
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 17, September 2018

25

Effective Techniques for Performance Enhancement on

Embedded Multi-Processor Architectures

Hassan Salamy
Electrical & Computer Engineering

University of Saint Thomas
Minnesota, USA

ABSTRACT

As the complexity of embedded applications is ever

increasing, the trend in embedded architecture is to utilize a

multi-processor system on a chip (MPSoC). MPSoCs provide

the compute power and flexibility to effectively execute

complex embedded systems. An embedded system often

execute multiple complex embedded applications

simultaneously. In this article, we tackle two main problems

to further enhance the effective utilization of the embedded

MPSoC architecture to reduce the execution time of the

applications, namely, resource allocation and scheduling. We

first present an effective resource allocator that examines the

nature of the applications in the system to fairly allocate the

fast on-chip scratchpad memory budget and the processing

elements. Then this article presents an effective task

scheduler that integrates scheduling and on-chip scratchpad

memory partitioning for the maximum optimization of the

system. Results on multiple real and synthetic benchmarks

showed the effectiveness of our techniques.

Keywords

MPSoC, scratchpad, task scheduling, resource allocation.

1. INTRODUCTION
With the huge demand for processing power from embedded

systems to efficiently execute complex embedded

applications, the trend in embedded architecture is to deploy

multiple processors on a single chip. Multi-processor System-

on-a-chip (MPSoC) is an attractive solution to provide the

compute power while maintaining a conservative power

budget. A typical MPSoC usually utilizes heterogeneous

processing elements, a multiple of memory hierarchies all

interconnected by a sophisticated communication structure.

MPSoCs have come to be an attractive and flexible solution

for high performance embedded systems with reduced energy

consumption.

Memory access time prediction is usually essential in real-

time applications to satisfy the requirement of predictability of

execution time. Caches, that are usually the memory of

choice, are therefore not suitable for such systems as caches

are hardware controlled which makes it extremely hard to

model the behavior of a cache memory. An answer to this

shortcoming is a software controlled memory known as

scratchpad memory. Since scratchpads are software

controlled, their behavior can be predicted with high accuracy.

In this article, an MPSoC architecture with scratchpad on-chip

memory is assumed to satisfy the predictability requirement

for critical real time embedded applications.

An important optimization technique for embedded systems is

the generation of optimized schedules to reduce the run time

of embedded applications on the system’s resources. Given an

MPSoC system with multiple embedded applications possibly

of different arrival times, an important research question is

how to partition the system resources of processing elements

and the on-chip scratch pad memory among the applications

for a schedule with minimum run time. Hence in this paper,

we present effective techniques to the two NP problems of

proper allocation of system resources to competing embedded

applications in the system and the scheduling of each

application tasks on the allocated resources with the objective

of reduced schedule time.

The problems of task scheduling and memory allocation are

usually studied as two separate problems in the literature.

However, the decision of scheduling a task on a processor is

greatly affected but the amount of on-chip memory allocated

to that processor. The main reason is that accessing data from

the off-chip memory is usually in the range of hundred times

slower than accessing from the on-chip memory. Hence in

this article the problem of task scheduling and on-chip

memory allocation are studied in an integrated fashion.

In this article, effective techniques to partition the system

resources among competing embedded applications as well as

effective scheduling of each embedded application tasks on

the allocated resources in an integrated fashion with

scratchpad memory partitioning are presented. Extensive

experimental analysis are performed to test the effectiveness

of the proposed techniques.

The remainder of this article is organized as follows. Section

2 presents related work and Section 3 introduces the

architecture and formally defines the problem. The profiling

component from the framework is detailed in Section 4.

Sections 5 and 6 presents details about the Resource Allocator

and the integrated scheduler, respectively. Detailed

experimental results are presented in Section 7 while Section

8 lists the conclusions.

2. RELATED WORK
Many researchers in the literature studied the scheduling and

allocation problems. A constraint programming along with

integer linear programming for scheduling and memory

partitioning was presented in [4]. Ahmed [9] presented a

comparison between different scheduling algorithms of task

dependence graphs on an architecture with homogenous set of

processors. De Micheli et al. [11] studied the scheduling and

mapping problem as a hardware/software codesign.

Hardware-software partitioning and scheduling with

pipelining was presented in [8]. Their objective was to

minimize the initiation time, number of pipeline stages, and

memory requirements. Their solution is based on integer

linear programming formulation.

Panda et al. [12, 13] presented a comprehensive allocation

technique for scratchpad memories on uniprocessor to

maximally utilize the available scratchpad memories to

decrease the programs execution times. Optimal ILP

formulations for memory allocation for scratch-pad memories

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 17, September 2018

26

were presented in [3]. An ILP formulation to the SPM

allocation problem to reduce the code size was presented in

[14]. Steinke et al. [15] formulated the same problem with the

objective to minimize the energy consumption. Angiolini et

al. [1] optimally solved the problem of mapping memory

locations to scratchpad locations using dynamic

programming.

Blagodurov et al. [5] presented a contention-aware scheduling

algorithm on multicore systems. Vaidya et al. [18] proposed a

dynamic scheduling algorithm in which the scheduler resides

on all cores of a multi-core processor and accesses a shared

Task Data Structure (TDS) to pick up ready-to-execute tasks.

