
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.2, July 2018

6

Design and Comparison of High Speed Radix-8 and

Radix-16 Booth’s Multipliers

Ila Chaudhary
Assistant Professor

Department of ECE, FET,
MRIIRS, Faridabad

Deepika Kularia
Student

 Department of ECE, FET,
MRIIRS, Faridabad

Romika Choudhary
Assistant Professor

 Department of ECE, FET,
MRIIRS, Faridabad

Gagandeep Kaur
Assistant Professor

 Department of ECE, FET, MRIIRS, Faridabad

Ashish Vats
Assistant Professor

 Department of ECE, FET, MRIIRS, Faridabad

ABSTRACT
Multiplier is one of the hardware block which generally

occupies a significant chip area and is required to be

minimized which will be fruitful to number of applications in

which multiplier blocks constitute an important unit such as

digital signal processing (DSP) systems or computational

techniques. Battery operated systems require low power

devices to be implemented which can be minimized if the

hardware required for the device is reduced logically. This

paper focuses the DSP applications in which multiplier is

significantly used and proposes a technique that helps in

reducing the hardware as well as delay leading to the rise in

performance of the system thus helping in increasing the

operation frequency by a significant value. A 16-bit multiplier

has been designed using a radix-8 and radix-16 Booth’s

multiplication that reduces number of partial products.

General Terms
Algorithm, Multiplier, DSP Application, Xilinx

Keywords
Radix-8 Booth’s multiplier, Radix-16 Booth’s multiplier,

Partial products

1. INTRODUCTION
In digital design combinational logic implemented for

computing the multiplication of two binary inputs leads to a

large number of gate count which occupies a large chip area

on the digital system. Moreover, it leads to large

combinational delays in various digital systems such as

Multiply and Accumulate(MAC) unit, computation Intensive

Arithmetic Functions(CIAF) and is also being used in many

Digital Signal Processing (DSP) applications such as Discrete

Fast Fourier Transforms, Fast Fourier Transform(FFT), IIR

and FIR filters, windowing techniques etc. Also, it is used in

high end processors in order to reduce the computation

complexity by using it in arithmetic and logic unit. Several

multipliers such as: Array, Wallace tree, Vedic multiplier are

available but Booth’s multiplier has its own significance and

advantages to be used in DSP applications[1].

In Array multiplier makes use of adding and shifting

algorithm. In this algorithm a partial product is generated by

the multiplication of multiplicand with each bit of the

multiplier. After every multiplication partial product thus

generated is shifted according to its bit order and then all the

partial products are added to obtain the final product. Array

multiplier is known for its simple, scalable and repetitive

structure but occupies a large area as well as has significant

combinational delay which many times contribute to the

critical path delay.

Performance of the system in terms of speed can be enhanced

by using Wallace tree multiplier instead of Array multiplier in

which adders to add partial products are arranged in a tree like

structure which reduces the combinational delay as well as the

number of adder cells needed leading to the reduction in

hardware area required. The propagation delay in the

multiplier design comprising Wallace tree structure is equal to

O (log3/2 (N)). Comparing with carry-save structure Wallace

tree is quicker for higher word lengths, however, at the same

time it shows unpredictable behavior, which leads to complex

physical design implementation.

Madrid et. al. have compared Radix, Radix, 4, Radix 8, Radix

16 and Radix 32 multipliers and have proved Radix-4 to be

the best multiplier in terms of the performance. However, it is

not evident that whether the performance improves in terms of

delay or area[2].

Minu Thomas published the simulation results of Radix-8

Booth Encoder Multiplier. In this paper, combinations of

carry save adders and carry look ahead adders have been used

for the addition of partial products in order to improve the

performance of the multiplier for signed and unsigned

numbers. Same multiplier circuitry has been used in the

design for the multiplication of signed numbers as that for the

unsigned numbers which helped in reducing the hardware

requirement[3].

Swapna et al. have designed the methodology of 8-bit Radix-2

booth’s multiplier in reversible mode. The multiplier designed

can perform the multiplication of both signed and unsigned

numbers which they have implemented without using any

feedback as it is strictly prohibited in designs implemented by

reversible logics[4].

