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ABSTRACT 

New methodologies for efficiently describing and implementing 

digital systems are investigated as the complexity of binary 

digital hardware system is relentlessly expanding. From the 

recent study, it is shown that multi valued logic approach is 

more advantageous over existing binary digital system. Ternary 

means a multilevel switching component, which switches 

between 3 levels. Recent study on ternary number system 

(TNS), has shown numerous advantages over binary. In recent 

times, Double Base Number Systems (DBNS) are considered as 

alternatives to binary number system because of their 

capabilities of performing partial product free multiplications. 

On the other hand, Double Base Ternary Number System 

(DBTNS) multipliers are efficient compared to conventional 

TNS multiplier. High performance digital signal processing 

systems which can able to handle all Digital Signal Processing 

(DSP) algorithms, broadly utilize Multiply-Accumulate (MAC) 

operation. So, TNS Adder and DBTNS Multipliers can be used 

to implement fast MAC units. Keeping this in view, a new 

approach of designing efficient MAC unit using DBTNS 

multiplier is proposed in this work. The performance of 

proposed MAC unit is compared with conventional ternary 

multiplier-based MAC unit and they are mapped on a FPGA 

chip. Performance analysis clearly indicates that the supremacy 

of the proposed architecture over conventional ternary 

multiplier-based MAC unit. 
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1. INTRODUCTION 
In recent times, design of high performance Digital Signal 

Processors is gaining attention to many researchers because of 

emergence of high end applications. DSP algorithms [1], which 

are nothing but sum of products and these are normally 

performed in single cycle. The speed of DSP based applications 

can be improved by enhancing the speed of multiplier and 

addition [2] unit. In recent studies, it has been observed that 

non-weighted and non-binary number system can help to design 

high performance DSP applications [3]. Keeping these issues in 

view, multivalued [4] framework like ternary number system 

(TNS) [5][6] can be considered for designing high performance 

DSP applications. From the Shannon’s information theory, it is 

clear that one trit (ternary digit) contains more information 

(about 1.58496) than one bit (binary digit). Ternary is a 

multivalued logic system [4], mainly base-3 numeral 

framework. Although ternary frequently refers to a framework 

in which the three levels 0, 1, and 2 are used to generate all 

numbers. Now a days, Double Base Number System (DBNS) 

[7] is very attractive for its ability to perform partial product 

free multiplication. So, instead of conventional TNS multiplier, 

Double Base Ternary Number System (DBTNS) multiplier can 

help to reduce the complexity of multiplication [8] [9]. But, 

major bottleneck is the extraction of indices ([i, j] pair) [10] 

while converting ternary number to double base number. For 

implementing DBTNS conversion, LUT based approach has 

been adopted [11]. Moreover, when dynamic range increases, 

LUT based approaches become incapable of breaking the 

complexity as the LUT size increases exponentially. The 

operations mainly required in all the Digital Signal Processing 

applications are multiplication and additions, in other word it 

can be termed as multiplication and accumulation. Therefore, 

there is a demand for high speed processors having committed 

hardware to upgrade the speed with which these multiplications 

and accumulations are performed. Initially, accumulator is 

updated with zero. Input data sequences are first multiplied in 

the multiplier unit. The first product is added with zero, which 

is earlier stored in the accumulator and then accumulator value 

is updated. Partial product free multiplication can be performed 

by DBTNS multiplier so high speed multiply accumulate 

(MAC) units can be implemented using DBTNS multiplier. To 

understand the area-efficient and high-speed MAC unit 

proposed in this work, at first hardware complexities of DBTNS 

MAC architecture is examined and contrast with the 

conventional TNS MAC unit is depicted by investigating the 

execution on a FIR algorithm. The architecture for the proposed 

MAC unit is executed and validated on Xilinx Virtex FPGA 

using ISE Simulator.  

2. REVIEW OF TNS and DBTNS 

2.1 Ternary Number Systems (TNS) 
Ternary is a multivalued [4] rationale framework, for the most 

part base-3 numeral system. Albeit ternary regularly alludes to a 

system in which the three digits 0, 1, and 2 are used to present 

all numbers in this domain. Ternary Number Systems have the 

capabilities of performing basic arithmetic operations like 

compliment operation, addition, subtraction, multiplication and 

division [12][13]. 

