
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 20, October 2018

6

Virtual and Cache Memory: Implications for Enhanced

Performance of the Computer System

Ugah John Otozi
Department of Computer

Science,
Ebonyi State University,

Abakaliki

Chigozie-Okwum
Chioma

Department of Computer
Science Technology,

Federal College of Land
Resources Technology,

Owerri

Ezeanyeji Peter C.
Department of Computer

Science
Chukwuemeka

Odumegwu Ojukwu
University Uli.

Mbaocha Nnamdi
Raymond

University of Nigeria
Teaching Hospital,

Enugu

ABSTRACT
This paper looks at the performance enhancement which

virtual and cache memory brings about in our computer

systems. It focuses particularly on their implementation

mechanisms and also tries to identify the numerous benefits

these memories offers that leads to an overall better

performance of computer system. The motivation for this

discussion is that many usually wonder if virtual and cache

memory is actually needed in the computer system. Some

erroneously think that virtual and cache memories perform the

same functions as the random access memory (RAM) or even

the secondary storage devices. The basic idea with virtual

memory is to create an illusion of memory that is as large as a

disk and as fast as memory. A computer with virtual memory

artfully juggles the conflicting demands of multiple programs

within a fixed amount of physical memory. Cache memory

on the other hand is a small but very fast chunk of memory

that is usually situated very close and directly communicates

with the CPU. Cache keeps frequently used data and code

very close to the CPU so that repeated use of the same data

and areas of memory does not result in repeated slow

transactions to main memory each time they are needed. The

operations of virtual and cache memory enhances

multiprogramming. It also helps to eliminate fragmentation,

ensure process flexibility, ensures effective memory

management and memory protection. Understanding the

mechanism of virtual and cache memory will help operating

system students and professionals to appreciate how multiple

processes are treated without conflicts.

Keywords
Virtual memory, cache memory, enhancement, replacement

algorithm, paging, segmentation

1. INTRODUCTION
In a multitasking operating system, processes share the CPU

time and the main memory space. However, sharing the CPU

and the main memory sometimes posses some special

challenges. As demand on the CPU increases, execution of

processes is forced to slow down in some reasonably way. If

too many processes need too much memory space, then some

of the processes will simply not be able to run due to the fact

that they will run out of memory space. When a process is out

of space, it is said to be out of luck. This condition could

cause execution of such process to be aborted before

completion. Furthermore, memory is also vulnerable to

corruption. Sometimes, the operating system may

unintentionally allocate a memory space which is already

being used by a given process to another process. When this

happens, the process last allocated to that same memory space

may fail. In order to help manage memory space more

effectively and efficiently with fewer errors, modern computer

systems provide an abstraction of main memory known as

virtual memory (VM).

The central processing unit (CPU) is the brain of the

computer. All of the instructions have to run through the CPU

for the various parts of a computer to work together. CPU

chips have been getting smaller and faster as chip technology

has advanced. One of the slower aspects of computer

processing is the interaction between the CPU chip and the

main memory- random-access memory (RAM). Installing

more memory is not always a solution to this challenge of

slow interaction because the major issue is always the chunk

of time it takes the CPU to access the memory. To this end

chip designers came up with a small form of memory located

directly on the chip itself called the cache memory. It is much

smaller, but can be accessed much faster than the main

memory. The CPU cache stores the most frequently used

pieces of information in the cache memory so that this

information can be retrieved more quickly. This information

is a duplicate of information stored elsewhere, but it is more

readily available. By these arrangements, the overall

performance of most modern computer systems has been

greatly enhanced.

2. CONCEPTUAL OVERVIEW OF

VIRTUAL MEMORY
According to [1] Virtual memory is a valuable concept in

computer architecture that allows you to run large,

sophisticated programs on a computer even if it has a

relatively small amount of RAM. RAM has billions of

memory locations but sometimes even that is not enough

room for all the data the CPU needs. When RAM gets too full,

the computer's operating system can help out by temporarily

marking sections of secondary storage for the CPU to use as a

kind of extra memory. These sections are called virtual

memory. The operating system creates a 'swap file' in this area

which is used to hold data the CPU does not need

immediately. Both Windows and Linux support virtual

memory.