2. BOOTH’s MULTIPLIER
Booth’s multiplication is meant for multiplying two’s

complement representation of signed binary numbers[5]. The

algorithm is named to the credit of Andrew Donald Booth

who devised it in 1950. Desk calculators were used for the

computation and were found to be faster at shifting rather than

adding and their speed was increased by Booth’s algorithm. It

has become a matter of interest for the applications making

use of high end processors.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.2, July 2018

7

3. BOOTH’s ALRORITHM
In order to multiply binary numbers,Booth's algorithm

converts the multiplier Y in two’s complement form and

implicitly appends a bit y-1 = 0 below the least significant bit.

It examines the pair of bits yi and yi-1by executing the

iterations starting from i = 0 to i = N-1. Following execution

takes place on comparison:

1. The product in accumulator P is left unchanged if

the compared bits are equal.

2. The multiplicand times 2i is added to P when yi = 0

and yi-1 = 1

3. The multiplicand times 2i is subtracted from P when

yi = 1 and yi-1 = 0.

Finally a signed product P is obtained [6][7][8].

Typically, similar to the multiplier both the multiplicand and

product are also in two's complement representation.

However, the algorithm can be generalized to any number

system which can supports addition and subtraction.

The ordering of the iterations is from LSB to MSB starting

from i = 0. Accumulator P is shifted to one right for

multiplication by 2 and LSB is shifted out in the case.

Subsequent computation of addition and subtraction is then

executed on the resulting N bits of P.

The calculation is regularly depicted as changing over series

of 1s in the multiplier to a high-order +1 and a low-order – 1

at the closures of the string. At the point when a string goes

through the MSB, there is no high-order +1, and the net

impact is elucidation as a negative of the appropriate

value[9][10].

M * R = M * {(Sn-1 * 2n-1) + (Sn-2 * 2n-2) ... (S2 * 22) + (S1 *

21) + (S0 * 20)}………………………..(1)

Where,

pn-1= Sn-1 * 2n-1, pn-2=Sn-2 * 2n-2.......p1 = S1 * 21, p0 = S0 * 20

So,

M * R = ppn-1 * 2n-1 + ppn-2 * 2n-2+ pp1 * 21 + pp0 *

20………………………………….(2)

Where ppnn-1 = (M * pn-1), ppn-2 = (M * pn-2)pp1 = (M * p1

), pp0 = (M * p0) are called partial products.

Add these ‘n’ partial products as shown in the equation below

to get final product.

M * R = ppn-1 * 2n-1 + ppn-2 * 2n-2....... + pp1 * 21 + pp0 *

20......... (3)

4. RADIX-8 BOOTH’S MULTIPLIER
Performance of the radix multiplier can be enhanced by

introducing parallelism which results in reducing the number

of calculation stages.

Radix-8 means: 8 = 23 = (1000)2

Radix-8 uses 4-bit

 So, a group of 4-bit binary number is taken.

For a group of 4-bits the Signed Multiplier Digit is specified

in Table. 1 which defines Radix-8 Booth’s recoding technique

for all possible combinations in the binary input where M is

the Multiplier.

Table 1: Radix-8 Booth’s recoding technique

Multiplier bits Signed Multiplier Digit

0000 0

0001 +1* M

0010 +1* M

0011 +2* M

0100 +2* M

0101 +3* M

0110 +3* M

0111 +4* M

1000 -4* M

1001 -3* M

1010 -3* M

1011 -2* M

1100 -2* M

1101 -1* M

1110 -1* M

1111 0

There will be four partial products. Radix-8 Booth’s

Multiplier Sign Extension Trick defines the partial products as

given below:

 [Partial Product 1]

 [Partial Product 2]0 0 0

 [Partial Product 3] 0 0 0 0 0 0

 [Partial Product 4] 0 0 0 0 0 0 0 0 0

5. RADIX-16 BOOTH’S MULTIPLIER
The technique of Radix-16 Booth’s multiplication is

explained further:

Radix-16 means: 16 = 24 = (10000)2

Radix-16 uses 5-bit

So, a group of 5-bitsis taken in the input binary number.