Suhendra et al. [16] studied the problem of task scheduling

and memory partitioning on a heterogeneous multiprocessor

system on chip with scratch pad memory. They formulated

this problem as an integer linear problem (ILP) with the

inclusion of pipelining. ILP solutions require long

computation time for large applications and hence they are not

practical in real life. A technique to effectively divide system

resources among competing applications is presented in [19].

Research has been conducted on task scheduling problems for

DVS enabled multi-processor real-time embedded systems

[21]. In [31] it was shown that the thermal aware task

scheduling outperforms the power-aware schemes in terms of

maximal and average temperature reduction. In [20], the

authors propose an adaptive method which eliminates hot

spots in a slightly better way than the load balancing

techniques by reducing temporal and spatial temperature

variations. Energy efficient for real time task scheduling is

presented in [22, 23]. Kanoun et. al [24] presented an online

energy efficient task graph scheduling for multicore

platforms. Tseng et. al [25] presented energy efficient

scheduling on multicore mobile devices.

3. SYSTEM ARCHITECTURE AND

PROBLEM DEFINITION
In this article, the underlying system architecture is based on a

multiprocessor System-on-a-chip with limited on-chip fast

scratchpad memory, a number of processing elements, and

unlimited off chip memory all interconnected with a

communication bus model. Given such an architecture system

and a number of embedded applications utilizing the system

possibly arriving at different times, we present effective

techniques to allocate the proper resources to each application

and generate optimized schedule with minimum overall run

time. Allocation and scheduling are essential techniques to

optimize the execution of a number of embedded applications

in an MPSoC with limited resources.

A main contribution of this paper is that it provides a

comprehensive technique to allocation and scheduling where

allocation is highly based on the nature of the applications and

scheduling is integrated with scratchpad memory partitioning

for further reduction in the schedule time. Effective

techniques to these sought problems can play a major role in

extracting the compute power of multi-core embedded

systems. The framework depicted in Figure 1 starts with a

profiler that profiles each application the systems receives to

generate proper metrics to aid in understanding the nature of

each application for optimized allocation and scheduling. The

second part is a resource allocator that based on the nature of

the applications in the system, it allocates the processing

elements and the scratchpad budget among the applications.

For instance, a memory intensive application is set to benefit

more from additional scratchpad budget compared to a more

computationally intensive and parallel application. On the

other side, the parallel application has a higher potential to

benefit from additional processing elements to exploit

parallelism and to tackle the high compute requirements.

Once the resource allocator is done and each application

receives its share of the system resources, the integrated

scheduler in our holistic framework is invoked. The scheduler

is responsible of effectively scheduling the tasks of each

application on the resources allocated to such application with

the objective of reduced overall schedule time. The three

aforementioned parts of the framework are detailed next.

4. THE PROFILER
The first main part of the proposed framework is the profiler.

The profiler receives the embedded applications to be

executed on the system and studies the nature of each

application and generates a number of profiling information.

One main piece of information that the profiling part of the

proposed framework establishes is the task dependence graph

(TDG). A task dependence graph is a representation of how

the embedded applications can be divided into a set of tasks

along with the dependencies between such tasks. The profiler

will study the structure of the embedded application and

generates a set of basic blocks that will translate to tasks in the

TDG. The profiler will then study the communication/data

flow between the basic blocks (tasks) to establish

dependencies between tasks that are represented as edges in

the TDG. The edges will be weighted to accommodate for the

communication cost between dependent tasks estimated by

the profiler.

To further establish the nature of the tasks, the profiler is

responsible about generating estimates of how much a task

benefits from additional scratchpad memory budget. We

measure the benefit of a task from additional scratchpad

memory by estimating the degree of potential reduction in run

time of the task with increased scratchpad budget. To aid in

this, the profiler will generate three separate estimate:

1- Short: The shortest run time of a task based on

assigning all the available scratchpad budget to the

processor executing task.

2- Long: The longest run time of a task based on

assigning no scratchpad budget to the processor

running this task.

3- Middle: The middle ground of measuring the run

time of a task if the scratchpad budget is equally

divided among all processors executing an

application.

In addition to the aforementioned set of values and estimates

generated by the profiler, a list of other values as needed and

discussed throughout the rest of this article are also the

responsibility of the profiler.

5. THE RESOURCE ALLOCATOR
In this part of our framework, the systems’ resources of

processing elements and on-chip scratchpad memory will be

distributed among the embedded applications currently using

the system. Due to the assumed limited system resources,

allocating such resources should be performed based on the

nature of each embedded application. An application could be

memory intensive, computational intensive with different

levels of possible task parallelism, or a weighted combination

of both. Accurately examining and classifying embedded

application is a computation intensive problem and hence

estimated techniques are developed.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 17, September 2018

27

In our approach, resource allocation is highly dependent on

the nature of the embedded applications in the. For instance,

an application that is memory intensive in nature will benefit

more from additional on-chip scratchpad budget. This is

mainly because a memory intensive application is defined as

an application where memory accesses encompass big portion

of its computation time and hence it greatly benefits from the

ability to access variable elements quickly from the fast

scratchpad compared to slower off-chip memory. Based on

the degree of memory intensiveness, the percentage of overall

schedule time reduction is estimated. On the other hand, an

application can be classified as computationally expensive

with high level of parallelism and hence the proposed

resource allocation technique will allocate more processing

elements to such application to reduce the schedule time. In

such case, the additional processing elements will aid the

exploitation of the applications parallelism and will provide

the needed computation power for the highest possible

reduction in the schedule time.

