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ABSTRACT 

As the complexity of embedded applications is ever 

increasing, the trend in embedded architecture is to utilize a 

multi-processor system on a chip (MPSoC). MPSoCs provide 

the compute power and flexibility to effectively execute 

complex embedded systems.  An embedded system often 

execute multiple complex embedded applications 

simultaneously.  In this article, we tackle two main problems 

to further enhance the effective utilization of the embedded 

MPSoC architecture to reduce the execution time of the 

applications, namely, resource allocation and scheduling.  We 

first present an effective resource allocator that examines the 

nature of the applications in the system to fairly allocate the 

fast on-chip scratchpad memory budget and the processing 

elements.  Then this article presents an effective task 

scheduler that integrates scheduling and on-chip scratchpad 

memory partitioning for the maximum optimization of the 

system.  Results on multiple real and synthetic benchmarks 

showed the effectiveness of our techniques. 
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1. INTRODUCTION 
With the huge demand for processing power from embedded 

systems to efficiently execute complex embedded 

applications, the trend in embedded architecture is to deploy 

multiple processors on a single chip. Multi-processor System-

on-a-chip (MPSoC) is an attractive solution to provide the 

compute power while maintaining a conservative power 

budget.  A typical MPSoC usually utilizes heterogeneous 

processing elements, a multiple of memory hierarchies all 

interconnected by a sophisticated communication structure.  

MPSoCs have come to be an attractive and flexible solution 

for high performance embedded systems with reduced energy 

consumption. 

Memory access time prediction is usually essential in real-

time applications to satisfy the requirement of predictability of 

execution time.  Caches, that are usually the memory of 

choice, are therefore not suitable for such systems as caches 

are hardware controlled which makes it extremely hard to 

model the behavior of a cache memory.  An answer to this 

shortcoming is a software controlled memory known as 

scratchpad memory.  Since scratchpads are software 

controlled, their behavior can be predicted with high accuracy.  

In this article, an MPSoC architecture with scratchpad on-chip 

memory is assumed to satisfy the predictability requirement 

for critical real time embedded applications. 

An important optimization technique for embedded systems is 

the generation of optimized schedules to reduce the run time 

of embedded applications on the system’s resources. Given an 

MPSoC system with multiple embedded applications possibly 

of different arrival times, an important research question is 

how to partition the system resources of processing elements 

and the on-chip scratch pad memory among the applications 

for a schedule with minimum run time.  Hence in this paper, 

we present effective techniques to the two NP problems of 

proper allocation of system resources to competing embedded 

applications in the system and the scheduling of each 

application tasks on the allocated resources with the objective 

of reduced schedule time.   

The problems of task scheduling and memory allocation are 

usually studied as two separate problems in the literature.  

However, the decision of scheduling a task on a processor is 

greatly affected but the amount of on-chip memory allocated 

to that processor.  The main reason is that accessing data from 

the off-chip memory is usually in the range of hundred times 

slower than accessing from the on-chip memory.  Hence in 

this article the problem of task scheduling and on-chip 

memory allocation are studied in an integrated fashion. 

In this article, effective techniques to partition the system 

resources among competing embedded applications as well as 

effective scheduling of each embedded application tasks on 

the allocated resources in an integrated fashion with 

scratchpad memory partitioning are presented.  Extensive 

experimental analysis are performed to test the effectiveness 

of the proposed techniques. 

The remainder of this article is organized as follows. Section 

2 presents related work and Section 3 introduces the 

architecture and formally defines the problem.  The profiling 

component from the framework is detailed in Section 4. 

Sections 5 and 6 presents details about the Resource Allocator 

and the integrated scheduler, respectively.  Detailed 

experimental results are presented in Section 7 while Section 

8 lists the conclusions. 

2. RELATED WORK 
Many researchers in the literature studied the scheduling and 

allocation problems.  A constraint programming along with 

integer linear programming for scheduling and memory 

partitioning was presented in [4]. Ahmed [9] presented a 

comparison between different scheduling algorithms of task 

dependence graphs on an architecture with homogenous set of 

processors. De Micheli et al. [11] studied the scheduling and 

mapping problem as a hardware/software codesign. 

Hardware-software partitioning and scheduling with 

pipelining was presented in [8]. Their objective was to 

minimize the initiation time, number of pipeline stages, and 

memory requirements. Their solution is based on integer 

linear programming formulation. 

Panda et al. [12, 13] presented a comprehensive allocation 

technique for scratchpad memories on uniprocessor to 

maximally utilize the available scratchpad memories to 

decrease the programs execution times. Optimal ILP 

formulations for memory allocation for scratch-pad memories 
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were presented in [3]. An ILP formulation to the SPM 

allocation problem to reduce the code size was presented in 

[14]. Steinke et al. [15] formulated the same problem with the 

objective to minimize the energy consumption. Angiolini et 

al. [1] optimally solved the problem of mapping memory 

locations to scratchpad locations using dynamic 

programming.  

