is encrypted with an initial master key and

is sent to the receiver along with a signature. This signature is a

hash message authentication code (HMAC). The receiver

decrypts the password, retrieves that exclusive password and

verifies the signature. To perform the encryption operation

stream cipher based encryption RC4 is used. The new master

key is formed in both the sensor nodes and in the receiver

using a one way hash function from the initial master key and

the one-time password.

Table 1 Notation used in the proposed scheme

Symbol Description

N1,N2…..Nn Sensor Nodes

R Receiver/ Base Station

Top One time password based on system time

MK Initial symmetric key between receiver and

sensor nodes

NMK Unique new symmetric key for every sensor

shared with receiver

Ek() Encryption operation executed by the sensor

nodes

Dk() Decryption operation executed by the receiver

Hash () Operation to create new key

H () Generate HMAC for data verification

Following this, the receiver acknowledges to the sensor nodes

that a new master key has been created. To address the

requirement of not reusing a key more than once, each produced

key is distinct. The new master key is the product of a hash

function Hash () based on SHA-1. It is produced using the

following formula :

New master key NMK = Hash (Mk+Top)

When the new master key is generated, the sensor nodes encrypt

sensor data using this key and also calculate a signature using a

cryptographic hash. The encrypted data and signature are then

transmitted to the receiver side.

As soon as the receiver receives the encrypted data and

signature, it uses the new master key to decrypt the sensor data

and this is followed by the formation of a signature. The new

signature is compared with the received signature and verified.

Finally, if everything is authenticated, the data is displayed on

the monitor. The signature is generated using the following

function on both sides. Here HMAC is the message digest of

hash function based on the secret key and input.

Signature= H{ NMK(“Sensor Data”)}

4. SECURITY ISSUES ATTAINED BY

THE DESIGN
The proposed framework has achieved the following security

issues

4.1 Confidentiality
In the design, symmetric key cryptography RC4 is used to

encrypt a new key generation session as well as during data

transmission. As data is encrypted, it is protected from the

intruders and confidentiality is ensured.

4.2 Data integrity and Authenticity
The data should not be altered or modified during transmission

known as data integrity, and to confirm that the data is from a

genuine sender is termed data authenticity. The incorporation of

HMAC safeguards both data authenticity and integrity.

Cryptographic hash SHA-1 is used to produce HMAC to attain

both data integrity and authenticity.

4.3 Forward and Backward Secrecy
When the attackers compromise a current key, they should not

gain access to either the preceding messages encrypted with the

former keys or the upcoming messages encrypted with the

onward keys. These are referred to respectively as backward and

forward secrecy. To attain forward and backward secrecy, the

use of the same key for a long period of time is avoided. Instead,

there is an option for changing that key according to the

requirements of the application.

5. IMPLEMENTATION
The implementation phase is divided into two parts. One part

deals with sensor nodes and another part is all about receiver.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 12, August 2018

17

5.1 Sensor Node
The sensor node was composed of Arduino Uno, XBee shield,

XBee, Breadboard and Temperature sensors. Arduino Uno is a

microprocessor based controller which executes program in the

sensor nodes. To program in Arduino Uno we used sketch. By

using sketch we written a program to read sensor data, generated

key, encrypted key, signature generation and verification. For

encryption, RC4 based stream cipher is used whereas for

signature generation and verification we implemented SHA-1.

The working sensor node is depicted in the following figure.

Figure.2 Working Sensor node

5.2 Receiver Side
The receiver side consisted of a computer with XBee. The XBee

read data and sent it to laptop through COM pot. In the receiver

side, Java is used to process the data.The same cryptographic

operation is implemented like sensor node in the receiver side

which was RC4 for encryption and SHA-1 for signature

verification.

6. PERFORMANCE

6.1 Execution Time
In the testing phase the execution time was divided into two

parts. One portion dealt with the time taken by the sensor nodes

and the second portion was the time consumed by the receiver.

Code was written, both on the sender and the receiver side, to

measure the execution time. In the sensor node, the Arduino

UNO was loaded with a program which measured the time

consumption for each operation. The clock was started before

the operation, which recorded the starting time, while the clock

was stopped after operation, which recorded the ending time.

After that, the measurement was taken by subtracting the

starting time from the ending time. The same procedure was

followed on the receiver side. For better performance, the time

was calculated in nanoseconds and it was later converted to

milliseconds.

The sensor node spent 26 ms to initialize the key, 8.5 ms for

encryption, 4.5 ms for signature and 0.5 ms in sensor reading.

