
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

9

FPGA Implementation of MAC Unit for Double Base
Ternary Number System (DBTNS) and its Performance

Analysis

Aniruddha Ghosh
Calcutta Institute of Technology

Uluberia, Howrah, W.B, India

Amitabha Sinha
Birbhum Institute of Engineering & Technology

Suri, Birbhum, W.B, India

ABSTRACT

New methodologies for efficiently describing and implementing

digital systems are investigated as the complexity of binary

digital hardware system is relentlessly expanding. From the

recent study, it is shown that multi valued logic approach is

more advantageous over existing binary digital system. Ternary

means a multilevel switching component, which switches

between 3 levels. Recent study on ternary number system

(TNS), has shown numerous advantages over binary. In recent

times, Double Base Number Systems (DBNS) are considered as

alternatives to binary number system because of their

capabilities of performing partial product free multiplications.

On the other hand, Double Base Ternary Number System

(DBTNS) multipliers are efficient compared to conventional

TNS multiplier. High performance digital signal processing

systems which can able to handle all Digital Signal Processing

(DSP) algorithms, broadly utilize Multiply-Accumulate (MAC)

operation. So, TNS Adder and DBTNS Multipliers can be used

to implement fast MAC units. Keeping this in view, a new

approach of designing efficient MAC unit using DBTNS

multiplier is proposed in this work. The performance of

proposed MAC unit is compared with conventional ternary

multiplier-based MAC unit and they are mapped on a FPGA

chip. Performance analysis clearly indicates that the supremacy

of the proposed architecture over conventional ternary

multiplier-based MAC unit.

Keywords

Ternary Number System (TNS); Trit; Ternary Gates; Ternary

Arithmetic; Double Base Ternary Number Systems (DBTNS);

DBTNS Multiplier; Multiply and Accumulate Unit (MAC);

FPGA; DSP Algorithms.

1. INTRODUCTION
In recent times, design of high performance Digital Signal

Processors is gaining attention to many researchers because of

emergence of high end applications. DSP algorithms [1], which

are nothing but sum of products and these are normally

performed in single cycle. The speed of DSP based applications

can be improved by enhancing the speed of multiplier and

addition [2] unit. In recent studies, it has been observed that

non-weighted and non-binary number system can help to design

high performance DSP applications [3]. Keeping these issues in

view, multivalued [4] framework like ternary number system

(TNS) [5][6] can be considered for designing high performance

DSP applications. From the Shannon’s information theory, it is

clear that one trit (ternary digit) contains more information

(about 1.58496) than one bit (binary digit). Ternary is a

multivalued logic system [4], mainly base-3 numeral

framework. Although ternary frequently refers to a framework

in which the three levels 0, 1, and 2 are used to generate all

numbers. Now a days, Double Base Number System (DBNS)

[7] is very attractive for its ability to perform partial product

free multiplication. So, instead of conventional TNS multiplier,

Double Base Ternary Number System (DBTNS) multiplier can

help to reduce the complexity of multiplication [8] [9]. But,

major bottleneck is the extraction of indices ([i, j] pair) [10]

while converting ternary number to double base number. For

implementing DBTNS conversion, LUT based approach has

been adopted [11]. Moreover, when dynamic range increases,

LUT based approaches become incapable of breaking the

complexity as the LUT size increases exponentially. The

operations mainly required in all the Digital Signal Processing

applications are multiplication and additions, in other word it

can be termed as multiplication and accumulation. Therefore,

there is a demand for high speed processors having committed

hardware to upgrade the speed with which these multiplications

and accumulations are performed. Initially, accumulator is

updated with zero. Input data sequences are first multiplied in

the multiplier unit. The first product is added with zero, which

is earlier stored in the accumulator and then accumulator value

is updated. Partial product free multiplication can be performed

by DBTNS multiplier so high speed multiply accumulate

(MAC) units can be implemented using DBTNS multiplier. To

understand the area-efficient and high-speed MAC unit

proposed in this work, at first hardware complexities of DBTNS

MAC architecture is examined and contrast with the

conventional TNS MAC unit is depicted by investigating the

execution on a FIR algorithm. The architecture for the proposed

MAC unit is executed and validated on Xilinx Virtex FPGA

using ISE Simulator.