A computer with virtual memory artfully juggles the

conflicting demands of multiple programs within a fixed

amount of physical memory. A computer that's low on

memory can run the same programs as one with abundant

RAM, although more slowly. The term "virtual memory"

refers to space allocated on a hard drive where data can be

stored for rapid access. Virtual memory is slower than solid-

http://i.viglink.com/?key=6e0325d6b6b47cbf00af2152d33feebe&insertId=7e14bcf32d087ccad6faf1c6c75b2a64&type=CD&exp=-100%3ACILITE%3A16&libId=jftrpeyw01021li2000DAedzwvp94&loc=https%3A%2F%2Fwww.techwalla.com%2Farticles%2Fwhy-is-virtual-memory-important&v=1&out=https%3A%2F%2Fwww.ebay.com%2Fsch%2Fi.html%3F_nkw%3Dhard%2Bdrive&ref=https%3A%2F%2Fwww.google.com.ng%2F&title=Why%20Is%20Virtual%20Memory%20Important%3F%20%7C%20Techwalla.com&txt=%3Cspan%3Ehard%20%3C%2Fspan%3E%3Cspan%3Edrive%3C%2Fspan%3E

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 20, October 2018

7

state memory chips so it is typically used as backup memory

in certain situations [2]. The basic idea with virtual memory

is to create an illusion of memory that is as large as a disk (in

gigabytes) and as fast as memory (in nanoseconds). The key

principle is locality of reference, which recognizes that a

significant percentage of memory accesses in a running

program are made to a subset of its pages. Or simply put, a

running program only needs access to a portion of its virtual

address space at a given time. Virtual memory is a

component of most operating systems, such as MAC OS,

Windows and Linux. Virtual memory has a very important

role in the operating system. It allows us to run more

applications on the system than we have enough physical

memory to support. Virtual memory is simulated memory that

is written to a file on the hard drive. In the case of Windows it

is a file called pagefile.sys. The process of moving data from

RAM to disk (and back) is known as swapping or paging.

When there is no more space in physical RAM, the Virtual

memory manager will take the least used application and

place it in the page file on the hard drive. The process of

taking an application from the physical RAM and putting it in

the page file is called paging out. The process of moving the

application from the page file back into physical RAM is

called paging in. Disk thrashing occurs when the amount of

physical memory is too low. In that case the data must

constantly be moved from physical RAM, to disk, and back

again, [3]. A computer accesses the contents of its RAM

through a system of addresses, which are essentially numbers

that locate each byte. Because the amount of memory varies

from computer to computer, determining which software will

work on a given computer becomes complicated. Virtual

memory solves this problem by treating each computer as if it

has a large amount of RAM and each program as if it uses the

PC exclusively. The operating system, such as Microsoft

Windows or Apple's OS X, creates a set of virtual addresses

for each program. The OS translates virtual addresses into

physical ones, dynamically fitting programs into RAM as it

becomes available, [4]. Virtual memory is volatile. If the

computer is turned off, the operating system loses track of

what was kept where in virtual memory. The data is lost. But

even though the CPU can directly access virtual memory, it is

slow.

When the CPU needs data held in virtual memory, it asks the

operating system to first load it into RAM, which is quick to

access. Less-used data is moved from RAM to virtual

memory. Data that the CPU needs to use right now moves

from virtual memory to RAM.

2.1 Conceptual Overview of Cache Memory
Cache memory is a small high speed memory usually Static

RAM (SRAM) that contains the most recently accessed pieces

of main memory. They are the high speed buffers which are

inserted between the processors and main memory to capture

those portions of the contents of the main memory which are

currently in use. Since cache memories are typically 5 -10

times faster than main memory they can reduce the effective

memory access time if carefully designed and implemented,

[5]. The basic purpose of cache memory is to

store program instructions that are frequently re-referenced

by software during operation. Fast access to these instructions

increases the overall speed of the software program. If the

CPU finds the data in the cache memory, it does not have to

go looking for such data again in the main memory or even

the secondary storage media. Most programs use very few

resources once they have been opened and operated for a time,

mainly because frequently re-referenced instructions tend to

be cached. This explains why measurements of system

performance in computers with nslower processors but larger

caches tend to be faster than measurements of system

performance in computers with faster processors but more

limited cache space. This simply mean that, the less

frequently access is made to certain data or instructions, the

lower down the cache level the data or instructions are

written, [6].

2.1.1 Types of Cache Memory
 According to [7], there are two types of cache memory which

includes memory cache and the Disk cache.

 Memory Cache: A memory cache sometimes

called a cache store or RAM cache is a portion of

memory made of high-speed static RAM (SRAM)

instead of the slower and cheaper dynamic RAM

(DRAM) used for main memory. Memory caching is

effective because most programs access the same data or

instruction over and over. By keeping as much of this

information as possible in SRAM, the computer avoids

accessing the slower DRAM.

 Disk Cache: Disk caching works under an

undistinguishable guideline from memory reserving, yet

as opposed to utilizing rapid static- RAM, a plate/disk

cache utilizes traditional primary memory. When a

program needs to get to information from the disk, it first

checks the circle cache to check whether the information

is there. Disk caching drastically enhances the execution

of programs as getting to a byte of information in RAM

can be a huge number of time quicker than getting to a

byte on a hard disk.

