
International Journal of Computer Applications (0975 - 8887)
Volume 181 - No.17, September 2018

Air2Day: An Air Quality Monitoring Adviser in Morocco

Mohamed Akram Zaytar
PhD Research Student

Department of Computer Engineering
Faculty of Science and Technology

Route Ziaten, Tangier, Morocco

Mohamed Amrani
Research Student

Department of Computer Engineering
Faculty of Science and Technology

Route Ziaten, Tangier, Morocco

Chaker El Amrani
Associate Professor

Department of Computer Engineering
Faculty of Science and Technology
Route Ziaten, PO. Box 416, 90000

Tangier, Morocco

ABSTRACT
This article aims to present an end-to-end software solution
capable of providing up to date weather and pollution values
and health recommendations based on User profiles and personal
health data, while making use of environmental satellite data
processed in the back-end. this system demonstrates the possible
range of applications of satellite-backed environmental systems
that can assist and potentially replace the current expensive
sensor-based systems, especially in developing countries in Africa.

General Terms
Android development, Remote Sensing, Software Engineering

Keywords
Android, Air Quality, Pollution, Weather, RESTful API

1. INTRODUCTION
In the current day and age, air pollution represents a major
challenge in Africa, It’s causing more premature deaths than unsafe
water or childhood malnutrition causes [1], with the increasing
exploitation of Africa’s rich natural and mineral resources,
Population growth and urbanization, traffic emissions, transported
dust, power plants and open burning could cause a health and
climate crisis reminiscent of those seen in China and India [2], the
increasingly alarming factors surrounding outdoor air pollution and
climate change was the primary reason for us to build this system.

To Cover a wide geographic area, A sensor-based network is the
general solution, as seen in other parts of the world (China, Europe,
the USA [3]). usually, the network is comprised of multiple IoT
devices and sensors connected to the internet to deliver rich local
data to central servers to be cleaned, preprocessed, and visualized
on web or mobile interfaces as in the form of numerical inferred
measurements that describe the weather and pollution based on the
users’ GPS location, this IoT approach is expensive and very hard
to establish given the limited resources and difficult procedures one
needs to go through to install the sensors to cover Morocco, because
of that, a relatively novel concept is proposed that’s based on the
idea of using satellite measurements and imagery to tackle the
problem of pollution monitoring in Africa and especially Morocco.
Satellite-based data is of high quality [4] and offer a cheap

alternative to the traditional sensor-based environmental data that
can be of high use not just in air quality monitoring but to in
numerous other environmental problems like agriculture, weather,
industrialization and urbanization monitoring.

The proposed system architecture is comprised of multiple
connected sub-systems, starting out from the original data source
and ending with the mobile client interface. firstly, the data
is receieved from near-real time broadcasting meteorological
satellites such as the geostationary satellite (MSG) and the
polar Metop satellites (Metop-A/B) [5], into a local station
named MDEO (The Mediterranean Dialogue Earth Observatory)
in Tangier, Morocco, after getting the native data, snapshots of
backups were stored in a FS server, the next step is to clean,
preprocess and store structured data into a relational GeoDB server,
connected directly to A RESTful API which is considered the
middleman between the Database and the Clients or user facing
interfaces.

Finally, a native android application was built, and it’s responsible
for getting the structured data using the API to visualizing it,
and provide recommendations based on the provided personal user
information. the back-end systems when combined with the user
facing mobile interface, result in rich weather and pollution map
visualizations and useful personalized health recommendations for
online users.

2. MDEO : BIG ENVIRONMENTAL DATA
MDEO, or the Mediterranean Dialogue Earth observatory,
is a NATO-sponsored project that aims to tackle serious
environmental problems ranging from disaster warning, pollution
monitoring, numerical short and long term forecasting of weather
and pollution variables, with a wide spectrum of potential
applications such as Health, Energy, Water, Weather, Agriculture,
Industrial/Urbanization monitoring, Early warning of natural
disasters like Floods, Earthquakes, and so on. To achieve this,
MDEO’s based hardware and software stack is capable of
Acquiring, processing, storing, and archiving the near-real time
data it receives in fixed intervals of time. MDEO is composed of
a ground station, a DVB-S2 receiver to get and decipher the raw
data into bulks of archived files, it also contains a cluster of servers
responsible for the acquisition and processing of the files, a GPU
server connected to the cluster and responsible for GPU backed
HPC/AI/ML related processes [6]. In the software department, the

1



International Journal of Computer Applications (0975 - 8887)
Volume 181 - No.17, September 2018

main software piece is called TeraCast, it is responsible for different
tasks such as receiving the broadcasted data, preprocess it using
different internal modules, and make it available for download in
various formats such as HDF5 and BUFR, using the FTP protocol.