2. REVIEW OF TNS and DBTNS

2.1 Ternary Number Systems (TNS)
Ternary is a multivalued [4] rationale framework, for the most

part base-3 numeral system. Albeit ternary regularly alludes to a

system in which the three digits 0, 1, and 2 are used to present

all numbers in this domain. Ternary Number Systems have the

capabilities of performing basic arithmetic operations like

compliment operation, addition, subtraction, multiplication and

division [12][13].

2.2 Double Base Ternary Number Systems

(DBTNS)
An integer can be represented as a sum of mixed powers of two

integers. This technique of representation is called Double Base

Number System i.e. DBNS. A thorough discussion on DBNS is

presented in the ref. [7] and [11]. In the DBNS, an integer, x,

can be represented in the following form:

,

,

23i j

i j

i j

x d
, where di,j={0, 1}.

From the expression, a given binary number can be converted

into DBNS as number of (i, j) pair. These are also referred as

DBNS indices [14][15][16]. Basis on the discussion of ref. [7]

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

10

and [11], if x is a ternary number then x can be expressed as

follows:

,

,

23i j

i j

i j

x d
,

where di,j={0, 1, 2}. These indices (i, j) are in ternary number

system. So, conversion of a ternary number into DBNS as

number of (i, j) pair in TNS domain [12] can be termed as

Double Base Ternary Number Systems (DBTNS). In this paper,

table 1 represents DBTNS table where trit length of indices (i, j)

is 1 whose dynamic range is 91 and in table 2, trit length of

indices (i, j) is 2 whose dynamic range is 5028751.

3. ARCHITECTURE OF MAC UNIT

USING TNS
Main objective of a conventional MAC unit is multiplication

and accumulation. The term accumulation signifies its ability of

performing addition operation and accumulate the sum of the

previous consecutive products [17]. So, multiplier, adder and

accumulator are required for implementing MAC unit. Single

cycle multiplication and accumulation can be done using this

MAC unit. Accumulator unit is implemented based on TNS

Register [18]. Here, in the proposed architecture all the modules

are implemented using Ternary Number System (TNS). The

proposed architecture of MAC unit is shown in figure 1. The N-

trit input are fetched from memory location and fed to the

multiplier unit for multiplication operation. Then the product is

added with content of accumulator. The output of multiplier

unit is 2N trit, so the output of the adder is of 2N+1. In this

architecture, value of N is considered as 2 trit, 3 trit and 4 trit.

3.1 Multi-trit TNS Adder
The multi-trit TNS adder [6][12] is implemented based on

conventional Ripple Carry Adder [2][19]. In this adder, carry is

propagated to next one trit adder as shown in figure 2.

3.2 Multi-trit TNS Multiplier
The logic multiplication of two multi-trits ternary numbers can

be accomplished in the same way of doing things as in

longhand multiplication [12][20].The multiplicand is multiplied

by the individual trits of the multiplier to generate the partial

products. Initially, multiplicand is multiplied by the first trit of

the multiplier for generating first partial product; second partial

product is generated when the multiplicand is multiplied by the

second trit of the multiplier et cetera. The (i+1)th partial product

is one trit moved to one side w.r.t the i-th partial products. The

product is the summary of these partial products [20]. The TNS

Multiplier for 1 trit is shown in figure 3. This TNS Multiplier is

implemented using LUT based approach. The input and output

relationship which is depicted in the table 3, is kept in the LUT.

After multiplying two 1 trit data, output is of 2 trit. Most

significant trit is called carry and least significant trit is product.

The TNS Multiplier for 2 trit is shown in figure 4. Initially,

partial product is generated using Partial Product Generation

(PP Gen) Unit. Two 1-trit TNS Multiplier and two 1-trit TNS

Half Adder are required to implement PP Gen Unit. Then the

partial products are pass through the adder to produce

multiplied data. The TNS Multiplier for 3 trit is shown in figure

5. Here also, PP Gen Unit is one of the important unit for

generating partial product. Each PP Gen Unit has length of 4 trit

output. These partial products are added. The TNS Multiplier

for 4 trit is shown in figure 6. The partial product which is the

output of PP Gen unit, is of 5-trit. These partial products are

added to produce product of multiplier.