Blagodurov et al. [5] presented a contention-aware scheduling 

algorithm on multicore systems. Vaidya et al. [18] proposed a 

dynamic scheduling algorithm in which the scheduler resides 

on all cores of a multi-core processor and accesses a shared 

Task Data Structure (TDS) to pick up ready-to-execute tasks. 

Suhendra et al. [16] studied the problem of task scheduling 

and memory partitioning on a heterogeneous multiprocessor 

system on chip with scratch pad memory. They formulated 

this problem as an integer linear problem (ILP) with the 

inclusion of pipelining. ILP solutions require long 

computation time for large applications and hence they are not 

practical in real life. A technique to effectively divide system 

resources among competing applications is presented in [19]. 

Research has been conducted on task scheduling problems for 

DVS enabled multi-processor real-time embedded systems 

[21]. In [31] it was shown that the thermal aware task 

scheduling outperforms the power-aware schemes in terms of 

maximal and average temperature reduction. In [20], the 

authors propose an adaptive method which eliminates hot 

spots in a slightly better way than the load balancing 

techniques by reducing temporal and spatial temperature 

variations. Energy efficient for real time task scheduling is 

presented in [22, 23]. Kanoun et. al [24] presented an online 

energy efficient task graph scheduling for multicore 

platforms. Tseng et. al [25] presented energy efficient 

scheduling on multicore mobile devices. 

3. SYSTEM ARCHITECTURE AND 

PROBLEM DEFINITION 
In this article, the underlying system architecture is based on a 

multiprocessor System-on-a-chip with limited on-chip fast 

scratchpad memory, a number of processing elements, and 

unlimited off chip memory all interconnected with a 

communication bus model. Given such an architecture system 

and a number of embedded applications utilizing the system 

possibly arriving at different times, we present effective 

techniques to allocate the proper resources to each application 

and generate optimized schedule with minimum overall run 

time.  Allocation and scheduling are essential techniques to 

optimize the execution of a number of embedded applications 

in an MPSoC with limited resources. 

A main contribution of this paper is that it provides a 

comprehensive technique to allocation and scheduling where 

allocation is highly based on the nature of the applications and 

scheduling is integrated with scratchpad memory partitioning 

for further reduction in the schedule time.  Effective 

techniques to these sought problems can play a major role in 

extracting the compute power of multi-core embedded 

systems. The framework depicted in Figure 1 starts with a 

profiler that profiles each application the systems receives to 

generate proper metrics to aid in understanding the nature of 

each application for optimized allocation and scheduling.  The 

second part is a resource allocator that based on the nature of 

the applications in the system, it allocates the processing 

elements and the scratchpad budget among the applications. 

For instance, a memory intensive application is set to benefit 

more from additional scratchpad budget compared to a more 

computationally intensive and parallel application.  On the 

other side, the parallel application has a higher potential to 

benefit from additional processing elements to exploit 

parallelism and to tackle the high compute requirements.  

Once the resource allocator is done and each application 

receives its share of the system resources, the integrated 

scheduler in our holistic framework is invoked. The scheduler 

is responsible of effectively scheduling the tasks of each 

application on the resources allocated to such application with 

the objective of reduced overall schedule time.  The three 

aforementioned parts of the framework are detailed next. 

4. THE PROFILER 
The first main part of the proposed framework is the profiler.  

The profiler receives the embedded applications to be 

executed on the system and studies the nature of each 

application and generates a number of profiling information.  

One main piece of information that the profiling part of the 

proposed framework establishes is the task dependence graph 

(TDG).  A task dependence graph is a representation of how 

the embedded applications can be divided into a set of tasks 

along with the dependencies between such tasks.  The profiler 

will study the structure of the embedded application and 

generates a set of basic blocks that will translate to tasks in the 

TDG.  The profiler will then study the communication/data 

flow between the basic blocks (tasks) to establish 

dependencies between tasks that are represented as edges in 

the TDG.  The edges will be weighted to accommodate for the 

communication cost between dependent tasks estimated by 

the profiler. 

To further establish the nature of the tasks, the profiler is 

responsible about generating estimates of how much a task 

benefits from additional scratchpad memory budget.  We 

measure the benefit of a task from additional scratchpad 

memory by estimating the degree of potential reduction in run 

time of the task with increased scratchpad budget.  To aid in 

this, the profiler will generate three separate estimate: 

1- Short: The shortest run time of a task based on 

assigning all the available scratchpad budget to the 

processor executing task. 