2.1.2 Levels of Cache memory
According to [8], type of Cache Memory is divided into

different levels that are L1, L2, L3:

 Level 1 (L1) cache or Primary Cache: L1 is the

primary type cache memory. The Size of the L1

cache very small comparison to others that is

between 2KB to 64KB, it depends on computer

processor. It is extremely fast but relatively small,

and is usually embedded in the processor chip

(CPU).It is an embedded register in the computer

microprocessor(CPU).The Instructions that are

required by the CPU that are firstly searched in L1

Cache. Examples of registers are accumulator,

address register, Program counter etc.

 Level 2 (L2) cache or Secondary Cache: L2 is

secondary type cache memory. The Size of the L2

cache is more capacious than L1 that is between

256KB to 512KB.L2 cache is Located on computer

microprocessor. After searching the Instructions in

L1 Cache, if not found then it searched into L2

cache by computer microprocessor. The high-speed

system bus interconnecting the cache to the

microprocessor.

 Level 3 (L3) cache or Main Memory: The L3

cache is larger in size but also slower in speed than

L1 and L2,it's size is between 1MB to 8MB.In

Multi-core processors, each core may have separate

L1 and L2,but all core share a common L3 cache.

L3 cache double speed than the RAM.

https://searchsoftwarequality.techtarget.com/definition/program
https://whatis.techtarget.com/definition/instruction
https://searchmicroservices.techtarget.com/definition/software
https://whatis.techtarget.com/definition/access
https://searchstorage.techtarget.com/definition/cache
https://searchwindowsserver.techtarget.com/definition/system
https://searchwindowsserver.techtarget.com/definition/computer
http://ecomputernotes.com/fundamental/input-output-and-memory/what-is-registers-function-performed-by-registers-types-of-registers

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 20, October 2018

8

3. PRINCIPLES OF OPERATION OF

VIRTUAL AND CACHE MEMORY

3.1 Virtual Memory Implementation

Techniques
Virtual memory is commonly implemented by demand paging

and Demand segmentation

3.1.1 Demand Paging
Paging is a technique in which physical memory is broken

into blocks of the same size called pages (size is power of 2,

between 512 bytes and 8192 bytes), [9]. When a process is to

be executed, its corresponding pages are loaded into any

available memory frames. Logical address space of a process

can be non-contiguous and a process is allocated physical

memory whenever the free memory frame is available.

Operating system keeps track of all free frames. Operating

system needs “n” free frames to run a program of size “n”

pages. External fragmentation is avoided by using paging

technique. A demand paging system is quite similar to a

paging system with swapping where processes reside in

secondary memory and pages are loaded only on demand, not

in advance. When a context switch occurs, the operating

system does not copy any of the old program’s pages out to

the disk or any of the new program’s pages into the main

memory instead, it just begins executing the new program

after loading the first page and fetches that program’s pages as

they are referenced. From Figure 3 above it is seen that while

executing a program, if the program references a page which

is not available in the main memory because it was swapped

out a little ago, the processor treats this invalid memory

reference as a page fault and transfers control from the

program to the operating system to demand the page back into

the memory.

Address generated by CPU is divided into two:

- Page number (p) : page number is used as an index

into a page table which contains base address of each

page in physical memory.

- Page offset (d) : page offset is combined with base

address to define the physical memory address.

Advantages of Demand Paging: Listed below are the

advantages of demand paging among others:

 Large virtual memory.

 More efficient use of memory.

 There is no limit on degree of multiprogramming.

Disadvantages of Demand Paging: some disadvantages of

demand paging include:

 Number of tables and the amount of processor

overhead for handling page interrupts are greater

than in the case of the simple paged management

techniques.

3.1.2 Demand Segmentation
Segmentation is a technique to break memory into logical

pieces where each piece represents a group of related

information, (IDC Technologies, n.d). For example, data

segments or code segment for each process, data segment for

operating system and so on. Segmentation can be

implemented using or without using paging. Unlike paging,

segments have varying sizes and thus eliminate internal

fragmentation. External fragmentation still exists but to lesser

extent. Address generated by CPU is divided into two

namely;

 Segment number (s) -- segment number is used as

an index into a segment table which contains base

address of each segment in physical memory and a

limit of segment.

 Segment offset (o) -- segment offset is first checked

against limit and then is combined with base address

to define the physical memory address.

3.1.3 Page Fault
A page fault is a type of interrupt, raised by the hardware

when a running program accesses a memory page that is

mapped into the virtual address space, but not loaded in

physical memory, [10]. The virtual memory system uses

something called a “page table” to map virtual addresses to

physical addresses. Since our machine could possibly have

less RAM than our program thinks it has, it’s possible to have

more virtual addresses than physical addresses. That means

not all virtual addresses in a page table will have a valid

corresponding physical address (i.e. not all virtual addresses

will have a valid entry in the page table). If a virtual address

has no valid entry in the page table, then any attempt by your

program to access that virtual address will cause a page

fault to occur— if you’re familiar with software exceptions

(like in C++, Java, Python, etc.), a page fault is very much

like an exception, except in hardware, rather than software.