2.2 Double Base Ternary Number Systems 

(DBTNS) 
An integer can be represented as a sum of mixed powers of two 

integers. This technique of representation is called Double Base 

Number System i.e. DBNS. A thorough discussion on DBNS is 

presented in the ref. [7] and [11]. In the DBNS, an integer, x, 

can be represented in the following form: 

,

,

23i j

i j

i j

x d
,    where di,j={0, 1}. 

From the expression, a given binary number can be converted 

into DBNS as number of (i, j) pair. These are also referred as 

DBNS indices [14][15][16]. Basis on the discussion of ref. [7] 
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and [11], if x is a ternary number then x can be expressed as 

follows: 

,

,

23i j

i j

i j

x d
, 

where di,j={0, 1, 2}. These indices (i, j) are in ternary number 

system. So, conversion of a ternary number into DBNS as 

number of (i, j) pair in TNS domain [12] can be termed as 

Double Base Ternary Number Systems (DBTNS). In this paper, 

table 1 represents DBTNS table where trit length of indices (i, j) 

is 1 whose dynamic range is 91 and in table 2, trit length of 

indices (i, j) is 2 whose dynamic range is 5028751. 

3. ARCHITECTURE OF MAC UNIT 

USING TNS 
Main objective of a conventional MAC unit is multiplication 

and accumulation. The term accumulation signifies its ability of 

performing addition operation and accumulate the sum of the 

previous consecutive products [17]. So, multiplier, adder and 

accumulator are required for implementing MAC unit. Single 

cycle multiplication and accumulation can be done using this 

MAC unit. Accumulator unit is implemented based on TNS 

Register [18]. Here, in the proposed architecture all the modules 

are implemented using Ternary Number System (TNS). The 

proposed architecture of MAC unit is shown in figure 1. The N-

trit input are fetched from memory location and fed to the 

multiplier unit for multiplication operation. Then the product is 

added with content of accumulator. The output of multiplier 

unit is 2N trit, so the output of the adder is of 2N+1. In this 

architecture, value of N is considered as 2 trit, 3 trit and 4 trit. 

3.1 Multi-trit TNS Adder 
The multi-trit TNS adder [6][12] is implemented based on 

conventional Ripple Carry Adder [2][19]. In this adder, carry is 

propagated to next one trit adder as shown in figure 2. 

3.2 Multi-trit TNS Multiplier 
The logic multiplication of two multi-trits ternary numbers can 

be accomplished in the same way of doing things as in 

longhand multiplication [12][20].The multiplicand is multiplied 

by the individual trits of the multiplier to generate the partial 

products. Initially, multiplicand is multiplied by the first trit of 

the multiplier for generating first partial product; second partial 

product is generated when the multiplicand is multiplied by the 

second trit of the multiplier et cetera. The (i+1)th partial product 

is one trit moved to one side w.r.t the i-th partial products. The 

product is the summary of these partial products [20]. The TNS 

Multiplier for 1 trit is shown in figure 3. This TNS Multiplier is 

implemented using LUT based approach. The input and output 

relationship which is depicted in the table 3, is kept in the LUT. 

After multiplying two 1 trit data, output is of 2 trit. Most 

significant trit is called carry and least significant trit is product. 

The TNS Multiplier for 2 trit is shown in figure 4.  Initially, 

partial product is generated using Partial Product Generation 

(PP Gen) Unit. Two 1-trit TNS Multiplier and two 1-trit TNS 

Half Adder are required to implement PP Gen Unit. Then the 

partial products are pass through the adder to produce 

multiplied data. The TNS Multiplier for 3 trit is shown in figure 

5. Here also, PP Gen Unit is one of the important unit for 

generating partial product. Each PP Gen Unit has length of 4 trit 

output. These partial products are added. The TNS Multiplier 

for 4 trit is shown in figure 6. The partial product which is the 

output of PP Gen unit, is of 5-trit. These partial products are 

added to produce product of multiplier.  