Fig. 1: MSG : Interpolation of MDEO’s O3 measurements - Morocco

Because MDEO receives the land surface temperature data from a
geostationary satellite, it scans Morocco every 15 minutes [7], as
for pollutants values, MDEO gets the data from two polar satellites
named Metop-A and Metop-B, MDEO receives scans of the whole
earth surface in intervals of 24 hours, as a result, MDEO processes
scattered measurements of air pollution of Morocco each 12 hours.

Fig. 2: Metop: Interpolation of MDEO’s NO2 measurements - Morocco

3. API ARCHITECTURE
The data stored by MDEO’s systems reside in an FS server in
multiple formats, some of them are native/binary (BUFR, GRIB
..) [8] and some are not (HDF5, NetCDF) but not quite structured
or ready for fast access by an API, Therefore, before building the
API, an extra layer was built to check the FTP server periodically
for recent archived files and retrieve any new files to another
server responsible for decoding the data measurements, filtering the
values and turning them into tabular-like lists, and finally inserting
the resulting bulks of rows in the GeoDB. Both data products for
the temperature and pollution were provided by MDEO using the
HDF5 format. Only recent data from Morocco was filtered to not
overload the DB with millions of rows per hour.

Before modelling and building the RESTful API, A relational
DB was chosen to extend regular SQL functionalities with
Geographical utilities that are essential for the clients, to assure
this, the resulting DB is an instance of the PostGreSQL spacial
database extender named PostGIS [9], its sole purpose is to add
support for geographic objects allowing location queries to be run
in raw SQL. For the first version of the Instance, two tables were
created for the temperature and the pollutants values in Morocco,
and by adding indexes on the location and Date related columns,
performance and speed were assured across the millions of rows
sent regularly.

The geoAPI was built and deployed on an external server directly
connected to MDEO’s GeoDB, it was built on top of Django’s
REST Framework in combination of GeoDjango, the resulting two
tables represent the two essential sets of variables, temperature
variables, and pollutants variables.

Every table row represent a single measurement of a specific
geographical point at an exact date and time.

The Temperature End-Point Variables :

GET /api/temperature/

Table 1. : Temperature Table Variables

Variable Unit of Measurement Description
value Celsius The Temperature measurement

value
value error Percentage (%) the maximum value error

percentage
quality flag N Represents the condition

at which the temperature
measurement was taken, it has
a well defined range of distinct
possible values [10]

Point R2 The exact geographical
point of measurement, it
is represented by a tuple
of the 2-D coordinates
(latitude,longitude)

Date Y-m-d H:M The full timestamp of the
measurement, down to minutes
in precision

2



International Journal of Computer Applications (0975 - 8887)
Volume 181 - No.17, September 2018

For Pollution, MDEO receives measurements on multiple
pollutants from the same satellite sensor, resulting in measurements
for the same geographic point on the same datetime stamp for each
pollutant of interest.

The Pollutants End-Point Variables :

GET /api/pollutants/

Table 2. : Pollutants Table Variables

Variable Unit of Measurement Description
Point R2 The exact geographic point of

measurement, represented by a
tuple of the 2-D coordinates
(latitude,longitude)

HCHO molecules/cm2 Formaldehyde’s vertical
density measurement of the
specified geographical point

NO2 molecules/cm2 Nitrogen dioxide’s vertical
density measurement of the
specified geographical point

NO2Tropo molecules/cm2 Nitrogen dioxide’s vertical
density on the tropospheric
level for the specified
geographical point

O3 Dobson Units Ozone vertical density
measurement of the
geographical point

SO2 Dobson Units Sulfur dioxide’s vertical
density of the geographical
point at the time of the
measurement

Date Y-m-d H:M The full timestamp of the
measurement, down to minutes
in precision

To make use of the following End-points, several necessary filters
were built to ease the task of data retrieving and processing,
the following filters can be used in combination (using the &
operator) to retrieve the most useful results needed by the client,
the most essential filters (used for both temperature and pollutants
end-points) are :

—Rectangle Area : Retrieving data inside a predefined rectangle
of interest, example :

GET /api/temperature/?
lat1=[LAT_1]&lat2=[LAT_2]
&
lon1=[LON_1]&lon2=[LON_2]

—Date Range : Retrieve data in a predefined data range of interest,
example :

GET /api/temperature/?
date_start=[%Y-%m-%d %H:%M]
&
date_end=[%Y-%m-%d %H:%M]

—Circle : Return all points within a certain radius from a central
point, example :

Fig. 3: Return Points surrounding a center point

GET /api/temperature/?
center_point=[LONGITUDE,LATITUDE]
&
radius=[RADIUS](in Miles)

—Closest : Return the closest point to a predefined center point
with a predefined date range, setting the closest parameter to 1,
example :

Fig. 4: Return the closest point to the center

GET /api/temperature/?
date_start=[%Y-%m-%d %H:%M]
&
date_end=[%Y-%m-%d %H:%M]
&
center_point=[LONGITUDE,LATITUDE]
&
closest=1

In Using the following end-points and filters, web and
mobile clients can get Temperature and Pollution data for the
purposes of graphing visualizations and inferring general health
Recommendations for end-users.