4. ARCHITECTURE OF PROPOSED

MAC UNIT USING DBTNS
Multiplication and accumulation operation can be performed in

single cycle by MAC unit. In the architecture of the proposed

MAC unit [2][12][17], there are two input h(n) and x(n) which

is in TNS. Initially, they are converted into DBTNS. The

proposed architecture is depicted in the figure 7. So, the

following modules are required for implementation of proposed

MAC unit.

A. Integer to TNS Conversion

B. DBTNS Conversion

C. DBTNS Multiplier

D. TNS Adder

E. TNS Accumulator

4.1 DBTNS Conversion Unit
The conversion of Ternary Number to Double Base Ternary

Number System is carried out by this unit. The approach is

totally Look Up Table (LUT) based [11]. In DBTNS, there are

two bases, one is 2 and another is 3 and the number is

represented in terms of power 2 and 3 i.e i jX=2 .3 where

these indices (i, j) are in ternary number system[4]. Here, the

values of i and j are stored in different location of LUT as

shown in figure 8. These i and j can be used in the consecutive

steps.

4.2 DBTNS Multiplier Unit
Suppose, X1 and X2 are two ternary numbers. In DBTNS,

i1
1j

1X =2 .3 and
i2

2j

2X =2 .3 . Now, Z = X1. X2 then

1 2 1 2(i +i) (j +j)
Z=2 .3 . The operation of DBTNS Multiplier [10]

is represented by the flowchart which is depicted in the figure 9.

The architecture of DBTNS Multiplier is depicted in the figure

10. The steps for performing multiplication operation using

DBTNS Multiplier are stated below:

Step-1: The input sequence, x(n) and h(n) are initialized for N-

tap FIR Filter. Go to next step.

Step-2: x(n) and h(n) are converted in ternary number system

i.e. x(n)  X and h(n)  H, X,H TNS  , Go to next

step.

Step-3: X and H are converted in DBTNS using LUT based

approach i.e. X  2i
2 . 3

j
2 and H  2i

1 . 3
j
1 ,

 i
1,

i
2,

j
1,

j
2

TNS . Go to next step.

Step-4: Both the power of 2 is added to generate ‘i’ and both

the power of 3 is also added to generate ‘j’. i  i1 + i2 and j

 j1 + j2 ,
 i, i

1,
i
2,

j, j
1,

j
2 TNS . Where ‘+’ is the

ternary based addition. Go to next step.

Step-5: Contents of LUT memory location ‘i’ is transferred to

‘temp’ i.e temp  LUT[i]. Go to next step.

Step-6: The contents of ‘temp’ are passed through barrel

shifter. Barrel shifter can perform single cycle multi-bit

shifting. The contents of ‘temp’ are shifted by ‘j’ amount to

produce final result as product i.e. Product  BS[temp, j]

Finally output is generated as product.

In the architecture of DBTNS multiplier, ‘n’ is the trit length of

indices, ‘N’ is the trit length of ternary equivalent of power of 2

i.e. 2(i
1
 + i

2
) and ‘M’ is the trit length of product. For

implementing this architecture [21], TNS Adder, Barrel Shifter

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

11

[17] and LUT are required. TNS Adder is used to add the

indices. The ternary equivalent of power of 2 i.e. 2(i
1
 + i

2
) is kept

in the LUT. This stored data is passed through a barrel shifter as

it has ability to perform multi-trit shifting in a single cycle. The

amount of shift is defined by the power of 3 i.e. (j1 + j2). The

multiplied result can be collected from the barrel shifter. The

DBTNS Multiplier with indices trit length 1 trit i.e n = 1, N = 3

trit then length of multiplied data, M is 7. Here, 1 trit TNS

Adder can produce maximum value ‘11’ (in ternary). So, the

range of LUT is ‘000’ to ‘121’. Trit length of output of DBTNS

multiplier is described in the table 4 for different trit length of

indices.