As such the resource allocation part of our holistic framework

receives the profiling information about each application in

the system. Then it generates an estimate of the nature of

each application to effectively and fairly divide the system

resources among competing application concurrently utilizing

the embedded system.

Figure 1: Our holistic framework

Scratchpad Memory Allocation: Once an application is

received with all its corresponding profiling information, the

resource allocator computes a flexibility estimate based on the

intrinsic structure of the application. The flexibility value of

task Ti on processor (Pj) in Equation 1 represents the potential

in run time reduction that the current application might exhibit

with increased scratchpad memory budget. The Current

variable in Equation 1 is the run time if the remaining

scratchpad budget in the system is equally partitioned among

all the applications that haven’t been allocated a scratchpad

budget whereas Short is the run time if all the scratchpad

budget in the system is allocated to the processor executing Ti.

The flexibility is a value between 0 and 1 to track the benefit

of increasing the current scratchpad budget allocated to the

application to the extreme case of allocating all the

scratchpad budget in the system to such application. A

flexibility value closer to 1 implies that the application has a

high potential of improved run time from higher scratchpad.

ij

ijij

ij
Current

ShortCurrent
Tyflexibilit

=)((1)

The on-chip scratchpad memory budget in the system will be

allocated to the embedded applications to reduce the overall

schedule time. For each application in the system, a Memory

Potential Reduction (MPR) in Equation 2 for each application

is defined as an estimate of potential reduction in run time of

the whole application from allocating additional scratchpad

budget and is computed as the average flexibility value for all

its tasks.

t

Tyflexibilit
pAPPMPR

ij

i
APP

i
Tpj

i

)(
1/=)(

 (2)

The memory allocator heuristic in Figure 2 receives as input

the on-chip memory size (m) and the number of applications

concurrently running (n). It then first determines the the

memory requirements of each application in the system

(Mem_Requested()) through the profiling information and the

nature of each application. If the available on-chip

scratchpad memory budget is less than the total requested

memory, each application will receive what it requested. In

the most common case where the requested memory is more

than what is available, the heuristic will examine the

applications in decreasing order of their MPR values. It will

then allocate to each application an scratchpad budget

proportional to its MPR value such that an application with

higher MPR value will receive an scratchpad budget closer to

what it requested compared to an application with a lower

MPR value.

Memory_Allocator(n , m)

1.L = Apps in decreasing order of MPR

2.Mem =0 and Total_MPR = 0

3.For i = 1 to n do:

4. Mem = Mem + Mem_Requested(i)

5. Total_MPR = Total_MPR + MPR(i)

6.End For

7.If (Mem m)Then

8. For i = 1 to n

9. Mem_received(i) = MPR_requested(i)

10. End For

11.Else

12. While L not empty

13. i = First application in L.

14. Temp = UpperBound((

MPRTotal

iMPR

_

)()* m)

15. scratchpad_ received(i) = MIN(Mem_requested(i),Temp)

16. m = m - Mem_ received(i)

17. Remove i from L.

Profiling

Arriving Apps (App1,… Appn)

System

Architecture

PE/Mem Resource Allocation (App1,..AppN)

Integrated Scheduler

Optimized Schedules

Balance the Schedules

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 17, September 2018

28

18. Recompute Short, MPR and Total_PRF.

19. Reconstruct the list L.

20. End While

Figure 2: Our on-chip memory allocator.

Processing Elements Allocation: Once the profiling

information of all the application are received, the available

processing element cores in the system will be allocated such

that an application with a higher potential of parallelism is

allocated more cores so that more tasks can run in parallel.

For each application, a potential for parallelism (PP) value is

computed as in Equation 3. An application with a higher PP

value implies that it is more parallel in nature, that is, more

tasks of such application can run in parallel. The PP value is

mostly extracted from the task dependence graph (TDG).

Two tasks in the TDG can run in parallel if they are

independent. Two tasks are said to be independent if there is

no path between the two tasks in the TDG. An application

with a higher number of independent tasks has a higher

potential to run such tasks in parallel and is mostly limited by

the number of processing cores allocated to such application.

i

i
ii

distinct

pairs
distinctAPPPP =)((3)

Processing_Elements_Allocator(n , p)

1.Path = 0 and Path_PP = 0

2.For i = 1 to n

3. PP(i) = Compute_PP(i)

4.End For

5.L = Apps in decreasing order of (1 + 0.1 PP(i)) * path(i)

6.For i = 1 to n

7. Path = Path + distinct(i)

8. Path_PP = Path_PP + (1 + 0.1 PP(i))* distinct(i).

9.End For

10.If (Path p) Then

11. For i = 1 to n

12. Processor_received(i) = distinct(i)

13. End For

14.Else

15. While L not empty

16. i = First application in L.

17. Temp = UpperBound((1 + 0.1 PP(i)) *

distinct(i)/Path_PP * p)

18. Processor_received(i)= MIN(distinct(i),Temp)

19. Path_PP = Path_PP - (1 + 0.1 PP(i)) * distinct(i)

20. Update the number of processors.

21. Update the List L.

22. End While

Figure 3: Our processing elements allocator.

As shown in Equation 3, the PP value is divided into two

main parts. The first part represents the number of distinct

paths (distinct) in the TDG. Two paths are said to be distinct

if they have at least one task that doesn’t belong to both paths.