3



International Journal of Computer Applications (0975 - 8887)
Volume 181 - No.17, September 2018

4. ANDROID CLIENT APPLICATION
A mobile application was built to provide the end-user with the
following functionalities :

—App Authentication using a username/password combo to
support profile data persistence.

—The Ability to edit the personal profile at any time to get new
personalized recommendations.

—The ability to consult weather conditions and Current
personalized recommendations by tapping on the home screen.

—The ability to visualize Temperature and Pollution maps
separately on different screens.

—The ability to enable/disable certain settings or consult support,
a setting screen is provided for these purposes.

The following figure showcases all of the activities that a typical
user can do on the app.

Fig. 5: Use Case Diagram

The android application was built using Java on Android Studio,
supported by A local SQLite database to keep the personal
and recommendation data on the phone, it was Prototyped
using LucidChart, the communication between the client and the
RESTful API was based on token-based HTTP authentication and
responses are received in Plain JSON.

The following class diagram was exported to demonstrate the
SQLite Tables used to model the user stories.

Fig. 6: Class Diagram

The client exploited another layer of data from OpenWeatherMap
to further support the satellite numerical data on the occurrence
of outages relating to MDEO, and to add other useful weather
variables that aren’t available on MDEO such as wind speed and
humidity. for graphical Plotting, the application leveraged Google’s
geolocation APIs [11].

Recommendations were mostly inferred from the density of ozone
measured in Dobson Units (in addition to the users’ personal
information and the general weather conditions) on a given time,
and because the client receives data in near real time, this allows
the user to get near real time health recommendations based on the
following table :

Table 3. : Ozone Recommendations

Ozone Quantity
(in DU)

Who needs to
be concerned ?

What Should The Users Do ?

290-310 No One
it’s a great day to be active

outside

310-340
Some People who might

be unusually sensitive
to ozone

Consider reducing
prolonged or heavy

outdoor exertion. Watch for
symptoms such as coughing

or shortness of breath.

340-360

Sensitive Groups include
people with lung disease

such as asthma, older
adults, children and

teenagers, and people
who are active outdoors

Reduce Prolonged or heavy
outdoor exertion. Take more

breaks, do less intensive
activities, and watch for

symptoms such as coughing
or shortness of breath.

Schedule outdoor
activities in the morning

360-400 Everyone

Avoid Prolonged or
heavy outdoor exertion.

Schedule outdoor activities
in the morning. Consider
moving activities indoors.

400-500 Everyone

Avoid All outdoors Physical
Activities. Do all activities
Indoors or reschedule to
a time when air quality

is better.

Other variables that contribute to the recommender system include
Temperature, Wind Speed, Humidity, the Age of the user, and the
presence of some chronic diseases.

The final health recommendations give general advices on Outdoor
Activity (Going out), Doing Sports, Cycling, Picnic, and are
targeted for people of old age, suffering from allergies, Heart
disease, Diabetes, Tuberculosis.

4



International Journal of Computer Applications (0975 - 8887)
Volume 181 - No.17, September 2018

5. RESULTS
5.1 User experience

Fig. 7: Welcome Screen Fig. 8: Personal Info Screen

After signing up and filling the personal health information, the
application retrieved and updated the API data each time the
user refreshed the screen, resulting in a near real time health
recommendations on outdoor activities, a ”contact us” screen is
also available to provide support for people who have questions
about the recommendations or how the app works in general.

Fig. 9: Settings Screen Fig. 10: Pollution Map Screen

The home Screen for online users displays the latest values
of pollution and weather based on both the MDEO and the
OpenWeatherMap RESTful APIs, and the same variation happens
with the recommendations on outdoors activities based on the
most up-to-date personal information, the current weather and air
pollution conditions.

Fig. 11: Dynamic Weather, Pollution, and Recommendations

5.2 Performance
Because the API filters were optimized for fast retrieval, the
application was quick enough to serve all of requests under a
second for most of the time. But for complex recommendations, it
was necessary to separate the multiple needed processes to retrieve
and recommend into smaller ones in different parts of the UX to
make the overall user experience smoother for online users. Some
of these techniques are showcased next :

—When a user first opens up the app, it asks for GPS data and load
weather and pollution data as a background process as the user
fills in his personal information.