5. PRINCIPLE OF OPERATION OF TNS

MAC UNIT FOR FIR FILTER
 A MAC unit can perform single cycle multiplication &

Accumulation. As per the block diagram x(n) and h(n) are the

input and y(n) is output. Here LUT is used for storing input data

sequence and filter coefficient and the number of location of

LUT is used for this purpose, depends on the number of tapping

of FIR filter [1][17]. FIR filter can be represented by the

following equation:

N 1

k 0

y(n) x(n k).h(k)
-

=

= -å

There are two inputs namely x(n) (input data sequence) and

h(n) (filter coefficient). The operation of TNS based FIR is

represented in the flowchart of fig. 14. The steps involved for

implementing TNS based FIR Filter is written below:

Step-1: The input sequence, x(n) and the filter coefficient, h(k)

are initialized for N-tap FIR Filter,

Step-2: Initially n, k, acc (i.e. accumulator) are updated with 0.

Step-3: ‘acc’ is updated i.e. acc  acc+x(n-k)*h(k) where ‘+’

and ‘*’ are the ternary based addition and multiplication

respectively.

Step-4: If k N-1, then k is incremented by 1 i.e. k=k+1 then

go to step 3, otherwise go to next.

Step-5: If n N-1, then n is incremented by 1 i.e. n=n+1 then

go to step 3, otherwise go to next.

Step-6: Accumulator data is sent to the output and final result is

generated.

Depending on the above flowchart, architecture of TNS based

MAC unit is implemented which is depicted in the fig. 15. The

clocked based analysis of the 4 tap FIR filter operation using

proposed MAC unit is as follows:

1st Clock - It means that in first clock two inputs x(0) and h(3)

will multiplied, and multiplied result will added with zero that

initially kept in accumulator.

2nd Clock - In Second clock again two inputs x(1) and h(2) will

multiplied and obtain result will be added with the result that is

stored in accumulator i.e. x(0).h(3) + x(1).h(2).

3rd Clock - Again in third clock two inputs x (2) and h (2) will

multiplied and added with the result that stored in accumulator

i.e. x(0).h(3) + x(1).h(2)+x(2).h(1).

4th Clock - In fourth clock, we obtain y(n)= x(0).h(3) +

x(1).h(2)+x(2).h(1)+x(3).h(0).

In the last clock i.e. in 4th clock it will generate the output. The

output will depend upon the number of tapping of FIR filter. If

the no. of tapping is four, the MAC unit will generate output in

the fourth clock. If the tapping is eight the output will be

generated in eighth clock. From the above analysis, it can be

concluded that the output of the MAC unit is same as the FIR

filter output. Hence FIR filter can be implemented using MAC

unit.

6. PRINCIPLE OF OPERATION OF

DBTNS MAC UNIT FOR FIR FILTER
Multiply-accumulate operation can be performed in single cycle

by MAC unit [22]. There are two inputs, h(n) & x(n) in a MAC

unit. The inputs are multiplied first and added with zero which

is initially stored in an accumulator. In the very next clock, the

next two inputs are multiplied and added with previous data and

update the accumulator. The architecture of the proposed MAC

unit is shown in figure 13. In the proposed architecture, there

are 5 (five) LUTs, among these 5 LUTs, LUT-1 & LUT-3 are

used for integer to ternary number, LUT-2 & LUT-4 are used

for converting TNS to double base ternary number and LUT-5

is used to convert ternary to integer. Initially, x(n) and h(n) are

converted into DBTNS i.e.
i1

1j = 2 .3x(n) and
i2

2j()= 2 .3h n . The indices of 2 & 3 are passed through

DBTNS Multiplier unit and multiplied data is added with zero

which is initially stored in an accumulator. The architecture of

DBTNS multiplier is shown in figure 10. For indices ‘i’ and ‘j’,

trit length are 1, 2, 3 then output trit length are 7, 27, 85

respectively (Table 4). The operation of DBTNS based FIR is

represented in the flowchart of figure 14. The steps involved for

implementing DBTNS based FIR Filter are written below:

Step-1: The input sequence, x(n) and the filter coefficient, h(n)

are initialized for N-tap FIR Filter.

 n  0, and acc  0.

Go to next step.

Step-2: x(n) and h(n) are converted in ternary number system.

 x(n)  X and h(n)  H, X,H TNS  .

Go to next step.

Step-3: X and H are converted to DBTNS in LUT based

approach.