Compared to more unbalanced paths, two paths in a TDG with

close number of tasks can benefit more from two processing

cores as the idle time of the cores is minimized. This is taken

into consideration in the second part of the PP equation. That

part counts the number of pairs of tasks on two distinct paths

that are eligible to run in parallel and divides that by the total

number of distinct paths. The number of distinct paths and

the pairs of potential tasks that can run in parallel are used in

the PP equation to estimate the potential of parallelism in an

application. And hence the processing cores allocator will use

such information in deciding how to allocate the limited

number of processing elements among the concurrently

running embedded applications.

The processing elements allocator heuristic in Figure 3

receives as input the number of applications in the systems (n)

and the number of available processing elements (p) and then

sorts the applications in decreasing order based on an altered

version of the PP value since eventhough the PP value is an

estimation of potential parallelism, it is an exaggeration of

realistically the number of tasks that will run in parallel. If the

available processing elements is less than the total requested,

each application will receive what it requested. In the most

common case where the number of requested processing

elements is more than what is available, the heuristic will

allocate to each application processing elements proportional

to the altered potential parallelism calculated values. Hence

an application with higher potential for parallelism will

receive number of processing elements closer to what it

requested compared to applications with lower levels of

potential parallelism.

6. THE INTEGRATED TASK

SCHEDULER
After the resources in the system have been allocated to the

applications, the task scheduler is responsible about

scheduling the tasks of each application on the resources

allocated to that application. The task scheduler receives the

profiling information about each application (Appi) along with

its allocated processing elements (PEi) and its allocated on-

chip scratchpad memory budget (memi).

The majority of the work in the literature have studied

scheduling of the tasks of an application on the processors

separately from the memory allocation to such processors.

However, in this article, we propose that these two problems

are highly dependent on each other and should be studied as

one integrated problem to generate fully optimized schedules.

Unlike the trend in previous research that first schedule the

tasks on the available processors and then partition the on-

chip memory as a post scheduling step, we opt to the

integrated approach that adopt a comprehensive and holistic

approach the the scheduling problem. Hence our approach to

scheduling of the applications utilizing the system heavily rely

on how memory will be partitioned among these applications.

This section details the proposed optimized technique to task

scheduling/memory allocation problem to effectively schedule

the embedded applications in the system for maximum

throughput (Figure 4). The partitioning of the scratchpad

memory will be dynamically allocated to the processors

integrated in the decision making of mapping tasks to

available processors. This is mainly due to the fact that the

run time of a task scheduled on a certain processor not only

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 17, September 2018

29

depends on the features of the processor but also on the on-

chip fast scratchpad memory allocated to this processor. This

is especially more apparent with memory intensive

applications that can greatly benefit from the reduced

scratchpad access time compared to accessing external

memory. Hence our task scheduler explicitly considers the

changing run time of a task on a processor based on the

associated scratchpad budget to generate better quality

schedules with highest reduction time in run time.

We propose a dynamic algorithm to scheduling that takes into

account the varying execution time of a task while building a

schedule. The varying execution time is mainly due to the

dynamic essence of allocating the available scratchpad budget

to processors throughput the course of our proposed integrated

scheduling heuristic. We first use the profiling information to

extract important information about each task to be scheduled.

Example of the extracted information are the Short, Middle,

and Long values that were introduced and discussed in the

previous section as an estimation metric of how much a task

can benefit from varying scratchpad memory budgets.

Figure 4 presents the proposed dynamic scheduler that begins

by sorting the tasks in list L1 in ascending order of the As

Soon As Possible (ASAP) values. Following the sorted tasks

in the list L1, the scheduling heuristic matches each task to the

best processor under the objective of minimal schedule time.

First define equations (4)-(6) below where Begin (Ti, PEj) is

the earliest begin time of task Ti on processor Pj detailed in

Equation (4) as the maximum between the current finish time

of the processing element PEj (Finish (PEj)) and the biggest

finish time of all the parent tasks of Ti extracted from the TDG

()(()(j
i

TParent
j

T TFinishMax
) with the added

communication cost, Comm. The finish time of a task Ti

scheduled on the processing element PEj is calculated in

Equation 5 whereas the finish time of a certain processing

element is calculated as the finish time of the latest task

scheduled on this processing element (Equation 6).

=),(ji PETBegin)((()(k
i

TParent
k

T TFinishMaxMax

))()),()(jk
i

TParent
k

T PEFinishTComm (4)

),(),(=)(jijii MemTTimePETBeginTFinish (5)

))((=)(k
j

PE
k

Tj TFinishMaxPEFinish
 (6)

Integrated_Scheduler:

1.Receive the Profiling information from the Profiler.

2. Receive the system resources allocated to the application

under consideration from the Resource Allocator.

3.Divide the on-chip scratchpad memory equally between

the processors.

4.Find the ASAP for all the tasks based on Middle values.

5.L1 = List of tasks in increasing order of ASAP.

6.While (L1 not empty) do:

7. Get the first task Tf from L1.

8. Find the processing element PEj to schedule Tf with

minimal overall schedule time increase.

9. min = Finish time of PEj with Tf scheduled.

9. For each other processor PEk do:

9. Calculate the flexibility and PFR of PEk if Tf

 is mapped to PEk.