The page fault happens because the requested virtual address

actually corresponds to a page that is currently sitting on disk,

rather than in RAM (and therefore the virtual address cannot

possibly be translated into a physical address).

Handling Page Faults
According to [11], when the hardware raises a page fault

interrupt, the page fault handler follows the following steps to

handle the page fault.

1. Check the location of the referenced page in the

PMT

2. If a page fault occurred, call on the operating system

to fix it

3. Using the frame replacement algorithm, find the

frame location

4. Read the data from disk to memory

5. Update the page map table for the process

6. The instruction that caused the page fault is

restarted when the process resumes execution.

3.1.4 Page Replacement Algorithms
Page replacement algorithms are the techniques with which an

operating system decides which memory pages to swap out or

write to disk when a page of memory needs to be allocated,

[12]. Paging happens whenever a page fault occurs and a free

page cannot be used for allocation purpose accounting to

reason that pages are not available or the number of free pages

is lower than required pages. When the page that was selected

for replacement and was paged out, is referenced again, it has

to read in from disk, and this requires for I/O completion. This

process determines the quality of the page replacement

algorithm: the lesser the time waiting for page-ins, the better

is the algorithm. A page replacement algorithm looks at the

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 20, October 2018

9

limited information about accessing the pages provided by

hardware, and tries to select which pages should be replaced

to minimize the total number of page misses, while balancing

it with the costs of primary storage and processor time of the

algorithm itself. There are many different page replacement

algorithms. We evaluate an algorithm by running it on a

particular string of memory reference and computing the

number of page faults.

First in First Out (FIFO) algorithm

 Oldest page in main memory is the one which will

be selected for replacement.

 Easy to implement, keep a list, replace pages from

the tail and add new pages at the head.

Optimal Page algorithm: An optimal page-replacement

algorithm has the lowest page-fault rate of all algorithms. An

optimal page-replacement algorithm exists, and has been

called OPT or MIN.

 Replace the page that will not be used for the

longest period of time. Use the time when a page is

to be used.

Least Recently Used (LRU) algorithm: Page which has not been

used for the longest time in main memory is the one which

will be selected for replacement.

 Easy to implement, keep a list, replace pages by

looking back into time.

Page Buffering algorithm: This algorithm involves:

 To get a process start quickly, keep a pool of free

frames.

 On page fault, select a page to be replaced.

 Write the new page in the frame of free pool, mark

the page table and restart the process.

 Now write the dirty page out of disk and place the

frame holding replaced page in free pool, [13].

Least frequently Used (LFU) algorithm

 The page with the smallest count is the one which

will be selected for replacement.

 This algorithm suffers from the situation in which a

page is used heavily during the initial phase of a

process, but then is never used again.

Most frequently Used (MFU) algorithm

 This algorithm is based on the argument that the

page with the smallest count was probably just

brought in and has yet to be used.

3.1.5 Cache Memory configurations
Cache memory is configured such that, whenever data is to be

read from RAM, the system hardware first checks to

determine if the desired data is in cache. If the data is in

cache, it is quickly retrieved, and used by the CPU. However,

if the data is not in cache, the data is read from RAM and,

while being transferred to the CPU, is also placed in cache (in

case it is needed again later). From the perspective of the

CPU, all this is done transparently, so that the only difference

between accessing data in cache and accessing data in RAM is

the amount of time it takes for the data to be returned.

Caching configurations continue to evolve, but memory cache

traditionally works under three different configurations :

 Direct mapping: In direct mapping, each block is

mapped to exactly one cache location. Conceptually,

this is like rows in a table with three columns: the data

block or cache line that contains the actual data fetched

and stored, a tag that contains all or part of the address

of the fetched data, and a flag bit that connotes the

presence of a valid bit of data in the row entry.

 Fully associative mapping: In fully associative

mapping, structure, the operating system allows a block

to be mapped to any cache location rather than to a pre-

specified cache location (as is the case with direct

mapping).

 Set associative mapping: This mapping techniques

can be viewed as a compromise between direct mapping

and fully associative mapping in which each block is

mapped to a subset of cache locations. It is sometimes

called N-way set associative mapping, which provides

for a location in main memory to be cached to any of

"N" locations in the L1 cache.

Specialized caches: In addition to instruction and data

caches, there are other caches designed to provide specialized

functions in a system. By some definitions, the L3 cache is a

specialized cache because of its shared design. Other

definitions separate instruction caching from data caching,

referring to each as a specialized cache.