 X  2i
2 . 3

j
2 and H  2i

1 . 3
j
1 ,

 i
1,

i
2,

j
1,

j
2

TNS . Go to next step.

Step-4: X and H are multiplied using DBTNS multiplier and

product Pn is generated.

 Pn = 2(i
1
 + i

2
) . 3(j

1
 + j

2
) ,

 i
1,

i
2,

j
1,

j
2 TNS .

Go to next step.

Step-5: ‘acc’ is updated i.e. acc  acc + Pn where ‘+’ is the

ternary based addition.

Go to next step.

Step-6: If n N-1, then n is incremented by 1 i.e. n=n+1 then

go to step 2, otherwise go to next step.

Step-7: Y  acc where ‘Y’ is in DBTNS.

Step-8: ‘Y’ is converted to real number, y(n) and finally output

is generated.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

12

7. PERFORMANCE ANALYSIS OF

PROPOSED TNS MAC UNIT
To implement FIR Filter [1][21] using TNS MAC unit, the

delay and hardware complexity [2][6] of different adder and

multiplier circuits have been compared. Total delay of this FIR

Filter = (n-trit LUT access delay + time taken by TNS

Multiplier + time taken by TNS Adder). Total delay of n-trit

TNS Adder = (THA + (n-1).Tc), where, THA is time taken by

half adder and Tc is the carry propagation delay in later stages.

If the no. of trit of input data of FIR Filter is changed then

execution time is also varied. Synthesis report of 8 tap FIR filter

with change of Trit is shown in table 5. The relation between

number of LUTs and number of trit maximum frequency and

trit and execution time and trit is shown in the figure 15.

8. PERFORMANCE ANALYSIS OF

PROPOSED DBTNS MAC UNIT
DBTNS conversion is performed by LUT based approach

[10][17]. So over all time complexity [2][18] depends on the

LUT size. To implement FIR filter using DBTNS MAC unit,

total delay can be represented as (n - trit LUT access time for

integer to TNS conversion + n - trit LUT access time for TNS to

DBTNS conversion + time taken by DBTNS multiplier + time

taken by TNS Adder + n - trit LUT access time for TNS to

integer conversion). If the number of trit of indices of input data

of FIR filter [2][21][23] are changed then execution time is also

varied. The synthesis report of 8 tap FIR filter with change of

trit is shown in the table 6. The relation between number of

LUTs and number of trit, maximum frequency and trit and

execution time and trit is shown in the figure 16.

9. CONCLUSION
In this paper, a new architecture for MAC unit has been

proposed for implementing DSP algorithm like FIR algorithm

[1][2] using two different number system like TNS and

DBTNS. Partial product free multiplication operations can be

performed by DBTNS multiplier efficiently. Since, DBTNS

multipliers are efficient compared [17][19] to conventional TNS

multiplier, so the novelty of the proposed MAC unit is depicted

by the experimental results. The architecture was validated on

Xilinx FPGA [15] and the detailed analysis and studies of

different modules of the proposed units have been simulated

using Xilinx ISE version 12.3. TNS is a multivalued logic

approach which offers several advantages over existing binary

digital system [4][5]. So, a detailed study can be made in this

DBTNS domain on performance improvement for other DSP

algorithms [1][24] like speech processing , high quality sound

systems, adaptive echo cancellation , solar signal processing ,

military applications etc where in addition to high speed, high

precisions are also required. Beside that exploring the

possibilities of VLSI implementation of the multi-valued logic

system using double base number system can also be a topic for

future work.

10. REFERENCES
[1] Mitra, S.K.: ‘Digital Signal Processing’ (A Wiley-Inter

science Publication,1999).

[2] Hwang, K. (Purdue University), Briggs, F.A. (Rice

University): ‘COMPUTER ARCHITECURE AND

PARALLEL PROCESSING’(International Edition, 1985).

[3] Roy, R. , Datta, D. et al.: ‘Comparative Study and Analysis

of Performances among RNS, DBNS, TBNS and MNS for

DSP Applications’, Journal of Signal and Information

Processing, 2015, (6), pp. 49-65. doi: 10.4236/

jsip.2015.62005.

[4] Gonzalez F, Mazumder P.: ‘Multiple-valued signed digit

adder using negative differential resistance devices’, IEEE

Trans. on Computers, 1998, (47), pp. 947 – 959.