2- Long: The longest run time of a task based on 

assigning no scratchpad budget to the processor 

running this task. 

3- Middle:  The middle ground of measuring the run 

time of a task if the scratchpad budget is equally 

divided among all processors executing an 

application. 

In addition to the aforementioned set of values and estimates 

generated by the profiler, a list of other values as needed and 

discussed throughout the rest of this article are also the 

responsibility of the profiler. 

5. THE RESOURCE ALLOCATOR 
In this part of our framework, the systems’ resources of 

processing elements and on-chip scratchpad memory will be 

distributed among the embedded applications currently using 

the system.  Due to the assumed limited system resources, 

allocating such resources should be performed based on the 

nature of each embedded application.  An application could be 

memory intensive, computational intensive with different 

levels of possible task parallelism, or a weighted combination 

of both.  Accurately examining and classifying embedded 

application is a computation intensive problem and hence 

estimated techniques are developed.   
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In our approach, resource allocation is highly dependent on 

the nature of the embedded applications in the. For instance, 

an application that is memory intensive in nature will benefit 

more from additional on-chip scratchpad budget.  This is 

mainly because a memory intensive application is defined as 

an application where memory accesses encompass big portion 

of its computation time and hence it greatly benefits from the 

ability to access variable elements quickly from the fast 

scratchpad compared to slower off-chip memory.  Based on 

the degree of memory intensiveness, the percentage of overall 

schedule time reduction is estimated.  On the other hand, an 

application can be classified as computationally expensive 

with high level of parallelism and hence the proposed 

resource allocation technique will allocate more processing 

elements to such application to reduce the schedule time. In 

such case, the additional processing elements will aid the 

exploitation of the applications parallelism and will provide 

the needed computation power for the highest possible 

reduction in the schedule time.  

As such the resource allocation part of our holistic framework 

receives the profiling information about each application in 

the system.  Then it generates an estimate of the nature of 

each application to effectively and fairly divide the system 

resources among competing application concurrently utilizing 

the embedded system. 

 

Figure 1: Our holistic framework 

Scratchpad Memory Allocation: Once an application is 

received with all its corresponding profiling information, the 

resource allocator computes a flexibility estimate based on the 

intrinsic structure of the application.  The flexibility value of 

task Ti on processor (Pj) in Equation 1 represents the potential 

in run time reduction that the current application might exhibit 

with increased scratchpad memory budget. The Current 

variable in Equation 1 is the run time if the remaining 

scratchpad budget in the system is equally partitioned among 

all the applications that haven’t been allocated a scratchpad 

budget whereas Short is the run time if all the scratchpad 

budget in the system is allocated to the processor executing Ti. 

The flexibility is a value between 0 and 1 to track the benefit 

of increasing the current scratchpad budget allocated to the 

application to the extreme case of allocating all the 

scratchpad budget in the system to such application.  A 

flexibility value closer to 1 implies that the application has a 

high potential of improved run time from higher scratchpad. 
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The on-chip scratchpad memory budget in the system will be 

allocated to the embedded applications to reduce the overall 

schedule time.  For each application in the system, a Memory 

Potential Reduction (MPR) in Equation 2 for each application 

is defined as an estimate of potential reduction in run time of 

the whole application from allocating additional scratchpad 

budget and is computed as the average flexibility value for all 

its tasks. 
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The memory allocator heuristic in Figure 2 receives as input 

the on-chip memory size (m) and the number of applications 

concurrently running (n). It then first determines the the 

memory requirements of each application in the system 

(Mem_Requested()) through the profiling information and the 

nature of each application.  If the available on-chip 

scratchpad memory budget is less than the total requested 

memory, each application will receive what it requested.  In 

the most common case where the requested memory is more 

than what is available, the heuristic will examine the 

applications in decreasing order of their MPR values. It will 

then allocate to each application an scratchpad budget 

proportional to its MPR value such that an application with 

higher MPR value will receive an scratchpad budget closer to 

what it requested compared to an application with a lower 

MPR value. 

Memory_Allocator( n , m ) 

1.L = Apps in decreasing order of MPR  

2.Mem =0 and Total_MPR = 0 

3.For i = 1 to n do: 

4.  Mem = Mem + Mem_Requested(i) 

5.  Total_MPR = Total_MPR + MPR(i) 

6.End For 

7.If (Mem  m)Then 

8.  For i = 1 to n 

9.    Mem_received(i) = MPR_requested(i) 

10.  End For 

11.Else 

12.  While L not empty 

13.    i = First application in L. 