4. ARCHITECTURE OF PROPOSED 

MAC UNIT USING DBTNS 
Multiplication and accumulation operation can be performed in 

single cycle by MAC unit. In the architecture of the proposed 

MAC unit [2][12][17], there are two input h(n) and x(n) which 

is in TNS. Initially, they are converted into DBTNS. The 

proposed architecture is depicted in the figure 7. So, the 

following modules are required for implementation of proposed 

MAC unit. 

A. Integer to TNS Conversion 

B. DBTNS Conversion 

C. DBTNS Multiplier 

D. TNS Adder 

E. TNS Accumulator 

4.1 DBTNS Conversion Unit 
The conversion of Ternary Number to Double Base Ternary 

Number System is carried out by this unit. The approach is 

totally Look Up Table (LUT) based [11]. In DBTNS, there are 

two bases, one is 2 and another is 3 and the number is 

represented in terms of power 2 and 3 i.e i jX=2 .3  where 

these indices (i, j) are in ternary number system[4]. Here, the 

values of i and j are stored in different location of LUT as 

shown in figure 8. These i and j can be used in the consecutive 

steps. 

4.2 DBTNS Multiplier Unit 
Suppose, X1 and X2 are two ternary numbers. In DBTNS, 

i1
1j

1X =2 .3  and 
i2

2j

2X =2 .3 . Now, Z = X1. X2   then 

1 2 1 2(i +i ) (j +j )
Z=2 .3 . The operation of DBTNS Multiplier [10] 

is represented by the flowchart which is depicted in the figure 9. 

The architecture of DBTNS Multiplier is depicted in the figure 

10. The steps for performing multiplication operation using 

DBTNS Multiplier are stated below: 

Step-1: The input sequence, x(n) and h(n) are initialized for N-

tap FIR Filter.  Go to next step. 

Step-2: x(n) and h(n) are converted in ternary number system 

i.e.  x(n)  X and h(n)  H,    X,H TNS  ,  Go to next 

step. 

Step-3: X and H are converted in DBTNS using LUT based 

approach i.e.  X  2i
2 . 3

j
2   and H  2i

1 . 3
j
1 ,    

    i
1,  

i
2,  

j
1, 

j
2  

TNS . Go to next step. 

Step-4: Both the power of 2 is added to generate ‘i’ and both 

the power of 3 is also added to generate ‘j’.  i  i1 + i2  and  j 

 j1 + j2 ,     
    i, i

1,  
i
2, 

j, j
1, 

j
2 TNS  . Where ‘+’ is the 

ternary based addition. Go to next step. 

Step-5: Contents of LUT memory location ‘i’ is transferred to 

‘temp’ i.e    temp  LUT[i]. Go to next step. 

Step-6: The contents of ‘temp’ are passed through barrel 

shifter. Barrel shifter can perform single cycle multi-bit 

shifting. The contents of ‘temp’ are shifted by ‘j’ amount to 

produce final result as product i.e. Product   BS[temp, j] 

Finally output is generated as product.  

In the architecture of DBTNS multiplier, ‘n’ is the trit length of 

indices, ‘N’ is the trit length of ternary equivalent of power of 2 

i.e.  2(i
1
 + i

2
) and ‘M’ is the trit length of product. For 

implementing this architecture [21], TNS Adder, Barrel Shifter 
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[17] and LUT are required. TNS Adder is used to add the 

indices. The ternary equivalent of power of 2 i.e.  2(i
1
 + i

2
) is kept 

in the LUT. This stored data is passed through a barrel shifter as 

it has ability to perform multi-trit shifting in a single cycle. The 

amount of shift is defined by the power of 3 i.e. (j1 + j2). The 

multiplied result can be collected from the barrel shifter.  The 

DBTNS Multiplier with indices trit length 1 trit i.e n = 1, N = 3 

trit then length of multiplied data, M is 7. Here, 1 trit TNS 

Adder can produce maximum value ‘11’ (in ternary). So, the 

range of LUT is ‘000’ to ‘121’. Trit length of output of DBTNS 

multiplier is described in the table 4 for different trit length of 

indices. 