[5] Chung-Yu-Wu.: ‘Design& application of pipelined dynamic

CMOS ternary logic & simple ternary differential logic’,

IEEE journal on solid state circuits, 1993, (28), pp. 895-

906.

[6] Radanovic M. S.: ‘Current-mode CMOS adders using

multiple-valued logic’: Canadian Conference on Electrical

and Computer Engineering, 1996, pp. 190-193.

[7] Dimitrov, V. S., Jullien, G. A., Miller, W. C.: ‘Theory and

Applications of the Double-Base Number System’, IEEE

Trans. Computers, 1999, 48, (10), pp.1098-1106.

[8] Chen, J., Chang, C. H., et al.: ‘Novel Design Algorithm for

Low Complexity Programmable FIR Filters Based on

Extended Double Base Number System’, IEEE

Transactions on Circuits and Systems I: Regular Papers,

2015, 62, (1), pp. 224-233. doi:

10.1109/TCSI.2014.2348072.

[9] Méloni, N., Hasan, M. A.: ‘Efficient Double Bases for

Scalar Multiplication’, IEEE Transactions on Computers,

2015, 64, (8), pp. 2204-2212. doi:

10.1109/TC.2014.2360539.

[10] Singha, S., Ghosh, A., Sinha, A.: ‘A New Architecture for

FPGA based Implementation of Conversion of Binary to

Double Base Number System (DBNS) Using Parallel

Search Technique’, ACM SIGARCH Computer

Architecture News, 2011, 39, (5), pp. 12-18.

DOI:10.1145/2093339.2093343.

[11] Dimitrov, V. S., Sadeghi-Emamchaie, S., et al.: ‘A Near

Canonic Double-Based Number System (DBNS) with

Applications in Digital Signal Processing’, Proceedings

SPIE Conference on Advanced Signal Processing, 1996,

pp. 14-25. http://dx.doi.org/10.1117/12.255433

[12] Yoeli, M., Rosenfeld, G.: ‘Logical Design of ternary

switching circuits’, IEEE Trans Computer., 1965, 14, pp.

19-29.

[13Dhande, A.P., Ingole, V.T.: ‘Design and Implementation Of

2 Bit Ternary ALU Slice’, SETIT, 3rd International

Conference: Sciences Of Electronic, Technologies Of

Information And Telecommunications, 2005, pp. 7-21.

[14] Muscedere, R., Dimitrov, V. S., et al.: ‘On Efficient

Techniques for Difficult Operations in One and Two-digit

DBNS Index Calculus’, Proceedings 34th Asilomar

Conference on Signals, Systems and Computers,

November, 2000.

[15] Tessier, R., Burleson, W.: ‘Reconfigurable computing for

digital signal processing: A survey’, Journal of VLSI

Signal Processing, 2001, 28, pp 7-27.

[16] Singha, S., Sinha, A.: ‘Survey of Various Number Systems

and Their Applications’, International Journal of Computer

Science and Communication, 2010, 1, (1), pp. 73-76.

[17] Ghosh, A., Singha, S., Sinha, A.: ‘A New Architecture for

FPGA Implementation of A MAC Unit for Digital Signal

Processors using Mixed Number System’, ACM

SIGARCH Computer Architecture News, 2012, 40, (2),

pp. 33-38. DOI:10.1145/2234336.2234342.

[18] Dhande, A. P., Ingole, V.T.: ‘Design of clocked ternary S-

R and D flip-flop based on simple ternary gates’,

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

13

International journal on software engineering and

knowledge engineering, 2005, 15, (2), pp. 411-417.

[19] Hayes, J. P. : ‘Computer Organization’, (McGraw-Hill,

1998, 3rd edition).

[20] HASSAN, F. J., ABDUL-KARIM, M. A. H.: ‘N × M trits

ternary multiplier’, International Journal of Electronics,

1983, 54, (5), pp. 643-650. DOI: 10.1080/002072183089

38763.

[21] Sinha, A., Sinha, P., et al.: ‘Multi based number systems

for performance enhancement of Digital Signal

Processors’, Filed for U.S. patent. (U.S. Pat. Appl. No.