Signed multiplier digit for the group is defined in Table 2 as

per the Booth’s recoding technique for every binary

combination where M is the multiplier.

Table 2:Radix-16 Booth’s recoding strategy

Multiplier bits Signed Multiplier Digit

https://en.wikipedia.org/wiki/Least_significant_bit

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.2, July 2018

8

00000 0

00001 +1* M

00010 +1* M

00011 +2* M

00100 +2* M

00101 +3* M

00110 +3* M

00111 +4* M

01000 +4* M

01001 +5* M

01010 +5* M

01011 +6* M

01100 +6* M

01101 +7* M

01110 +7* M

01111 +8* M

10000 -8* M

10001 -7* M

10010 -7* M

10011 -6* M

10100 -6* M

10101 -5* M

10110 -5* M

10111 -4* M

11000 -4* M

11001 -3* M

11010 -3* M

11011 -2* M

11100 -2* M

11101 -1* M

11110 -1* M

11111 0

There will be five partial products as per the Booth’s

multiplier sign extension trick as explained further:

Radix-16 Booth’s Multiplier Sign Extension Tricks.

 [Partial Product 1]

 [Partial Product 2]0000

 [Partial Product 3]00000000

 [Partial Product 4] 000000000000

 [Partial Product 5] 0000000000000000

6. RESULTS AND STIMULATION
Fig. 1 and Fig. 2 show the waveform results for Radix-16 and

Radix-8 multiplier for 16-bit numbers respictively. In Table 3

device utilization summary has been shown.

Fig.1: Output stimulation of Radix-16 multiplier

Fig. 2: Output stimulation of Radix-8 multiplier

The VHDL code of 16×16 bit Radix-16 multiplier was

synthesized using Xilinx ISE 14.4 on virtex4 family device

XC4VLX25 and the results are shown in Fig. 4. Comparison

of area and delay is shown in table1. In which Radix-8 and

Radix-16 multiplier 16×16 bit is stimulated on xc3s400-

5tql44 of SPARTAN 3 and rest on xc4vlx25-12ff676 of vitex

4.

Table 3: Device utilization summary

Logic Utilization Used Available Utilization

Number of 4 Input

LUTs

1,188 21,504 5%

Number of

occupied slices

620 10,752 5%

 Number of slices

containing only

related logic

620 620 100%

 Number of slices

containing

unrelated logic

0 620 0%

Total Number of 4

input LUTs

1,190 21,504 5%

 Number as a

logic

1,188

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.2, July 2018

9

 Number used as

a route-tru

2

Number of bonded

I/Os

81 440 18%

Average fan-out of

Non-clock Nets

3.90

Synthesis report result for the timing details is shown in Fig. 3

Fig. 3: Timing Details

Fig.4 shows the RTL schematic of the design synthesized for

Radix 8 multiplier.

Fig.4: RTL schematic of Radix-8 multiplier

Radix-8 and Radix-16 multipliers designs have been

compared in terms of their area and delay in Table 4.

Table 4: Comparison Table of designed architectures

Design Delay Area

 No. of 4

input LUTs

No. of occupied

slices

Radix-

8(16x16)

25.179ns 773/

21504

442/

10752

Radix-

16(16x16)

25.004ns 1188/

21504

620/

10752

Fig. 5a and 5b show the comparison of Delay and the area

occupied by both Radix 8- Radix -16 multipliers.

Fig 5a: Delay in both Radix-8 and Radix-16 Multipliers

Fig. 5b: Area Utilization in Radix-8 and Radix-16

Multipliers

7. CONCLUSION
In this paper, radix-8 and radix-16 booth’s multiplication

algorithms were carried out for the DSP applications. From

table 3 it can be concluded that radix-16 takes less delay but

more area than that of radix-8 booth’s multiplication.

However, the distinction is not always appreciable in phrases

of delay, because of the rise in computational complexity of

radix -16 technique owing to large number of partial products.