5. PRINCIPLE OF OPERATION OF TNS 

MAC UNIT FOR FIR FILTER 
 A MAC unit can perform single cycle multiplication & 

Accumulation. As per the block diagram x(n) and h(n) are the 

input and y(n) is output. Here LUT is used for storing input data 

sequence and filter coefficient and the number of location of 

LUT is used for this purpose, depends on the number of tapping 

of FIR filter [1][17]. FIR filter can be represented by the 

following equation:

N 1

k 0

y(n) x(n k).h(k)
-

=

= -å  

There are two inputs namely x(n) (input data sequence) and 

h(n) (filter coefficient).  The operation of TNS based FIR is 

represented in the flowchart of fig. 14. The steps involved for 

implementing TNS based FIR Filter is written below: 

Step-1: The input sequence, x(n) and the filter coefficient, h(k) 

are initialized for N-tap FIR Filter,    

Step-2: Initially n, k, acc (i.e. accumulator) are updated with 0. 

Step-3: ‘acc’ is updated i.e.   acc  acc+x(n-k)*h(k) where ‘+’ 

and ‘*’ are the ternary based addition and multiplication 

respectively. 

Step-4: If k N-1, then k is incremented by 1 i.e. k=k+1 then 

go to step 3, otherwise go to next. 

Step-5: If n N-1, then n is incremented by 1 i.e. n=n+1 then 

go to step 3, otherwise go to next. 

Step-6: Accumulator data is sent to the output and final result is 

generated. 

Depending on the above flowchart, architecture of TNS based 

MAC unit is implemented which is depicted in the fig. 15. The 

clocked based analysis of the 4 tap FIR filter operation using 

proposed MAC unit is as follows: 

1st Clock - It means that in first clock two inputs x(0) and h(3) 

will multiplied, and multiplied result will added with zero that 

initially kept in accumulator. 

2nd Clock - In Second clock again two inputs x(1) and h(2) will 

multiplied and obtain result will be added with the result that is 

stored in accumulator i.e. x(0).h(3) + x(1).h(2). 

3rd Clock - Again in third clock two inputs x (2) and h (2) will 

multiplied and added with the result that stored in accumulator 

i.e. x(0).h(3) + x(1).h(2)+x(2).h(1). 

4th Clock - In fourth clock, we obtain y(n)= x(0).h(3) + 

x(1).h(2)+x(2).h(1)+x(3).h(0). 

In the last clock i.e. in 4th clock it will generate the output. The 

output will depend upon the number of tapping of FIR filter. If 

the no. of tapping is four, the MAC unit will generate output in 

the fourth clock. If the tapping is eight the output will be 

generated in eighth clock. From the above analysis, it can be 

concluded that the output of the MAC unit is same as the FIR 

filter output. Hence FIR filter can be implemented using MAC 

unit.  

6. PRINCIPLE OF OPERATION OF 

DBTNS MAC UNIT FOR FIR FILTER 
Multiply-accumulate operation can be performed in single cycle 

by MAC unit [22]. There are two inputs, h(n) & x(n) in a MAC 

unit. The inputs are multiplied first and added with zero which 

is initially stored in an accumulator. In the very next clock, the 

next two inputs are multiplied and added with previous data and 

update the accumulator. The architecture of the proposed MAC 

unit is shown in figure 13. In the proposed architecture, there 

are 5 (five) LUTs, among these 5 LUTs, LUT-1 & LUT-3 are 

used for integer to ternary number, LUT-2 & LUT-4 are used 

for converting TNS to double base ternary number and LUT-5 

is used to convert ternary to integer. Initially, x(n) and h(n) are 

converted into DBTNS i.e. 
i1

1j = 2 .3x(n)  and 
i2

2j( )= 2 .3h n . The indices of 2 & 3 are passed through 

DBTNS Multiplier unit and multiplied data is added with zero 

which is initially stored in an accumulator. The architecture of 

DBTNS multiplier is shown in figure 10. For indices ‘i’ and ‘j’, 

trit length are 1, 2, 3 then output trit length are 7, 27, 85 

respectively (Table 4). The operation of DBTNS based FIR is 

represented in the flowchart of figure 14. The steps involved for 

implementing DBTNS based FIR Filter are written below: 

Step-1: The input sequence, x(n) and the filter coefficient, h(n) 

are initialized for N-tap FIR Filter.  

 n  0,      and acc  0.  