11/488,138), published in U.S. Patent documents serial

no.488138 ,U.S. Class at publication 708/620, Int'l class :

G06F 7/52 20060101 G06F007/52, 2006.

[22] Jullien, G. A., Dimitrov, V. S., et al.: ‘A Hybrid DBNS

Processor for DSP Computation’ Proceedings International

Symposium on Circuits and Systems, 1999, 1, pp. 5-8. doi:

10.1109/ISCAS.1999.777792.

[23] Eskritt,J., Muscedere, R., et al.: ‘A 2-Digit DBNS Filter

Architecture’, Proceedings SiPS Workshop (Lafayette, L

A), October, 2000, pp. 447-456. doi:

10.1109/SIPS.2000.886743

[24] B. G. Lee, A new Algorithm to compute the discrete cosine

transforms. IEEE Trans on Acoustics, speech and signal

Processing, 1984, 32, pp.1243- 1245.

Table 1. DBTNS Table for i, j  1 trit

i j 0 1 2

0 0001 0010 0100

1 0002 0020 0200

2 0011 0110 1100

Table 2. DBTNS Table for i, j  2 trit

i,

j
00 01 02 10 11 12 20 21 22

00
000000000

00001

000000000

00010

000000000

00100

000000000

01000

000000000

10000

000000001

00000

000000010

00000

000000100

00000

000001000

00000

01
000000000

00002

000000000

00020

000000000

00200

000000000

02000

000000000

20000

000000002

00000

000000020

00000

000000200

00000

000002000

00000

02
000000000

00011

000000000

00110

000000000

01100

000000000

11000

000000001

10000

000000011

00000

000000110

00000

000001100

00000

000011000

00000

10
000000000

00022

000000000

00220

000000000

02200

000000000

22000

000000002

20000

000000022

00000

000000220

00000

000002200

00000

000022000

00000

11
000000000

00121

000000000

01210

000000000

12100

000000001

21000

000000012

10000

000000121

00000

000001210

00000

000012100

00000

000121000

00000

12
000000000

01012

000000000

10120

000000001

01200

000000010

12000

000000101

20000

000001012

00000

000010120

00000

000101200

00000

001012000

00000

20
000000000

02101

000000000

21010

000000002

10100

000000021

01000

000000210

10000

000002101

00000

000021010

00000

000210100

00000

002101000

00000

21
000000000

11202

000000001

12020

000000011

20200

000000112

02000

000001120

20000

000011202

00000

000112020

00000

001120200

00000

011202000

00000

22
000000001

00111

000000010

01110

000000100

11100

000001001

11000

000010011

10000

000100111

00000

001001110

00000

010011100

00000

100111000

00000

Table 3. Ternary Multiplication

MULTIPLICAND MULTIPLIER CARRY PRODUCT

0 0 0 0

0 1 0 0

0 2 0 0

1 1 0 1

1 2 0 2

2 2 1 1

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

14

Table 4. Data Table of DBTNS Multiplier

INPUT INDEX

TRIT LENGTH

(i, j)

(n)

TNS ADDER

LUT DATA

RANGE

BARREL SHIFTER INPUT

DATA TRIT LENGTH

(N)

M
A

X
IM

U
M

S
H

IF
T

P
R

O
D

U
C

T
 (

M
)

OUTPUT

TRIT

LENGTH

(n+1)

OUTPUT

DATA

RANGE

1 2 00 to 11 20 to 24 3 4 7

2 3 000 to 121 20 to 216 11 16 27

3 4 0000 to 1221 20 to 252 33 52 85

Table 5. Synthesis report of 8 tap FIR filter using TNS MAC unit with change of Trit

S
l.

 N
o
.

N
o
.

o
f

T
ri

t

Synthesis Report

N
u
m

b
er

o
f

S
li

ce
 L

U
T

s

M
in

im
u
m

p
er

io
d

Minimum input arrival

time before clock

Maximum output

required time after clock

1 4 148 out of 46560
3.571ns (Maximum

Frequency: 279.994 MHz)
6.464ns 0.576ns

2 3 84 out of 46560
2.853ns (Maximum

Frequency: 350.471 MHz)
4.974ns 0.576ns

3 2 35 out of 46560
2.135ns (Maximum

Frequency: 468.362 MHz)
3.066ns 0.576ns

Table 6. Synthesis report of 8 tap FIR filter using DBTNS MAC unit with change of Trit

S
l.