14.    Temp = UpperBound((

MPRTotal

iMPR

_

)( )* m) 

15.    scratchpad_ received(i) = MIN(Mem_requested(i),Temp )                 

16.    m = m - Mem_ received(i) 

17.    Remove i from L. 

Profiling 

Arriving Apps (App1,… Appn) 

System 

Architecture 

PE/Mem Resource Allocation (App1,..AppN) 

Integrated Scheduler 

Optimized Schedules 

Balance the Schedules 
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18.    Recompute Short, MPR and Total_PRF. 

19.    Reconstruct the list L. 

20.  End While 

Figure 2: Our on-chip memory allocator. 

Processing Elements Allocation:  Once the profiling 

information of all the application are received, the available 

processing element cores in the system will be allocated such 

that an application with a higher potential of parallelism is 

allocated more cores so that more tasks can run in parallel.  

For each application, a potential for parallelism (PP) value is 

computed as in Equation 3. An application with a higher PP 

value implies that it is more parallel in nature, that is, more 

tasks of such application can run in parallel.  The PP value is 

mostly extracted from the task dependence graph (TDG).  

Two tasks in the TDG can run in parallel if they are 

independent.  Two tasks are said to be independent if there is 

no path between the two tasks in the TDG.  An application 

with a higher number of independent tasks has a higher 

potential to run such tasks in parallel and is mostly limited by 

the number of processing cores allocated to such application.  

i

i
ii

distinct

pairs
distinctAPPPP =)(                                 (3) 

Processing_Elements_Allocator( n , p ) 

1.Path = 0 and Path_PP = 0  

2.For i = 1 to n  

3.  PP(i) = Compute_PP(i) 

4.End For 

5.L = Apps in decreasing order of (1 + 0.1 PP(i)) * path(i)  

6.For i = 1 to n  

7.  Path = Path + distinct(i) 

8.  Path_PP = Path_PP + (1 + 0.1 PP(i))*    distinct(i). 

9.End For 

10.If (Path   p ) Then 

11.  For i = 1 to n 

12.    Processor_received(i) = distinct(i) 

13.  End For 

14.Else 

15.  While L not empty 

16.   i = First application in L. 

17.   Temp = UpperBound((1 + 0.1 PP(i)) * 

distinct(i)/Path_PP * p ) 

18.   Processor_received(i)= MIN(distinct(i),Temp ) 

19.   Path_PP = Path_PP - (1 + 0.1 PP(i)) * distinct(i) 

20.   Update the number of processors. 

21.   Update the List L. 

22.  End While 

Figure 3: Our processing elements allocator. 

As shown in Equation 3, the PP value is divided into two 

main parts.  The first part represents the number of distinct 

paths (distinct) in the TDG.  Two paths are said to be distinct 

if they have at least one task that doesn’t belong to both paths.  

Compared to more unbalanced paths, two paths in a TDG with 

close number of tasks can benefit more from two processing 

cores as the idle time of the cores is minimized.  This is taken 

into consideration in the second part of the PP equation.  That 

part counts the number of pairs of tasks on two distinct paths 

that are eligible to run in parallel and divides that by the total 

number of distinct paths.  The number of distinct paths and 

the pairs of potential tasks that can run in parallel are used in 

the PP equation to estimate the potential of parallelism in an 

application. And hence the processing cores allocator will use 

such information in deciding how to allocate the limited 

number of processing elements among the concurrently 

running embedded applications. 

The processing elements allocator heuristic in Figure 3 

receives as input the number of applications in the systems (n) 

and the number of available processing elements (p) and then 

sorts the applications in decreasing order based on an altered 

version of the PP value since eventhough the PP value is an 

estimation of potential parallelism, it is an exaggeration of 

realistically the number of tasks that will run in parallel. If the 

available processing elements is less than the total requested, 

each application will receive what it requested.  In the most 

common case where the number of requested processing 

elements  is more than what is available, the heuristic will 

allocate to each application processing elements proportional 

to the altered potential parallelism calculated values.  Hence 

an application with higher potential for parallelism will 

receive number of processing elements closer to what it 

requested compared to applications with lower levels of 

potential parallelism. 

6. THE INTEGRATED TASK 

SCHEDULER 
After the resources in the system have been allocated to the 

applications, the task scheduler is responsible about 

scheduling the tasks of each application on the resources 

allocated to that application.  The task scheduler receives the 

profiling information about each application (Appi) along with 

its allocated processing elements (PEi) and its allocated on-

chip scratchpad memory budget (memi). 

The majority of the work in the literature have studied 

scheduling of the tasks of an application on the processors 

separately from the memory allocation to such processors. 

However, in this article, we propose that these two problems 

are highly dependent on each other and should be studied as 

one integrated problem to generate fully optimized schedules.  