Therefore, 39.5 ms time in total was needed from sensor reading

to cryptographic operation. In contrast, the receiver side needed

2.65 ms time in total from generation of key to cryptographic

operation, which included 0.35 ms for key generation, 1.4 ms for

decryption and 0.9 ms for signature. When considering

temperature reading, the proposed architecture took about 42.15

ms for the sender and receiver portions together. The

transmission time for ZigBee DigiMesh varied based on the

distance of the node. In the testing phase, the nearest node took

around 85-100 millisecond for 8 byes of data, whereas the

farthest node took around 120-130ms, which made the total time

consumed approximately 120 millisecond for the closest node

and 165 millisecond for the farthest node. The computation time

in the sensor node is depicted in table

Table 2 Execution time (Sensor node)

Operation Time (ms)

Key initialization 26

New rekey generation 4

Encryption 8.5

Decryption 8.7

Signature 4.5

Sensor read 0.5

6.2 Current Consumption
In the proposed design, the current consumption was measured

by the multimeter. For example, a code for signature generation

was uploaded in Arduino Uno and then the current consumption

of this mote was measured using the multimeter. This procedure

was repeated for different operations. A library of the Arduino

was used which helped Arduino to consume less current.

For sensor node operations the current consumption for diverse

functions ranges from 50-57 mA. However, by adding radio, the

current consumption increases which is clearly depicted in table

3.

Table 3 Current Consumption (Sensor node)

Operation Current consumption (mA)

Key initialization 117 mA

New rekey generation 116 mA

Encryption 113 mA

Decryption 114 mA

Signature 115 mA

Sensor read 110 mA

7. CONCLUSION
This scheme was based on the symmetric encryption technique.

Following the implementation, the security issues attained by

our offered design are mentioned in the design and analysis

section. At the time of key formation, a time based password

was used with hash function which also provided uniqueness to

the key.

In this paper, after designing, the protocol was implemented in

real life with the help of an Arduino Uno microcontroller and

XBee, along with sensors and a laptop as the receiver. After

successful implementation of the framework, the empirical

performance of the design was studied. The performance of the

proposed scheme was measured in respect to execution time and

current consumption.

8. REFERENCES
[1] B. Dutertre, S. Cheung, and J. Levy, “Lightweight key

management in wireless sensor networks by leveraging

initial trust,” tech. rep., Technical Report SRI-SDL-04-02,

SRI International, 2004..

[2] L. Eschenauer and V. D. Gligor, “A key-management

scheme for distributed sensor networks,” in Proceedings of

the 9th ACM conference on Computer and communications

security, pp. 41–47, ACM, 2002.

[3] A.-N. Shen, S. Guo, and H.-Y. Chien, “An efficient and

scalable key distribution mechanism for hierarchical

wireless sensor networks,” in Sarnoff Symposium, 2009.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 12, August 2018

18

SARNOFF’09. IEEE, pp. 1–5, IEEE, 2009

[4] A. Herrera and W. Hu, “A key distribution protocol for

wireless sensor networks,” in Proceedings of the 2012 IEEE

37th Conference on Local Computer Networks (LCN

2012), pp. 140–143, IEEE Computer Society, 2012.

[5] D. K. Nilsson, T. Roosta, U. Lindqvist, and A. Valdes,

“Key management and secure software updates in wireless

process control environments,” in Proceedings of the first

ACM conference on Wireless network security, pp. 100–

108, ACM, 2008..

[6] W. Hu, H. Tan, P. Corke, W. C. Shih, and S. Jha, “Toward

trusted wireless sensor networks,” ACM Transactions on

Sensor Networks (TOSN), vol. 7, no. 1, p. 5, 2010.

[7] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz,

“Comparing elliptic curve cryptography and rsa on 8-bit

cpus,” in Cryptographic Hardware and Embedded Systems-

CHES 2004, pp. 119–132, Springer, 2004.

[8] R. Watro, D. Kong, S.-f. Cuti, C. Gardiner, C. Lynn, and P.

Kruus, “Tinypk: securing sensor networks with public key

technology,” in Proceedings of the 2nd ACM workshop on

Security of ad hoc and sensor networks, pp. 59–64, ACM,

2004.

[9] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “Minisec: a

secure sensor network communication architecture,” in

Proceedings of the 6th international conference on

Information processing in sensor networks, pp. 479–488,

ACM, 2007.

[10] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer

security architecture for wireless sensor networks,” in

Proceedings of the 2nd international conference on

Embedded networked sensor systems, pp. 162–175, ACM,

2004

[11] A. Liu and P. Ning, “Tinyecc: A configurable library for

elliptic curve cryptography in wireless sensor networks,” in

Information Processing in Sensor Networks, 2008.

IPSN’08. International Conference on, pp. 245–256, IEEE,

2008.

IJCATM : www.ijcaonline.org