Go to next step. 

Step-2: x(n) and h(n) are converted in ternary number system.  

 x(n)  X and h(n)  H,   X,H TNS  .   

Go to next step. 

Step-3: X and H are converted to DBTNS in LUT based 

approach. 

 X  2i
2 . 3

j
2   and    H  2i

1 . 3
j
1 ,       

    i
1,  

i
2,  

j
1, 

j
2  

TNS .  Go to next step. 

Step-4: X and H are multiplied using DBTNS multiplier and 

product Pn is generated. 

 Pn = 2(i
1
 +  i

2
) . 3(j

1
 + j

2
) ,             

    i
1,  

i
2,  

j
1, 

j
2  TNS .  

Go to next step. 

Step-5: ‘acc’ is updated i.e.  acc  acc + Pn  where ‘+’ is the 

ternary based addition.  

Go to next step. 

Step-6: If n N-1, then n is incremented by 1 i.e. n=n+1 then 

go to step 2, otherwise go to next step. 

Step-7: Y  acc where ‘Y’ is in DBTNS. 

Step-8: ‘Y’ is converted to real number, y(n) and finally output 

is generated. 
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7. PERFORMANCE ANALYSIS OF 

PROPOSED TNS MAC UNIT 
To implement FIR Filter [1][21] using TNS MAC unit, the 

delay and hardware complexity [2][6] of different adder and 

multiplier circuits have been compared. Total delay of this FIR 

Filter = ( n-trit LUT access delay + time taken by TNS 

Multiplier + time taken by TNS Adder). Total delay of  n-trit 

TNS Adder = ( THA + (n-1).Tc), where, THA is time taken by 

half adder and Tc is the carry propagation delay in later stages. 

If the no. of trit of input data of FIR Filter is changed then 

execution time is also varied. Synthesis report of 8 tap FIR filter 

with change of Trit is shown in table 5. The relation between 

number of LUTs and number of trit maximum frequency and 

trit and execution time and trit is shown in the figure 15. 

8. PERFORMANCE ANALYSIS OF 

PROPOSED DBTNS MAC UNIT 
DBTNS conversion is performed by LUT based approach 

[10][17]. So over all time complexity [2][18] depends on the 

LUT size. To implement FIR filter using DBTNS MAC unit, 

total delay can be represented as (n - trit LUT access time for 

integer to TNS conversion + n - trit LUT access time for TNS to 

DBTNS conversion + time taken by DBTNS multiplier + time 

taken by TNS Adder + n - trit LUT access time for TNS to 

integer conversion). If the number of trit of indices of input data 

of FIR filter [2][21][23] are changed then execution time is also 

varied. The synthesis report of 8 tap FIR filter with change of 

trit is shown in the table 6. The relation between number of 

LUTs and number of trit, maximum frequency and trit and 

execution time and trit is shown in the figure 16. 

9. CONCLUSION 
In this paper, a new architecture for MAC unit has been 

proposed for implementing DSP algorithm like FIR algorithm 

[1][2] using two different number system like TNS and 

DBTNS. Partial product free multiplication operations can be 

performed by DBTNS multiplier efficiently. Since, DBTNS 

multipliers are efficient compared [17][19] to conventional TNS 

multiplier, so the novelty of the proposed MAC unit is depicted 

by the experimental results. The architecture was validated on 

Xilinx FPGA [15] and the detailed analysis and studies of 

different modules of the proposed units have been simulated 

using Xilinx ISE version 12.3. TNS is a multivalued logic 

approach which offers several advantages over existing binary 

digital system [4][5]. So, a detailed study can be made in this 

DBTNS domain on performance improvement for other DSP 

algorithms [1][24] like speech processing , high quality sound 

systems, adaptive echo cancellation , solar signal processing , 

military applications etc where in addition to high speed, high 

precisions are also required. Beside that exploring the 

possibilities of VLSI implementation of the multi-valued logic 

system using double base number system can also be a topic for 

future work. 
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Table 1.  DBTNS Table for i, j  1 trit 

i                                j 0 1 2 

0 0001 0010 0100 

1 0002 0020 0200 

2 0011 0110 1100 

 