Other specialized memory caches include the translation look-

aside buffer (TLB) whose function is to record virtual

address to physical address translations. Still other caches are

not, technically speaking, memory caches at all. Disk caches,

for example, may leverage RAM or flash memory to provide

much the same kind of data caching as memory caches do

with CPU instructions. If data is frequently accessed from

disk, it is cached into DRAM or flash-based silicon storage

technology for faster access and response.

3.1.6 Cache Replacement Algorithm
A cache algorithm is a detailed list of instructions that directs

which items should be discarded in a computing

device's cache of information. Cache Replacement Algorithms

are only needed for associative and set associative techniques.

There are several Cache replacement algorithms according to

[14], and they include the following:

First-in First-out (FIFO) – First in First out is a cache

replacement algorithm that replaces the cache line that has

been in the cache the longest.

Belady's Algorithm: The most efficient caching algorithm

would be to always discard the information that will not be

needed for the longest time in the future. This optimal result is

referred to as Belady's optimal algorithm or the clairvoyant

algorithm. Since it is generally impossible to predict how far

in the future information will be needed, this is generally not

implementable in practice. The practical minimum can be

calculated only after experimentation, and one can compare

the effectiveness of the actually chosen cache algorithm.

https://searchexchange.techtarget.com/definition/configuration
https://searchsqlserver.techtarget.com/definition/block
https://whatis.techtarget.com/definition/flag
https://whatis.techtarget.com/definition/bit-binary-digit
https://whatis.techtarget.com/definition/translation-look-aside-buffer-TLB
https://whatis.techtarget.com/definition/virtual-address
https://whatis.techtarget.com/definition/virtual-address
https://whatis.techtarget.com/definition/physical-address
https://searchstorage.techtarget.com/definition/disk-cache
https://searchstorage.techtarget.com/definition/flash-memory
https://searchstorage.techtarget.com/definition/DRAM
https://whatis.techtarget.com/definition/silicon-Si
https://whatis.techtarget.com/definition/instruction
https://searchstorage.techtarget.com/definition/cache

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 20, October 2018

10

Least Recently Used (LRU): This algorithm discards the

least recently used items first. This algorithm requires keeping

track of what was used when, which is expensive if one wants

to make sure the algorithm always discards the least recently

used item. General implementations of this technique require

keeping "age bits" for cache-lines and track the "Least

Recently Used" cache-line based on age-bits. In such an

implementation, every time a cache-line is used, the age of all

other cache-lines changes. LRU is actually a family of

caching algorithms with members including: 2Q by Theodore

Johnson and Dennis Shasha and LRU/K by Pat O'Neil, Betty

O'Neil and Gerhard Weikum.

Most Recently Used (MRU): This algorithm discards, in

contrast to LRU, the most recently used items first. In findings

presented at the 11th VLDB conference, Chou and Dewitt

noted that when a file is being repeatedly scanned in a looping

sequential reference pattern, MRU is the best replacement

algorithm." [15] submitted that Subsequently other

researchers presenting at the 22nd VLDB conference noted

that for random access patterns and repeated scans over large

datasets (sometimes known as cyclic access patterns) MRU

cache algorithms have more hits than LRU due to their

tendency to retain older data. MRU algorithms are most useful

in situations where the older items are more likely to be

accessed.

Pseudo-LRU: (PLRU) For CPU caches with large

associativity (generally >4 ways), the implementation cost of

LRU becomes prohibitive. In many CPU caches, a scheme

that almost always discards one of the least recently used

items is sufficient. So many CPU designers choose a PLRU

algorithm which only needs one bit per cache item to work.

PLRU typically has a slightly worse miss ratio, has a slightly

better latency, and uses slightly less power than LRU.

Random Replacement (RR): Randomly selects a candidate

item and discards it to make space when necessary. This

algorithm does not require keeping any information about the

access history. For its simplicity, it has been used in ARM

processors. It admits efficient stochastic simulation.

Segmented LRU (SLRU): An SLRU cache is divided into

two segments, a probationary segment and a protected

segment. Lines in each segment are ordered from the most to

the least recently accessed. Data from misses is added to the

cache at the most recently accessed end of the probationary

segment. Hits are removed from wherever they currently

reside and added to the most recently accessed end of the

protected segment. Lines in the protected segment have thus

been accessed at least twice. The protected segment is finite,

so migration of a line from the probationary segment to the

protected segment may force the migration of the LRU line in

the protected segment to the most recently used (MRU) end of

the probationary segment, giving this line another chance to

be accessed before being replaced. The size limit on the

protected segment is an SLRU parameter that varies according

to the I/O workload patterns. Whenever data must be

discarded from the cache, lines are obtained from the LRU

end of the probationary segment.