Unlike the trend in previous research that first schedule the 

tasks on the available processors and then partition the on-

chip memory as a post scheduling step, we opt to the 

integrated approach that adopt a comprehensive and holistic 

approach the the scheduling problem. Hence our approach to 

scheduling of the applications utilizing the system heavily rely 

on how memory will be partitioned among these applications.   

This section details the proposed optimized technique to task 

scheduling/memory allocation problem to effectively schedule 

the embedded applications in the system for maximum 

throughput (Figure 4). The partitioning of the scratchpad 

memory will be dynamically allocated to the processors 

integrated in the decision making of mapping tasks to 

available processors.  This is mainly due to the fact that the 

run time of a task scheduled on a certain processor not only 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 17, September 2018 

29 

depends on the features of the processor but also on the on-

chip fast scratchpad memory allocated to this processor. This 

is especially more apparent with memory intensive 

applications that can greatly benefit from the reduced 

scratchpad access time compared to accessing external 

memory.  Hence our task scheduler explicitly considers the 

changing run time of a task on a processor based on the 

associated scratchpad budget to generate better quality 

schedules with highest reduction time in run time. 

We propose a dynamic algorithm to scheduling that takes into 

account the varying execution time of a task while building a 

schedule.  The varying execution time is mainly due to the 

dynamic essence of allocating the available scratchpad budget 

to processors throughput the course of our proposed integrated 

scheduling heuristic.  We first use the profiling information to 

extract important information about each task to be scheduled.  

Example of the extracted information are the Short, Middle, 

and Long values that were introduced and discussed in the 

previous section as an estimation metric of how much a task 

can benefit from varying scratchpad memory budgets. 

Figure 4 presents the proposed dynamic scheduler that begins 

by sorting the tasks in list L1 in ascending order of the As 

Soon As Possible (ASAP) values.  Following the sorted tasks 

in the list L1, the scheduling heuristic matches each task to the 

best processor under the objective of minimal schedule time. 

First define equations (4)-(6) below where Begin (Ti, PEj) is 

the earliest begin time of  task Ti on processor Pj detailed in 

Equation (4) as the maximum between the current finish time 

of the processing element PEj (Finish (PEj)) and the biggest 

finish time of all the parent tasks of Ti extracted from the TDG 

( )(( )( j
i

TParent
j

T TFinishMax 
) with the added 

communication cost, Comm.  The finish time of a task Ti 

scheduled on the processing element PEj is calculated in 

Equation 5 whereas the finish time of a certain processing 

element is calculated as  the finish time of the latest task 

scheduled on this processing element (Equation 6). 

=),( ji PETBegin )((( )( k
i
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Integrated_Scheduler: 

1.Receive the Profiling information from the Profiler. 

2. Receive the system resources allocated to the application 

under consideration from the Resource Allocator. 

3.Divide the on-chip scratchpad memory equally between 

the processors. 

4.Find the ASAP for all the tasks based on Middle values. 

5.L1 = List of tasks in increasing order of ASAP. 

6.While (L1 not empty) do: 

7.  Get the first task Tf from L1. 

8.  Find the processing element PEj to schedule Tf       with 

minimal overall schedule time increase. 

9.  min = Finish time of PEj with Tf scheduled. 

9.  For each other processor PEk do: 

9.   Calculate the flexibility and PFR of PEk if Tf 

           is mapped to PEk. 

10.    Find the minimum Begin time of Tf on PEk. 

11.    Find Finish(PEk) if Tf is mapped to PEk. 

12.    if ((Finish(PEk) <  min && PFR(PEj)   (1 - 

%)PFR(PEk)) | | (Finish(PEk) >  min && PFR(PEk)   

(1- %)PFR(PEj)) Then: 

13.    min  = Finish(PEk) 

14.  else if (Finish(PEk) == min ) 

15.    min  = Finish time of processor with the 

        higher flexibility. 

16.  End For 

17.  Assign Tf to PE corresponding to min. 

18.  Delete Tf from L1. 

19.End While 

Figure 4: The integrated scheduler. 

In general a task Ti is supposed to be scheduled on the 

processing element (say PEj) with the minimal increase in 

schedule time. However, to keep the dynamic essence of our 

techniques and to look beyond the current configurations and 

schedule status, Ti might be scheduled on PEk with higher 

schedule increase than if scheduled on PEj.  This is only 

possible under the condition that the Predicted Finish 

Reduction time (PFR(Pk)—Equation 7) of processor PEK is at 

least  % less than that of processor PEj.  The PFR value as 

defined is a guide to the scheduler of the amount of potential 

overhead reduction due to future scratchpad distributions if Ti 

is mapped to PEk.  In other words, the PFR value is an 

estimation of finish time reduction of processor PEk due to 

possible higher future scratchpad budget. 