10. Find the minimum Begin time of Tf on PEk.

11. Find Finish(PEk) if Tf is mapped to PEk.

12. if ((Finish(PEk) < min && PFR(PEj) (1 -

%)PFR(PEk)) | | (Finish(PEk) > min && PFR(PEk)

(1- %)PFR(PEj)) Then:

13. min = Finish(PEk)

14. else if (Finish(PEk) == min)

15. min = Finish time of processor with the

 higher flexibility.

16. End For

17. Assign Tf to PE corresponding to min.

18. Delete Tf from L1.

19.End While

Figure 4: The integrated scheduler.

In general a task Ti is supposed to be scheduled on the

processing element (say PEj) with the minimal increase in

schedule time. However, to keep the dynamic essence of our

techniques and to look beyond the current configurations and

schedule status, Ti might be scheduled on PEk with higher

schedule increase than if scheduled on PEj. This is only

possible under the condition that the Predicted Finish

Reduction time (PFR(Pk)—Equation 7) of processor PEK is at

least % less than that of processor PEj. The PFR value as

defined is a guide to the scheduler of the amount of potential

overhead reduction due to future scratchpad distributions if Ti

is mapped to PEk. In other words, the PFR value is an

estimation of finish time reduction of processor PEk due to

possible higher future scratchpad budget.

The predicted finish reduction time of a task on a processing

element highly depend on the flexibility (introduced and

explained in Section 5) of the tasks that are mapped to this

processing element. As in the definition of flexibility, Current

of a certain task is the time it takes to execute the task on the

processor under the current scratchpad budget distribution.

The PFR as defined in Equation 7 is highly dependent on the

calculated flexibility value and hence it reflects the dynamic

essence of our scheduler where the decisions are based not

only on the current on-chip scratchpad memory allocation but

also on an estimated reduction in run time of the tasks due to

predicted possible future scratchpad distribution though out

the life of the task scheduler. We define the flexibility of a

processor as the average flexibility value for all the tasks

currently allocated to run on this processor.

)(1

)(
)()(=)(

j

j

j

k
P

j
T

kk
Tyflexibilit

TCurrent
TCurrentPEFinishPEPFR

 (7)

Balancing the schedule: The schedule generated by the

integrated scheduler will be further balanced in an attempt to

reduce the overall schedule time. A balanced schedule is such

that the difference between the finish times of all the

processor is minimal. To do so, we start with the processor

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 17, September 2018

30

with the highest Finish time (say PEk) and perform a set of

steps to create a more balanced schedule. This will be

achieved by altering the scratchpad budgets between the

processors of the highest and lowest Finish times and taking

the flexibility into consideration. Specifically, it starts by

transferring 10 % from the scratchpad budget allocated to the

processor (PEj) with the lowest (Finish * Flexibility) product

to processor PEk as long as Finish(PEj) < Finish(PEk). In the

majority of cases, such memory transfer will decrease the

Finish time of processor PEj while increasing that of PEk and

thus decrease the schedule time which is the main objective of

our technique. This process of transferring 10 % of the

scratchpad allocated memory budget between PEj and PEk

will be repeated multiple times (based on fine tuning) and as

long as Finish(Pj) < Finish(Pk) to insure no adverse effect in

the overall scheduler.

After every scratchpad budget redistribution among the

processors and based on the new run time of a task Ti

(Equation 9), the Begin(Ti), Finish(Ti) values will be

recomputed for each task Ti mapped to a processor whose

scratchpad budget is changed while balancing the schedule.

This is mainly achieved by computing an estimate Gain value

(Equation 9) for each task Ti on a processor with newly

assigned scratchpad memory budget Memj. The Gain of a

task represents the reduced execution time of a task due to the

new assigned scratchpad budget. The Gain value is estimated

by allocating variables from task Ti to Memj in ascending

order of bytei/freqi with bytei is the size of the variable Vi and

freqi is the number of times such variable is accessed

throughout the course of executing the task Ti. As mentioned

earlier, accessing a variable from an external of-chip memory

is more expensive in terms of required clock cycles compared

to accessing a variable from the on chip scratchpad memory.

β1 and β2 in Equation 9 are the respective assumed cost of

accessing from the off-chip and on-chip memory. Even

though this is a simple data allocation technique, our

experiments showed it is fast and effective. The updated run

time of task Ti under the new scratchpad memory budget

Memj in Equation 9, is defined as the difference between the

time taken to execute Ti assuming no scratchpad memory,

Time(Ti, 0) and Gain(Ti,Memj).

),(,0)(=),(jiiji MemTGainTTimeMemTTime (8)

).*)((=),(21

,

i

j
Mem

i
v

i
T

i
v

ji freqMemTGain

 (9)

7. EXPERIMENTAL SETUP AND

PERFORMANCE ANALYSIS
In this section, the performance of the detailed scheduler,

resource allocator, and the holistic approach are studied and

examined.

The first step of the presented holistic approach to resource

allocation and task scheduling is to extract information about

each application utilizing the system through profiling. The

profiler will identify the basic computation block in each

embedded application along with the control and data flow

between these basic blocks. The basic blocks will be vertices

in constructing the task dependence graph (TDG) and the

data/control flow dictates the dependencies between tasks.

The TDG is a weighted graph with weights representing the

communication costs between dependent tasks. Simplescalar

[2] will be used to profile applications. Simplescalar is an

architectural simulation to simulate the execution of a task on

a processor under different memories allocation. As detailed

earlier, the profiler will mainly:

(i) Construct a TDG representing an application.