3.1.7 Write Policies
A write policy determines how the cache deals with a

write cycle. [16] Submits that the two common write

policies are Write-Back and Write-Through.
- Write-Back policy: Here the cache acts like a

buffer. That is, when the processor starts a write

cycle the cache receives the data and terminates the

cycle. The cache then writes the data back to main

memory when the system bus is available. This

method provides the greatest performance by

allowing the processor to continue its tasks while

main memory is updated at a later time. However,

controlling writes to main memory increase the

cache’s complexity and cost.

- Write-Through policy: This is the second write

policy method. As the name implies, the processor

writes through the cache to main memory. The

cache may update its contents, however the write

cycle does not end until the data is stored into main

memory. This method is less complex and therefore

less expensive to implement. The performance with

a Write-Through policy is lower since the processor

must wait for main memory to accept the data.

4. IMPORTANCE OF VIRTUAL

MEMORY AND MEMORY CACHING

IN THE COMPUTER SYSTEM
Virtual memory techniques and memory caching are both

important and helps in optimizing system utilization. Their

importances are stated in the sections below:

4.1 Importance of Virtual Memory

Technique in Computer Systems
Virtual memory technique and its implementations are very

vital to the overall functionality of the computer system. The

Importance of virtual memory technique includes:

 Flexibil ity: If computers only relied on the main

memory chips, far less memory would be available

and the usefulness of many software programs

would be severely limited. Even though virtual

memory is slower, it is still useful because it greatly

expands a computer's functionality.

 Saves Cost and Time: When virtual memory

was first created, solid-state memory chips were

much smaller and more expensive. However,

today's memory chips can store many gigabytes of

data at very low cost and moreover as memory

chips continue to grow in capacity, prices are falling

also.

 Makes Multiprogramming Easier: [17] further

states that When a computer user opens multiple

programs at once, the data for these programs must

be stored in memory for quick access. The more

programs are opened, the more memory is needed.

When the computer's physical memory is full, the

excess data is stored in virtual memory. Virtual

memory with paging lets a computer run many

programs at the same time, almost regardless of

available RAM. This benefit is called

multiprogramming and it is a key feature of modern

PC operating systems. This feature enable modern

computers to accommodate many utility programs

such as printer drivers, network managers and virus

scanners at the same time as your applications --

Web browsers, word processors, email and media

players.

 Makes it easier for Programmers to

Write and Run Large Programs: In

addition to multitasking, virtual memory allows

http://i.viglink.com/?key=6e0325d6b6b47cbf00af2152d33feebe&insertId=836d17b8f749d759dee2f69139abce1f&type=CD&exp=-100%3ACILITE%3A16&libId=jftrpeyw01021li2000DAedzwvp94&loc=https%3A%2F%2Fwww.techwalla.com%2Farticles%2Fwhy-is-virtual-memory-important&v=1&out=https%3A%2F%2Fwww.ebay.com%2Fsch%2Fi.html%3F_nkw%3Dsoftware&ref=https%3A%2F%2Fwww.google.com.ng%2F&title=Why%20Is%20Virtual%20Memory%20Important%3F%20%7C%20Techwalla.com&txt=%3Cspan%3Esoftware%3C%2Fspan%3E
http://i.viglink.com/?key=6e0325d6b6b47cbf00af2152d33feebe&insertId=3e0321e679ded46cba448bea960e4e6e&type=CD&exp=-100%3ACILITE%3A16&libId=jftrpeyw01021li2000DAedzwvp94&loc=https%3A%2F%2Fwww.techwalla.com%2Farticles%2Fwhy-is-virtual-memory-important&v=1&out=https%3A%2F%2Fwww.ebay.com%2Fsch%2Fi.html%3F_nkw%3Dcomputer&ref=https%3A%2F%2Fwww.google.com.ng%2F&title=Why%20Is%20Virtual%20Memory%20Important%3F%20%7C%20Techwalla.com&txt=%3Cspan%3Ecomputer%3C%2Fspan%3E

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 20, October 2018

11

programmers to create larger and more complex

applications. When these programs are running,

they occupy physical memory as well as virtual

memory.

 Paging File: With virtual memory, the computer

writes program pages that have not been recently

used to an area on the hard drive called a paging

file. The file saves the data contained in the pages;

if the program needs it again, the operating system

reloads it when RAM becomes available. When

many programs compete for RAM, the act of

swapping pages to the file can slow a computer's

processing speed, as it spends more time doing

memory management chores and less time getting

useful work done. Ideally, a computer will have

enough RAM to handle the demands of many

programs, minimizing the time the computer spends

managing its pages.