Table 2. DBTNS Table for i, j  2 trit 

i,       

j 
00 01 02 10 11 12 20 21 22 

00 
000000000

00001 

000000000

00010 

000000000

00100 

000000000

01000 

000000000

10000 

000000001

00000 

000000010

00000 

000000100

00000 

000001000

00000 

01 
000000000

00002 

000000000

00020 

000000000

00200 

000000000

02000 

000000000

20000 

000000002

00000 

000000020

00000 

000000200

00000 

000002000

00000 

02 
000000000

00011 

000000000

00110 

000000000

01100 

000000000

11000 

000000001

10000 

000000011

00000 

000000110

00000 

000001100

00000 

000011000

00000 

10 
000000000

00022 

000000000

00220 

000000000

02200 

000000000

22000 

000000002

20000 

000000022

00000 

000000220

00000 

000002200

00000 

000022000

00000 

11 
000000000

00121 

000000000

01210 

000000000

12100 

000000001

21000 

000000012

10000 

000000121

00000 

000001210

00000 

000012100

00000 

000121000

00000 

12 
000000000

01012 

000000000

10120 

000000001

01200 

000000010

12000 

000000101

20000 

000001012

00000 

000010120

00000 

000101200

00000 

001012000

00000 

20 
000000000

02101 

000000000

21010 

000000002

10100 

000000021

01000 

000000210

10000 

000002101

00000 

000021010

00000 

000210100

00000 

002101000

00000 

21 
000000000

11202 

000000001

12020 

000000011

20200 

000000112

02000 

000001120

20000 

000011202

00000 

000112020

00000 

001120200

00000 

011202000

00000 

22 
000000001

00111 

000000010

01110 

000000100

11100 

000001001

11000 

000010011

10000 

000100111

00000 

001001110

00000 

010011100

00000 

100111000

00000 

 

Table 3. Ternary Multiplication 

MULTIPLICAND MULTIPLIER CARRY PRODUCT 

0 0 0 0 

0 1 0 0 

0 2 0 0 

1 1 0 1 

1 2 0 2 

2 2 1 1 
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Table 4. Data Table of DBTNS Multiplier 

INPUT INDEX 

TRIT LENGTH 

(i, j) 

(n) 

TNS ADDER 

LUT DATA 

RANGE 

BARREL SHIFTER INPUT 

DATA TRIT LENGTH 

(N) 

M
A

X
IM

U
M

 

S
H

IF
T

 

P
R

O
D

U
C

T
 (

M
) 

OUTPUT 

TRIT 

LENGTH 

(n+1) 

OUTPUT 

DATA 

RANGE 

1 2 00 to 11 20 to 24 3 4 7 

2 3 000 to 121 20 to 216 11 16 27 

3 4 0000 to 1221 20   to 252 33 52 85 

 

Table 5. Synthesis report of 8 tap FIR filter using TNS MAC unit with change of Trit 

S
l.

 N
o
. 

N
o
. 

o
f 

T
ri

t 

Synthesis Report 

N
u
m

b
er

 
o
f 

S
li

ce
 L

U
T

s 

M
in

im
u
m

 

p
er

io
d
 

Minimum input arrival 

time before clock 

Maximum output 

required time after clock 

1 4 148  out of  46560 
3.571ns (Maximum 

Frequency: 279.994 MHz) 
6.464ns 0.576ns 

2 3 84  out of  46560 
2.853ns (Maximum 

Frequency: 350.471 MHz) 
4.974ns 0.576ns 

3 2 35  out of  46560 
2.135ns (Maximum 

Frequency: 468.362 MHz) 
3.066ns 0.576ns 

 

Table 6. Synthesis report of 8 tap FIR filter using DBTNS MAC unit with change of Trit 

S
l.

 N
o
. 