(ii) Generate the Short, Middle, and Long values for each

task on different processors.

(iii) Determine variables sizes and the frequency a variable is

accessed throughout the schedule of the

application.

In our experiments, we used real life applications extracted

from [17], Mediabench [7] and Mibench[10], namely,

enhance, lame, osdemo, and cjpeg as test benchmarks of

which their characteristics are presented in Table 1. We also

used Synthetic benchmarks generated using the TGFF tool

[26].

7.1 Testing The Scheduler
As mentioned earlier, we tested the scheduler and the resource

allocator independently first before testing the whole

presented holistic approach to resource partition and

scheduling of multiple applications on an MPSoC. First, we

tested the scheduler detailed in Section 6. The scheduler is

responsible about effectively scheduling the tasks of an

applications on the resources (processors and scratchpad

budget) allocated to that application by the resource allocator.

For testing and comparisons we implemented the following

four different approaches:

1. EQUAL: A decoupled approach that tackles

scheduling and memory partitioning independently

and assuming the scratchpad budget is equally

divided among the available processors.

2. ANY: A decoupled approach based on a tweaked

version of [18] that schedules tasks in a TDG

dynamically over the available processors and then

perform the memory partitioning as a latter and

independent step.

3. INTEG: Our integrated approach to task scheduling

and memory partitioning detailed in Section 6.

TABLE 1 CHARACTERISTICS OF SOME OF OUR BENCHMARKS.

Benchmark # variables #tasks Var size (Kbytes)

Lame 128 4 294.83

Osdemo 46 7 78.64

Enhance 44 6 7192.35

Cjpeg 20 5 690.31

For the benchmarks enhance, lame, osdemo, and cjpeg, we

assumed a microprocessor system with two processors and an

on-chip scratchpad budget of size varying between 4KB and

4MB. It is critical to chose an underlying microprocessor

architecture with the proper number of processors and

scratchpad budget based on the applications to be tested. This

is because too many or too few resources might not project

the essence of our presented heuristic and might not properly

reflect the effectiveness of our approaches for different

embedded applications. We tested each benchmark under

three different scratchpad budget and presented the average

results. In our experiments, we assumed a 100 cycle latency to

access data from the off-chip memory and 1 cycle latency to

access data from the on-chip scratchpad memory. There is no

limit on the size of the off-chip memory that is it is assumed

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 17, September 2018

31

that the off-chip memory is large enough to hold all the data

variables in the application.

The first three columns in Figures 5-8 present comparisons

between the EQUAL, ANY [18], and INTEG techniques. From

the first two columns in Figure 5-8, the ANY technique

improved over the EQUAL technique from almost no

improvement to huge improvement of 47% with 7%

improvement on average. This expected improvement shows

that static allocation of the on-chip memory among processors

i.e., dividing the on-chip memory budget equally over the

processors without taking into consideration the nature of

tasks mapped to each processor fails to effectively utilize the

scratchpad in the system for overall schedule reduction.

On the other hand, as evident in Figures 5-8, our integrated

approach INTEG improved over the ANY approach up to 22%

with 7.9% schedule time reduction on average. As always the

improvements greatly depend on the nature and structure of

each application. It is clear from the results that our integrated

approach greatly reduces the schedule time compared to

decoupled approaches that treat scheduling and memory

partitioning as two separate problems. Hence, the results

clearly showed that decoupled approaches result in schedules

of inferior quality compared to techniques that study the task

scheduling and on-chip scratchpad memory partitioning in an

integrated fashion as presented by our technique. The

presented schedule time reduction from our integrated

approach is mainly due the task nature guidance followed by

our technique as the on-chip scratchpad configuration of a

processor is highly dependent on the nature of the tasks

scheduled to be executed on that processor.

Figure 5 Results for lame benchmark.

Figure 6 Results for osdemo benchmark.

Figure 7 Results for enhance benchmark.

Finally, we tested our integrated scheduler based on synthetic

benchmarks generated using TGFF [26]. As in Table 2, the

benchmarks were divided into 4 different sets with the

complexity of the generated Task Dependence Graphs

(TDGs) increased as we moved from Set 1 all the way to Set

4. Each set consists of a number of similar complexity

benchmarks. The benchmarks in each set were tested under

different system resources and their average performances are

captured. The results in Table 2 is the average percentage

reduction compared to the EQUAL technique. As apparent

and following similar result pattern on the real-life

benchmarks, our integrated scheduler approach improved over

the two decoupled approach in all cases.

7.2 Testing The Resource Allocator
After proving the effectiveness of our integrated approach to

task scheduling and on-chip memory partitioning, in this part

of the experimental results we test the Resource Allocator

detailed in Section 5. Our resource allocator will be tested

against the resource allocator presented by Xue et al. [19].

For fair comparisons, we tested the two resource allocator

techniques while utilizing our integrated scheduler detailed in

Section 6.