 VM as a Tool for Caching: Conceptually, a virtual

memory is organized as an array of N contiguous

byte-sized cells stored on disk. Each byte has a

unique virtual address that serves as an index into

the array. The contents of the array on disk are

cached in main memory. As with any other cache in

the memory hierarchy, the data on disk (the lower

level) is partitioned into blocks that serve as the

transfer units between the disk and the main

memory (the upper level). Virtual memory systems

handle this by partitioning the virtual memory into

fixed-sized blocks called virtual pages (VPs). Each

virtual page is P = 2p bytes in size. Similarly,

physical memory is partitioned into physical pages

(PPs), also P bytes in size. (Physical pages are also

referred to as page frames) [18]. At any point in

time, the set of virtual pages is partitioned into three

disjoint subsets:

• Unallocated: Pages that have not yet been allocated (or

created) by the VM system. Unallocated blocks do not have

any data associated with them, and thus do not occupy any

space on disk.

• Cached: Allocated pages that are currently cached in

physical memory.

• Uncached: Allocated pages that are not cached in physical

memory.

 VM as a Tool for Memory Protection: Any

modern computer system must provide the means

for the operating system to control access to the

memory system. A user process should not be

allowed to modify its read-only text section. Nor

should it be allowed to read or modify any of the

code and data structures in the kernel. It should not

be allowed to read or write the private memory of

other processes, and it should not be allowed to

modify any virtual pages that are shared with other

processes, unless all parties explicitly allow it (via

calls to explicit inter-process communication system

calls). A computer without virtual memory can still

run many programs at the same time, although one

program might change, accidentally or deliberately,

the data in another if its addresses point to the

wrong program. Virtual memory prevents this

situation because a program never "sees" its

physical addresses. The virtual memory manager

protects the data in one program from changes by

another.

 VM as a Tool for Memory Management: The

combination of demand paging and separate virtual

address spaces has a profound impact on the way

that memory is used and managed in a system. In

particular, Virtual Memory simplifies linking and

loading, the sharing of code and data, and allocating

memory to applications.

• Simplifying linking: A separate address space

allows each process to use the same basic format for

its memory image, regardless of where the code and

data actually reside in physical memory.

• Simplifying loading: Virtual memory also makes

it easy to load executable and shared object files

into memory.

• Simplifying sharing: Separate address spaces

provide the operating system with a consistent

mechanism for managing sharing between user

processes and the operating system itself. In

general, each process has its own private code, data,

heap, and stack areas that are not shared with any

other process. In this case, the operating system

creates page tables that map the corresponding

virtual pages to disjoint physical pages. However, in

some instances it is desirable for processes to share

code and data.

• Simplifying memory allocation: Virtual memory

provides a simple mechanism for allocating

additional memory to user processes. When a

program running in a user process requests

additional heap space (e.g., as a result of calling

malloc), the operating system allocates an

appropriate number, say k, of contiguous virtual

memory pages, and maps them to k arbitrary

physical pages located anywhere in physical

memory. Because of the way page tables work,

there is no need for the operating system to locate k

contiguous pages of physical memory. The pages

can be scattered randomly in physical memory.

4.2 Importance of Cache Memory in

Computer Systems
Cache Memory is expensive to implement and have limited

capacity but they are very important in achieving optimum

performance of the computer system. According to [19],[20],

the following are the importance of cache memory:

 Speed: Cache memory is faster than the main

memory; hence deploying cache memory increases

the speed of processing tremendously. Cache

memory consumes less access time when compared

to the main memory.

 Quick Access to Frequently used data: The cache

memory stores data for temporary use, storing the

programs that can be executed within a short period

of time. To this end, access to frequently used data

is achieved at a quicker rate.

 Reduction of Latency: Analytical and transactional

workloads have reduced query-response time

because the solid-state drive (SSD) storage has

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 20, October 2018

12

lower latencies. If you use server-side caching, the

average latency for a transactional workload can be

reduced by half.

 Increased Throughput: Online transaction

processing (OLTP) workloads have higher

transaction rates because the Solid State Drives

storage provides better throughput.

 Write throughput: In environments where the

storage area network (SAN) is congested, the flash

device, which is used as a cache, can offload a

significant percentage of read requests. When read

requests are offloaded, the SAN can have better

write throughput, and can effectively serve a larger

number of clients and hosts.

 Smaller memory footprint: If a flash cache device

is configured, some workloads can perform even

with a lower memory footprint.

5. WHY VIRTUAL AND CACHE

MEMORIES ARE NEEDED IN OUR

COMPUTER
Virtual memory is an elegant interaction of hardware

exceptions, hardware address translation, main memory, disk

files, and kernel software that provides each process with a

large, uniform, and private address space. With one clean

mechanism, virtual memory provides three important

capabilities.

 It uses main memory efficiently by treating it as a

cache for an address space stored on disk, keeping

only the active areas in main memory, and

transferring data back and forth between disk and

memory as needed.