The predicted finish reduction time of a task on a processing 

element highly depend on the flexibility (introduced and 

explained in Section 5) of the tasks that are mapped to this 

processing element. As in the definition of flexibility, Current 

of a certain task is the time it takes to execute the task on the 

processor under the current scratchpad budget distribution. 

The PFR as defined in Equation 7 is highly dependent on the 

calculated flexibility value and hence it reflects the dynamic 

essence of our scheduler where the decisions are based not 

only on the current on-chip scratchpad memory allocation but 

also on an estimated reduction in run time of the tasks due to 

predicted possible future scratchpad distribution though out 

the life of the task scheduler.  We define the flexibility of a 

processor as the average flexibility value for all the tasks 

currently allocated to run on this processor. 
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Balancing the schedule: The schedule generated by the 

integrated scheduler will be further balanced in an attempt to 

reduce the overall schedule time.  A balanced schedule is such 

that the difference between the finish times of all the 

processor is minimal.  To do so, we start with the processor 
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with the highest Finish time (say PEk) and perform a set of 

steps to create a more balanced schedule.  This will be 

achieved by altering the scratchpad budgets between the 

processors of the highest and lowest Finish times and taking 

the flexibility into consideration. Specifically, it starts by 

transferring 10 %  from the scratchpad budget allocated to the 

processor (PEj)  with the lowest (Finish * Flexibility) product  

to processor PEk as long as Finish(PEj) <  Finish(PEk). In the 

majority of cases, such memory transfer will decrease the 

Finish time of processor PEj while increasing that of PEk and 

thus decrease the schedule time which is the main objective of 

our technique.  This process of transferring 10 % of the 

scratchpad allocated memory budget between PEj and PEk  

will be repeated multiple times (based on fine tuning)  and as 

long as Finish(Pj) <  Finish(Pk) to insure no adverse effect in 

the overall scheduler. 

After every scratchpad budget redistribution among the 

processors and based on the new run time of a task Ti 

(Equation 9), the Begin(Ti), Finish(Ti) values will be 

recomputed for each task Ti mapped to a processor whose 

scratchpad budget is changed while balancing the schedule. 

This is mainly achieved by computing an estimate Gain value 

(Equation 9) for each task Ti on a processor with newly 

assigned scratchpad memory budget Memj.  The Gain of a 

task represents the reduced execution time of a task due to the 

new assigned scratchpad budget.  The Gain value is estimated 

by allocating variables from task Ti to Memj in ascending 

order of bytei/freqi with bytei is the size of the variable Vi and 

freqi is the number of times such variable is accessed 

throughout the course of executing the task Ti.  As mentioned 

earlier, accessing a variable from an external of-chip memory 

is more expensive in terms of required clock cycles compared 

to accessing a variable from the on chip scratchpad memory.  

β1 and β2 in Equation 9 are the respective assumed cost of 

accessing from the off-chip and on-chip memory.  Even 

though this is a simple data allocation technique, our 

experiments showed it is fast and effective. The updated run 

time of task Ti under the new scratchpad memory budget 

Memj in Equation 9, is defined as  the difference between the 

time taken to execute Ti assuming no scratchpad memory,  

Time(Ti, 0) and Gain(Ti,Memj). 
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7. EXPERIMENTAL SETUP AND 

PERFORMANCE ANALYSIS 
In this section, the performance of the detailed scheduler, 

resource allocator, and the holistic approach are studied and 

examined.   

The first step of the presented holistic approach to resource 

allocation and task scheduling is to extract information about 

each application utilizing the system through profiling.  The 

profiler will identify the basic computation block in each 

embedded application along with the control and data flow 

between these basic blocks.  The basic blocks will be vertices 

in constructing the task dependence graph (TDG) and the 

data/control flow dictates the dependencies between tasks.  

The TDG is a weighted graph with weights representing the 

communication costs between dependent tasks. Simplescalar 

[2] will be used to profile applications. Simplescalar is an 

architectural simulation to simulate the execution of a task on 

a processor under different memories allocation.  As detailed 

earlier, the profiler will mainly: 

(i) Construct a TDG representing an application. 

(ii) Generate the Short, Middle, and Long values for each 

task on different processors. 

(iii) Determine variables sizes and the frequency a variable is 

accessed throughout the schedule of the 

application. 

In our experiments, we used real life applications extracted 

from [17], Mediabench [7] and Mibench[10], namely, 

enhance, lame, osdemo, and cjpeg as test benchmarks of 

which their characteristics are presented in Table 1.  We also 

used Synthetic benchmarks generated using the TGFF tool 

[26]. 