For this part of the testing, we utilized two test sets of

benchmarks: 1- (Lame, Osdemo, Cjpeg) and 2- (Lame,

Enhance , Cjpeg, Osdemo). Different scenarios of arrivals

times were assumed for the applications in the two sets to

mimic real life situations. The two sets were also tested under

different system resources and the then the results are

averaged out and presented in Figures 9 and 10. Figures 9

and 10 present the average run time among different arrival

time scenarios and under the available processing elements

and on-chip scratchpad memories labelled in the figures as (#

of PE, scratchpad size). As mentioned earlier, choosing the

proper system resources is very essential in fairly testing the

effectiveness of our techniques as too little or too many

system resources will fail to properly test our techniques. The

schedule results are based on our integrated scheduler and

presented in terms of system cycles in the figures of results.

Clearly, our resource allocator is able to improve over the

allocator in [19] in all the tested cases with improvements

ranging from 2.3% to 9.4 % and an average reduction of

6.3%.

0.0E+00

5.0E+06

8 K 3 2 K 1 2 8 K

C
LO

C
K

 C
Y

C
LE

S

ON-CHIP MEMORY

EQUAL

ANY

INTEG

0.0E+00

2.0E+07

4.0E+07

6.0E+07

4 K 1 6 K 3 2 K

C
LO

C
K

 C
Y

C
LE

S

ON-CHIP MEMORY

EQUAL

ANY

INTEG

0.0E+00

1.0E+09

2.0E+09

5 1 2 K 2 M 4 MC
LO

C
K

 C
Y

C
LE

S

ON-CHIP MEMORY

EQUAL

ANY

INTEG

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 17, September 2018

32

Figure 8 Results for cjpeg benchmark.

TABLE 2 SCHEDULING RESULTS FOR SYNTHETIC BENCHMARK

SETS

Benchmark ANY INTEG

Set1 9.8% 16.3%

Set 2 8.2% 15.8%

 Set 3 12.4% 17.3%

Set 4 10.12% 18.3%

7.3 Testing The Whole Framework
In the two previous sets of experiments, the effectiveness of

our integrated scheduler and resource allocator are detailed

and presented. For the last set of experiments, we tested our

whole approach to allocation and scheduling as one holistic

framework. The results were tested against the resource

allocator presented in [19] and the decoupled scheduler, ANY,

based on [18]. For this part of the testing, we also utilized

the two test sets of benchmarks: 1- (Lame, Osdemo, Cjpeg)

and 2- (Lame, Enhance , Cjpeg, Osdemo). Different scenarios

of arrivals times were assumed for the applications in the two

sets to mimic real life situations.

The system resources along with the cycle count from our

holistic framework along with that based on the works in [18]

and [19] are detailed in Tables 3 and 4. From the tables, our

approaches are able to reduce the overall cycle count in all the

tested cases with improvements ranging from 4.2 % to 11.3 %

with an average cycle count reduction of almost 8.4 %. This

clearly showed the effectiveness of our proposed techniques

that are essential in extracting the compute power from multi-

core embedded systems.

Figure 9 Results for Lame- Osdemo -Cjpeg set.

Figure 10 Results for Lame-Enhance-Cjpeg-Osdemo.

We then tested our holistic framework compared to Xue [19]

resource allocator and the ANY [18] scheduler tested on

Synthetic benchmark set generated using TGFF [26]. As in

Table 5, the benchmarks were divided into 4 different sets

with each test containing a number of benchmarks TDGs of

varying complexities. The benchmarks in each set were tested

under different system resources and their average

performance are captured. The results in Table 5 are the

average percentage reduction of our presented approach

compared to Xue [19] resource allocator and the ANY [18]

scheduler. As clearly evidend, our technique performed better

than the other technique in all cases with an average

improvement of 9.4 %.

TABLE 3 (LAME, OSDEMO, CJPEG) CYCLES.

Resources Ours (cycles) Xue [19]

+[18](cycles)

(4p, 256KB) 44211259 48274652

(6P, 128KB) 34543927 35986540

(10P, 512KB) 25214218 28056288

TABLE 4 (LAME, ENHANCE, CJPEG, OSDEMO) CYCLES.

Resources Ours (cycles) Xue[19]

+[18](cycles)

(4P, 2MB) 2859838472 3029381901

(8P, 2MB) 1971283798 2098372361

(10P, 4MB) 1636612322 1803677612

TABLE 5 RESULTS FOR SYNTHETIC BENCHMARK SETS
Benchmark Ours (% improvement)

Set1 9.2%

Set 2 10.8%

Set 3 7.2%

Set 4 10.3%

8. CONCLUSIONS
This article presented effective optimization methods to

enhance the performance of a multiprocessor system by

providing effective resource allocation and scheduling

techniques. The resource allocator carefully examines the

structure of each application to fairly allocate the system

resources. The task scheduler integrated scheduling and on-

chip memory partitioning to enhance the performance of the

system. Results on real-life and synthetic benchmarks

showed the importance of our proposed techniques.

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

3 2 K 6 4 K 2 5 6 K

C
LO

C
K

 C
Y

C
LE

S

ON-CHP MEMORY

EQUAL

ANY

INTEG

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

(4P, 256KB) (6p, 128KB)(10p, 512KB)

C
yc

le
s

System Resources

XUE [19] OURS

0.0E+00
1.0E+09
2.0E+09
3.0E+09

(4P, 2MB) (8P, 2MB) (10P, 4MB)

C
yc

le
s

System Resources

XUE [19] OURS

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 17, September 2018

33

9. REFERENCES
[1] F. Angiolini, L. Benini, and A. Caprara. Polynomial-time

algorithm for on-chip scratchpad memory partitioning. In

Proc. International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems

(CASES), 2003.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An

infrastructure for computer system modeling. IEEE

Computer, 35(2), 2002.