IN
P

U
T

 
IN

D
E

X
 

T
R

IT
 L

E
N

G
T

H
  

(i
, 

j)
 

Synthesis Report 

Number of Slice 

LUTs 
Minimum period 

Minimum input arrival 

time before clock 

Maximum output 

required time after clock 

1 1 90  out of  343680 
6.405ns (Maximum Frequency: 

156.128 MHz) 
8.098ns 0.676ns 

2 2 308  out of  343680 
11.996ns (Maximum Frequency: 

83.364 MHz) 
14.235ns 0.676ns 

3 3 619  out of  343680 
21.887ns (Maximum Frequency: 

45.690 MHz) 
25.736ns 0.676ns 
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Figure  1. TNS MAC Unit 

 

Figure  2. TNS Adder 

 

Figure 3. 1 Trit TNS Multiplier 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 14, September 2018 

16 

 

Figure 4. 2 Trit TNS Multiplier 
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Figure 5. 3 Trit TNS Multiplie 
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Figure 6. 4 Trit TNS Multiplier 
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DBTNS 

Multiplier

Accumulator

n trit TNS 

ADDER

L

U

T

L

U

T

X

H

OUTPUT

 

Figure 7. DBTNS Based MAC Unit 

L

U

T

X

i

j

i jX=2 .3

 

Figure 8. LUT Based DBTNS Conversion Unit 

START

X   x(n);

H   h(n);

X = 2i
2 . 3

j
2; H = 2i

1.3
j
1;

i = i1 + i2 ; 

 j = j1 + j2 ;

Temp  LUT[i] 

PRODUCT  BS[temp, j] 

END

PRODUCT

 

Figure 9. Computational flowchart of DBTNS Multiplier 

Unit 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 14, September 2018 

20 

BARREL SHIFTER

j
1 j

2 i
1

i
2

n trit TNS 

ADDER

n trit TNS 

ADDER

L

U

T

  Of

2(i1+i2) 

PRODUCT

n+1

n+1

N

M

DBTNS 

Multiplier

i
1

j
1

i
2

j
2

P
R

O
D

U
C
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Figure 10. DBTNS Multiplier Unit 

START

For N-tap FIR Filter:

x(n): Input Sequence

h(n): Filter Coefficient;

  n  0;

  k  0; 

acc  0;

acc  acc + x(n-k)*h(k)

k = N – 1

?

y(n)  acc

n = N – 1

?

y(n) : Output

END

k  k+1
N

n  n+1

Y

N

Y

 

Figure 11. Computational flowchart of TNS based FIR 

Filter 

 

Figure 12. Block diagram of a proposed TNS MAC unit 

DBTNS 

Multiplier

Accumulator

n trit TNS 

ADDER

L

U

T

L

U

T

X

H

OUTPUT

i
2

j
2

i
1 j

1

L

U

T

L

U

T

L

U

T

x(n)

h(n)

LUT-1
LUT-2

LUT-3

LUT-4

LUT-5

y(n)

 

Figure 13. Block diagram of a proposed DBTNS MAC 

unit 
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START

For N-tap FIR Filter:

x(n): Input Sequence

h(n): Filter Coefficient;

n  0;

acc  0;

X  x(n);

H  h(n);

X = 2i
2 . 3

j
2; H = 2

i
1.3

j
1;

Pn  X.H   2i
 . 3

j;

where, i = i1 + i2 ; 

          j = j1 + j2 ;  

acc  acc + Pn

n = N – 1

?
n  n+1

y(n) : Output

y(n)  Y

Y  acc

END

Figure 14. Computational flowchart of DBTNS based FIR 

Filter 

 

 

Figure 15. Complexity analysis of 8-tap FIR Filter using 

TNS MAC unit with the change of trit 

(a - Maximum Frequency vs. Trit; b - Execution Time vs. 

Trit; c - No. of LUTs vs. Trit) 
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Figure 16. Complexity analysis of 8-tap FIR Filter using DBTNS MAC unit with the change of trit 

(a - Maximum Frequency vs. Trit; b - Execution Time vs. Trit; c - No. of LUTs vs. Trit) 
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