7.1 Testing The Scheduler 
As mentioned earlier, we tested the scheduler and the resource 

allocator independently first before testing the whole 

presented holistic approach to resource partition and 

scheduling of multiple applications on an MPSoC.  First, we 

tested the scheduler detailed in Section 6.  The scheduler is 

responsible about effectively scheduling the tasks of an 

applications on the resources (processors and scratchpad 

budget) allocated to that application by the resource allocator.  

For testing and comparisons we implemented the following 

four different approaches: 

1. EQUAL: A decoupled approach that tackles 

scheduling and memory partitioning independently 

and assuming the scratchpad budget is equally 

divided among the available processors. 

2. ANY: A decoupled approach based on a tweaked 

version of [18] that schedules tasks in a TDG 

dynamically over the available processors and then 

perform the memory partitioning as a latter and 

independent step. 

3. INTEG:  Our integrated approach to task scheduling 

and memory partitioning detailed in Section 6. 

TABLE  1 CHARACTERISTICS OF SOME OF OUR BENCHMARKS.  

Benchmark # variables #tasks Var size (Kbytes) 

Lame 128 4 294.83 

Osdemo 46 7 78.64 

Enhance 44 6 7192.35 

Cjpeg 20 5 690.31 

 

For the benchmarks enhance, lame, osdemo, and cjpeg, we 

assumed a microprocessor system with two processors and an 

on-chip scratchpad budget of size varying between 4KB and 

4MB.  It is critical to chose an underlying microprocessor 

architecture with the proper number of processors and 

scratchpad budget based on the applications to be tested. This 

is because too many or too few resources might not project 

the essence of our presented heuristic and might not properly 

reflect the effectiveness of our approaches for different 

embedded applications.  We tested each benchmark under 

three different scratchpad budget and presented the average 

results. In our experiments, we assumed a 100 cycle latency to 

access data from the off-chip memory and 1 cycle latency to 

access data from the on-chip scratchpad memory.  There is no 

limit on the size of the off-chip memory that is it is assumed 
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that the off-chip memory is large enough to hold all the data 

variables in the application.   

The first three columns in Figures 5-8 present comparisons 

between the EQUAL, ANY [18], and INTEG techniques.  From 

the first two columns in Figure 5-8, the ANY technique 

improved over the EQUAL technique from almost no 

improvement to huge improvement of 47% with 7% 

improvement on average.  This expected improvement shows 

that static allocation of the on-chip memory among processors 

i.e., dividing the on-chip memory budget equally over the 

processors without taking into consideration the nature of 

tasks mapped to each processor fails to effectively utilize the 

scratchpad in the system for overall schedule reduction. 

On the other hand, as evident in Figures 5-8, our integrated 

approach INTEG improved over the ANY approach up to 22% 

with 7.9% schedule time reduction on average.  As always the 

improvements greatly depend on the nature and structure of 

each application. It is clear from the results that our integrated 

approach greatly reduces the schedule time compared to 

decoupled approaches that treat scheduling and memory 

partitioning as two separate problems.  Hence, the results 

clearly showed that decoupled approaches result in schedules 

of inferior quality compared to techniques that study the task 

scheduling and on-chip scratchpad memory partitioning in an 

integrated fashion as presented by our technique. The 

presented schedule time reduction from our integrated 

approach is mainly due the task nature guidance followed by 

our technique as the on-chip scratchpad configuration of a 

processor is highly dependent on the nature of the tasks 

scheduled to be executed on that processor. 

 

Figure 5 Results for lame benchmark. 

 

Figure 6 Results for osdemo benchmark. 

 

Figure 7 Results for enhance benchmark. 

Finally, we tested our integrated scheduler based on synthetic 

benchmarks generated using TGFF [26]. As in Table 2, the 

benchmarks were divided into 4 different sets with the 

complexity of the generated Task Dependence Graphs 

(TDGs) increased as we moved from Set 1 all the way to Set 

4. Each set consists of a number of similar complexity 

benchmarks.  The benchmarks in each set were tested under 

different system resources and their average performances are 

captured. The results in Table 2 is the average percentage 

reduction compared to the EQUAL  technique.  As apparent 

and following similar result pattern on the real-life 

benchmarks, our integrated scheduler approach improved over 

the two decoupled approach in all cases.  

7.2 Testing The Resource Allocator 
After proving the effectiveness of our integrated approach to 

task scheduling and on-chip memory partitioning, in this part 

of the experimental results we test the Resource Allocator 

detailed in Section 5.  Our resource allocator will be tested 

against the resource allocator presented by Xue et al. [19].  

For fair comparisons, we tested the two resource allocator 

techniques while utilizing our integrated scheduler detailed in 

Section 6. 