[3] O. Avissar, R. Barua, and D. Stewart. An optimal

memory allocation scheme for scratch-pad-based

embedded systems. ACM Transactions on Embedded

Computing Systems, 1(1), 2002.

[4] L. Benini, D. Bertozzi, A. Guerri, and M. Milano.

Allocation and scheduling for mpsoc via decomposition

and no-good generation. In Proc. International Joint

conferences on Artificial Intelligence (IJCAI), 2005.

[5] S. Blagodurov, S. Zhuravlev, and A. Fedorova.

Contention-aware scheduling on multicore systems.

ACM Trans. Comput. Syst., 28(4), 2010.

[6] CPLEX. Ilog inc., ilog cplex 8.1 reference manual.

http://www.ilog.com/products/cplex, 2008.

[7] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge, and R. B. Brown. Mibench: A free,

commercially representative embedded benchmark suite.

In Proc. IEEE 4th Annual Workshop on Workload

Characterization, 2001.

[8] S.-R. Kuang, C.-Y. Chen, and R.-Z. Liao. Partitioning

and pipelined scheduling of embedded systems using

integer linear programming. In Proc. International

Conference on Parallel and Distributed Systems

(ICPADS), 2005.

[9] Y.-K. Kwok and I. Ahmad. Benchmarking and

comparison of the task graph scheduling algorithms.

Journal of Parallel and Distributed Computing, 59(3),

1999.

[10] C. Lee, M. Potkonjak, and W. Mangione-Smith.

Mediabench: A tool for evaluating and synthesizing

multimedia and communications systems. In Proc. of

IEEE International Symposium on Microarchitecture,

pages 330 (335), 1997.

[11] G. D. Micheli, R. Ernst, and W. Wolf. Readings in

hardware/software co-design. Morgan Kaufmann, 2002.

[12] P. Panda, N. Dutt, and A. Nicolau. Memory issues in

embedded systems-on-chip: optimization and

exploration. Kluwer Academics Publisher, 1999.

[13] P. Panda, N. D. Dutt, and A. Nicolau. On chip vs o_ chip

memory: the data partitioning problem in embedded

processor-based systems. ACM Transactions on Design

Automation of Electronic Systems (TODAES), 5(3),

2000.

[14] J. Sjodin and C. V. Platen. Storage allocation for

embedded processors. In Proc. International Conference

on Compilers, Architecture, and Synthesis for Embedded

Systems (CASES), 2001.

[15] S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel.

Assigning program and data objects to scratchpad for

energy reduction. In Proc. Design Automation and Test

in Europe (DATE), 2002.

[16] V. Suhendra, C. Raghavan, and T. Mitra. Integrated

scratchpad memory optimization and task scheduling for

mpsoc architecture. In Proc. International Conference on

Compilers, Architecture, and Synthesis for Embedded

Systems (CASES), 2006.

[17] F. Sun, N. Jha, S. Ravi, and A. Raghnunathan. Synthesis

of appication-specific heterogeneous multiprocessor

architectures using extensible processors. In Proc.

International Conference on VLSI Design, 2005.

[18] V. G. Vaidya, P. Ranadive, and S. Sah. Dynamic

scheduler for multi-core systems. In 2nd International

Conference on Software Technology and Engineering

(ICSTE), 2010.

[19] L. Xue, O. Ozturk, F. Li, M. Kandemir, and I. Kolcu.

Dynamic partitioning of processing and memory

resources in embedded mpsoc architectures. In

Proceedings of the conference on Design, automation

and test in Europe (DATE), 2010.

[20] A. K. Coskun, T. S. Rosing, and K. A.Whisnant.

Temperature aware task scheduling in mpsocs. In

Proceedings of Design, Automate and Test in Europe

Conference and Exhibition (DATE), 2007.

[21] Y. Xie and W.-L. Hung. Temperature-aware task

allocation and scheduling for embedded multiprocessor

systems-on-chip (mpsoc) design. Journal of VLSI Signal

Processing, 45:177(189), 2006.

[22] J. Chen, C. Yang, T. Kuo, and C. Shih. Energy-efficient

real-time task scheduling in multiprocessor dvs systems.

In Proc. Asia and South Pacific Design Automation

Conference, 2007.

[23] Q. Tang, S. K.S.Gupta, and G. Varsamopoulos. Energy-

efficient thermal-aware task scheduling for homogeneous

high performance computing data centers:a cyber-

physical approach. IEEE Transactions on Parallel and

Distributed Systems, 19:1458-1472, 2008.

[24] K. Kanoun, N. Mastronarde, D. Atienza, and M. V. D.

Schaar. Online energy-efficient task-graph scheduling for

multicore platforms. IEEE Transactions on Computer

Aided Design, 33(8), 2014.

[25] P.-H. Tseng, P.-C. Hsiu, C.-C. Pan, and T.-W. Kuo.

User-centric energy-efficient scheduling on multi-core

mobile devices. In Design Automation Conference

(DAC), 2014.

[26] R. P. Dick, D. L. Rhodes, and W. Wolf, ―Tgff: Task

graphs for free,‖ in the 6th International Workshop on

Hardware/Software Codesign, 1998, pp. 97–101.

IJCATM : www.ijcaonline.org