 N
o
.

IN
P

U
T

IN

D
E

X

T
R

IT
 L

E
N

G
T

H

(i
,

j)

Synthesis Report

Number of Slice

LUTs
Minimum period

Minimum input arrival

time before clock

Maximum output

required time after clock

1 1 90 out of 343680
6.405ns (Maximum Frequency:

156.128 MHz)
8.098ns 0.676ns

2 2 308 out of 343680
11.996ns (Maximum Frequency:

83.364 MHz)
14.235ns 0.676ns

3 3 619 out of 343680
21.887ns (Maximum Frequency:

45.690 MHz)
25.736ns 0.676ns

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

15

Figure 1. TNS MAC Unit

Figure 2. TNS Adder

Figure 3. 1 Trit TNS Multiplier

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

16

Figure 4. 2 Trit TNS Multiplier

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

17

Figure 5. 3 Trit TNS Multiplie

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

18

Figure 6. 4 Trit TNS Multiplier

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

19

DBTNS

Multiplier

Accumulator

n trit TNS

ADDER

L

U

T

L

U

T

X

H

OUTPUT

Figure 7. DBTNS Based MAC Unit

L

U

T

X

i

j

i jX=2 .3

Figure 8. LUT Based DBTNS Conversion Unit

START

X  x(n);

H  h(n);

X = 2i
2 . 3

j
2; H = 2i

1.3
j
1;

i = i1 + i2 ;

 j = j1 + j2 ;

Temp  LUT[i]

PRODUCT  BS[temp, j]

END

PRODUCT

Figure 9. Computational flowchart of DBTNS Multiplier

Unit

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

20

BARREL SHIFTER

j
1 j

2 i
1

i
2

n trit TNS

ADDER

n trit TNS

ADDER

L

U

T

 Of

2(i1+i2)

PRODUCT

n+1

n+1

N

M

DBTNS

Multiplier

i
1

j
1

i
2

j
2

P
R

O
D

U
C

T

Figure 10. DBTNS Multiplier Unit

START

For N-tap FIR Filter:

x(n): Input Sequence

h(n): Filter Coefficient;

 n  0;

 k  0;

acc  0;

acc  acc + x(n-k)*h(k)

k = N – 1

?

y(n)  acc

n = N – 1

?

y(n) : Output

END

k  k+1
N

n  n+1

Y

N

Y

Figure 11. Computational flowchart of TNS based FIR

Filter

Figure 12. Block diagram of a proposed TNS MAC unit

DBTNS

Multiplier

Accumulator

n trit TNS

ADDER

L

U

T

L

U

T

X

H

OUTPUT

i
2

j
2

i
1 j

1

L

U

T

L

U

T

L

U

T

x(n)

h(n)

LUT-1
LUT-2

LUT-3

LUT-4

LUT-5

y(n)

Figure 13. Block diagram of a proposed DBTNS MAC

unit

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

21

START

For N-tap FIR Filter:

x(n): Input Sequence

h(n): Filter Coefficient;

n  0;

acc  0;

X  x(n);

H  h(n);

X = 2i
2 . 3

j
2; H = 2

i
1.3

j
1;

Pn  X.H  2i
 . 3

j;

where, i = i1 + i2 ;

 j = j1 + j2 ;

acc  acc + Pn

n = N – 1

?
n  n+1

y(n) : Output

y(n)  Y

Y  acc

END

Figure 14. Computational flowchart of DBTNS based FIR

Filter

Figure 15. Complexity analysis of 8-tap FIR Filter using

TNS MAC unit with the change of trit

(a - Maximum Frequency vs. Trit; b - Execution Time vs.

Trit; c - No. of LUTs vs. Trit)

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 14, September 2018

22

Figure 16. Complexity analysis of 8-tap FIR Filter using DBTNS MAC unit with the change of trit

(a - Maximum Frequency vs. Trit; b - Execution Time vs. Trit; c - No. of LUTs vs. Trit)

IJCATM : www.ijcaonline.org