If we apply radix-8 technique for designing high end

processors such as 32-bit or 64-bit processor, then it will cost

in terms of large on chip area due to larger number of groups

and multiplicand. Therefore, the selection of booth’s

algorithm depends upon the specification requirements of the

particular application.

It is found that the results vary to a large extent by making

fewer changes in the methodology, technique or hardware

logics. There is a continuous research on different Radix

multipliers[11]. Also, different adders being used can also

impact the results to a large extent depending on the scenario

and the application. So, there is a scope of analysis to be

carried out for the kind of architecture being used for the

multiplication depending on the number of bits in the numbers

being multiplied or whether they are signed or unsigned

numbers.

24.9

25

25.1

25.2

Radix-8(16x16) Radix-16(16x16)

Delay (ns)

0

500

1000

1500

No. of 4 input LUTs No. of occupied
slices

Radix-8(16x16)
Radix-16(16x16)

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.2, July 2018

10

8. REFERENCES
[1] A B. Pawar , “Radix-2 Vs Radix-4 High Speed

Multiplier”, International Journal ofAdvanced Research

in Computer Science and Software Engineering, Volume

5, Issue 3, pp. 329-333, March 2015.

[2] Philip E. Madrid and Brian Millar, “Modified Booth

Algorithm for High Radix Multiplication”,IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems Volume.1, Issue 2, pp. 164 – 167, August

2002.

[3] Minu Thomas, “Design and Simulation of Radix-8 Booth

Encoder Multiplier for Signed and Unsigned Numbers”,

International Journal for Innovative Research in Science

& Technology| Vol. 1, Issue 1, pp 1-10June 2014.

[4] K.Swapna, A.krishna Mohan, “Area Optimized Radix-2

8-Bit Reversible Booth Multiplier”, Int. Journal of

Engineering Research and Application, Vol. 7, Issue 10,

pp.65-70, (Part -1) October 2017.

[5] Kelly Liew Suet Swee, Lo Hai Hiung, “Performance

comparison review of Radix-based multiplier designs”,

4th International Conference on Intelligent and Advanced

Systems, Volume 2, pp 854- 859 12-14th June 2012.

[6] Chandrashekhar T. Kukade,“A Novel Parallel Multiplier

for 2’s Complement Numbers Using Booth’s Recoding

Algorithm”, IEEE,International Conference on

Electronic Systems, Signal Processing and Computing

Technologies, Volume 2, Issue 8, pp.93 – 98, 9-11 Jan.

2014.

[7] CHEN Ping-hua, ZHAO Juan. “High-speed Parallel

32×32-b Multiplier Using a Radix-16 Booth Encoder”,

IEEE, Third International Symposium on Intelligent

Information Technology Application Workshops,

Volume 3, Issue 4, pp. 406-409, Nov. 2009.

[8] Laya Surendran E K, Rony Antony P, “Implementation

of fast multiplier using modified Radix-4 Booth

Algorithim with redundant binary adder for low energy

applications”, First International Conference on

Computational Systems and Communications, Volume 1,

Issue 2, pp.266-271, 17-18 Dec 2014.

[9] Na Tang, “A High-Performance 32-bit Parallel Multiplier

Using Modified Booth's Algorithm and Sign-Deduction

Algorithm”, IEEE,ASIC,Volume.2 ,pp. 1281 – 1284,Oct

2003.

[10] Razaidi Hussin, Ali Yeon Md. Shakaff, “An Efficient

Modified Booth Multiplier Architecture”, IEEE,

International Conference on Electronic Design, Volume

1, Issue 6, pp.271-276, December 2008.

[11] Kajal B. Bobade, Prof. V. G. Roy, Prof. S. Kuntawar, “A

Review On Fast Radix-10 Multiplication Using Binary

Input And Convert Into Decimal Codes”, International

Journal of Science, Engineering and Technology

Research, Volume 06, Issue 05, pp 795-797, May 2017.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=92
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=92
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=92
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6127
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6127
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8985
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8985