—When a user decides on refreshing the app to get new data,
the app explicitly asks the API for a start date greater than
the last time the app updated the data, this way of incremental
updating provides a better user experience when interacting with
the recommender system.

—The recommender system process doesn’t take into account
historical/past data, it exports recommendations based on
single-values (for each variable) of near real time weather and
pollution data.

6. CONCLUSION
MDEOs data pipeline provides dozens of weather, climate, and
pollution based data products, the wealth of environmental data
offers numerous research opportunities when it comes to pollution
and weather monitoring [12], numerical forecasting [13], disasters
warning and so on. When coupled with fast APIs and UI clients
such as web and mobile user interfaces, MDEOs data could have
the potential to positively impact health and change ours lives for
the better.

Remote sensing has a lot to offer to Africa and especially to
Morocco. In the Future, more significant challenges should be
tackled concerning Big environmental data processing, Artificial
Intelligence, Systems Architectures and scalability in the Cloud, to
provide more useful Applications and Research material.

Any partnership and collaboration with third-parties and end-users
such as other universities/labs, the Moroccan Ministry of Health,
The Ministry of Agriculture and Fisheries, The Civil Protection
Agency, The Agency for coordination of Water and Forestry among

5



International Journal of Computer Applications (0975 - 8887)
Volume 181 - No.17, September 2018

numerous other organizations and associations is welcomed, and
the support for Environmental and Climate Data Science Research
should be reinforced for a better environment that is safe for
Everyone.

7. ACKNOWLEDGMENT
The authors are thankful to the Ministry of Higher Education and
Scientific Research, and the National Centre for Scientific and
Technical Research (CNRST) for funding this study, under project
codename : PPR/2015/7.

8. REFERENCES
[1] Nigel Bruce, Rogelio Perez-Padilla, and Rachel Albalak.

Indoor air pollution in developing countries: a major
environmental and public health challenge. Bulletin of the
World Health organization, 78:1078–1092, 2000.

[2] Chak K Chan and Xiaohong Yao. Air pollution in mega cities
in china. Atmospheric environment, 42(1):1–42, 2008.

[3] Ranjit Kaur and Pankaj Deep Kaur. A review on various
iot analytics techniques for air pollution detection in fog
computing. International Journal of Computer Applications,
169(2):1–4, Jul 2017.

[4] Rosemary Munro, Michael Eisinger, Craig Anderson, Jörg
Callies, Enrico Corpaccioli, Rüdiger Lang, Alain Lefebvre,
Yakov Livschitz, and A Perez Albinana. Gome-2 on metop.
1216:48, 2006.

[5] VK Gaertner and M Koenig. Eumetcast: The meteorological
data dissemination service. 2006.

[6] C. El Amrani, G. L. Rochon, T. El-Ghazawi, G. Altay, and
T. Rachidi. System architecture of the mediterranean dialogue
earth observatory. pages 600–603, July 2013.

[7] Johannes Schmetz, Paolo Pili, Stephen Tjemkes, Dieter Just,
Jochen Kerkmann, Sergio Rota, and Alain Ratier. An
introduction to meteosat second generation (msg). Bulletin of
the American Meteorological Society, 83(7):977–992, 2002.

[8] Jean Claude Bergès. Support of wmo binary format (bufr and
grib). pages 11–13, 2002.

[9] Jhummarwala Abdul, M.b. Potdar, and Prashant Chauhan.
Article: Parallel and distributed gis for processing geo-data:
An overview. International Journal of Computer
Applications, 106(16):9–16, November 2014. Full text
available.

[10] JA Sobrino and M Romaguera. Land surface temperature
retrieval from msg1-seviri data. Remote Sensing of
Environment, 92(2):247–254, 2004.

[11] Andrei Popescu. Geolocation api specification. World
Wide Web Consortium, Candidate Recommendation
CR-geolocation-API-20100907, 2010.

[12] Rob Kitchin. The real-time city? big data and smart urbanism.
GeoJournal, 79(1):1–14, 2014.

[13] Madhavi Anushka Elangasinghe, Naresh Singhal, Kim N
Dirks, and Jennifer A Salmond. Development of an
ann–based air pollution forecasting system with explicit
knowledge through sensitivity analysis. Atmospheric
pollution research, 5(4):696–708, 2014.

6


	INTRODUCTION
	MDEO : BIG ENVIRONMENTAL DATA
	API ARCHITECTURE
	ANDROID CLIENT APPLICATION
	RESULTS
	User experience
	Performance

	CONCLUSION
	ACKNOWLEDGMENT
	References