For this part of the testing, we utilized two test sets of 

benchmarks: 1- (Lame, Osdemo, Cjpeg) and 2- (Lame, 

Enhance , Cjpeg, Osdemo).  Different scenarios of arrivals 

times were assumed for the applications in the two sets to 

mimic real life situations.  The two sets were also tested under 

different system resources and the then the results are 

averaged out and presented in Figures 9 and 10.  Figures 9 

and 10 present the average run time among different arrival 

time scenarios and under the available processing elements 

and on-chip scratchpad memories labelled in the figures as (# 

of PE, scratchpad size). As mentioned earlier, choosing the 

proper system resources is very essential in fairly testing the 

effectiveness of our techniques as too little or too many 

system resources will fail to properly test our techniques.  The 

schedule results are based on our integrated scheduler and 

presented in terms of system cycles in the figures of results.  

Clearly, our resource allocator is able to improve over the 

allocator in [19] in all the tested cases with improvements 

ranging from 2.3% to 9.4 % and an average reduction of 

6.3%. 
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Figure 8 Results for cjpeg benchmark. 

TABLE 2 SCHEDULING RESULTS FOR SYNTHETIC BENCHMARK 

SETS 

Benchmark ANY INTEG 

Set1 9.8% 16.3% 

Set 2 8.2% 15.8% 

        Set 3 12.4% 17.3% 

Set 4 10.12% 18.3% 

 

7.3 Testing The Whole Framework 
In the two previous sets of experiments, the effectiveness of 

our integrated scheduler and resource allocator are detailed 

and presented.  For the last set of experiments, we tested our 

whole approach to allocation and scheduling as one holistic 

framework.  The results were tested against the resource 

allocator presented in [19] and the decoupled scheduler, ANY, 

based on [18].     For this part of the testing, we also utilized 

the two test sets of benchmarks: 1- (Lame, Osdemo, Cjpeg) 

and 2- (Lame, Enhance , Cjpeg, Osdemo).  Different scenarios 

of arrivals times were assumed for the applications in the two 

sets to mimic real life situations. 

The system resources along with the cycle count from our 

holistic framework along with that based on the works in [18] 

and [19] are detailed in Tables 3 and 4.  From the tables, our 

approaches are able to reduce the overall cycle count in all the 

tested cases with improvements ranging from 4.2 % to 11.3 % 

with an average cycle count reduction of almost 8.4 %.  This 

clearly showed the effectiveness of our proposed techniques 

that are essential in extracting the compute power from multi-

core embedded systems.  

 

Figure 9 Results for Lame- Osdemo -Cjpeg set. 

 

Figure 10 Results for Lame-Enhance-Cjpeg-Osdemo. 

We then tested our holistic framework compared to Xue [19] 

resource allocator and the ANY [18] scheduler tested on 

Synthetic benchmark set generated using TGFF [26]. As in 

Table 5, the benchmarks were divided into 4 different sets 

with each test containing a number of benchmarks TDGs of 

varying complexities.  The benchmarks in each set were tested 

under different system resources and their average 

performance are captured. The results in Table 5 are the 

average percentage reduction of our presented approach 

compared to Xue [19] resource allocator and the ANY [18] 

scheduler.  As clearly evidend, our technique performed better 

than the other technique in all cases with an average 

improvement of 9.4 %. 

TABLE  3 (LAME, OSDEMO, CJPEG) CYCLES. 

Resources Ours (cycles) Xue [19] 

+[18](cycles) 

(4p, 256KB) 44211259 48274652 

(6P, 128KB) 34543927 35986540 

(10P, 512KB) 25214218 28056288 

 

TABLE 4 (LAME, ENHANCE, CJPEG, OSDEMO) CYCLES. 

Resources Ours (cycles) Xue[19] 

+[18](cycles) 

(4P, 2MB) 2859838472 3029381901 

(8P, 2MB) 1971283798 2098372361 

(10P, 4MB) 1636612322 1803677612 

 

TABLE  5 RESULTS FOR SYNTHETIC BENCHMARK SETS 
Benchmark Ours (% improvement) 

Set1 9.2% 

Set 2 10.8% 

Set 3 7.2% 

Set 4 10.3% 

 

8. CONCLUSIONS 
This article presented effective optimization methods to 

enhance the performance of a multiprocessor system by 

providing effective resource allocation and scheduling 

techniques.  The resource allocator carefully examines the 

structure of each application to fairly allocate the system 

resources.  The task scheduler integrated scheduling and on-

chip memory partitioning to enhance the performance of the 

system.  Results on real-life and synthetic benchmarks 

showed the importance of our proposed techniques. 
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