 It simplifies memory management by providing

each process with a uniform address space.

 It protects the address space of each process from

corruption by other processes. Virtual memory is

one of the great ideas in computer systems. A

major reason for its success is that it works

silently and automatically, without any

intervention from the application programmer.

Since virtual memory works so well behind the

scenes, why would a programmer need to

understand it? There are several reasons. Some of

them are discussed below

 Virtual memory is central. Virtual memory pervades all

levels of computer systems, playing key roles in the design of

hardware exceptions, assemblers, linkers, loaders, shared

objects, files, and processes. Understanding virtual memory

will help one better understand how the computer system

works in general. Understanding virtual memory will help you

harness its powerful capabilities in your applications. Virtual

memory gives applications powerful capabilities to create and

destroy chunks of memory, map chunks of memory to

portions of disk files, and share memory with other processes.

However, it is expedient for us to understand that virtual

memory could also be dangerous. This is because virtual

memory applications interact with virtual memory every time

they reference a variable, dereference a pointer, or make a call

to a dynamic allocation package such as malloc. If virtual

memory is used improperly, applications can suffer from

perplexing and insidious memory related bugs. For example, a

program with a bad pointer can crash immediately with a

“Segmentation fault” or a “Protection fault,” run silently for

hours before crashing, or run to completion with incorrect

results. Understanding how virtual memory works and the

allocation packages such as malloc that manages it can help

one avoid these errors.

 On the other hand, Cache is a small amount of memory

which is physically closer to the CPU than RAM is. The more

cache there is, the more data can be stored closer to the CPU.

Cache memory is beneficial because:

 Cache memory holds frequently used

instructions/data which the processor may require

next and it is faster access memory than RAM, since

it is on the same chip as the processor. This reduces

the need for frequent slower memory retrievals from

main memory, which may otherwise keep the CPU

waiting.

 The more cache the CPU has, the less time the

computer spends accessing slower main memory

and as a result programs may run faster.

6. CONCLUSION
Virtual memory is a technique for allowing the computer to

act as though it has more physical memory by using the hard

drive (which is almost always much larger than main

memory) as temporary storage space. If the session reaches a

point where programs are asking for more memory space than

is available, the operating system will look for the pages of

RAM that have been least recently accessed, and will move

their contents off to the hard drive to make room for the new

requests for space in main RAM. If one of those other

programs then comes back and attempts to access one of the

pages that is no longer resident, the CPU traps this situation

and lets the operating system know that page is needed again,

at which point the operating system will go and retrieve it

from the hard drive again and swap it with something else.

This is a much slower process, of course, than simply being

able to access RAM directly in the first place, so having

enough memory in the system in the first place to avoid

having to make frequent use of the virtual memory space

helps significantly with overall performance. Memory

virtualization does have other uses beyond artificial expansion

of physical RAM, such as giving applications the appearance

of having their own unique address space to run in, which

helps to isolate them from other processes running on the

system. Cache memory on the other hand is a small but very

fast (compared to main RAM) chunk of memory that usually

resides directly on the same die as the CPU cores themselves.

The purpose of cache is to keep frequently used data and code

as close to the CPU core as possible, so that repeated use of

the same areas of memory does not result in repeated slow

transactions to main memory. Since small loops are a very

common construct in fully compiled code, having all of the

code and data that it uses be accessible at the full speed of the

processor allows the program to continue to run at the fastest

possible speed. It is only when the program moves on to need

a different area of code and/or data that the contents of the

cache are evicted to either the next level of cache (which is

larger but slightly slower to access), or eventually, all the way

back to the main off-CPU system RAM. The difficult aspect

of implementing a cache memory is maintaining coherency,

or ensuring that any attempt to access the “real” main RAM

location when the cached copy has been changed results in a

reconciliation that ensures that the most recently altered

contents are what is actually returned, rather than out of date

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 20, October 2018

13

data. We therefore conclude here by stating that virtual and

cache memory offers numerous benefits that bring about an

overall better performance of our computer systems. Every

computer user has a need to seek an understanding of the

techniques and mechanisms of the operations of virtual and

cache memories as explained in this paper.

7. REFERENCES
[1] John Papiewski (2018). “The Concept of Virtual

Memory in Computer Architecture. Available From

www.smallbuisness.chron.com/Concept-Virtual-

memory.

[2] Jacob Queen (2018). “Why is Virtual Memory

Important?” Available

fromwww.techwalla.com/articles/why-is-virtual-

memory-important.

[3] Cicnavi (2010). “What is Virtual Memory and why do

we need it?” Available fromwww.utilizewindow.com.

[4] John Papiewski (2018). “The Concept of Virtual

Memory in Computer Architecture. Available From

www.smallbuisness.chron.com/Concept-Virtual-

memory.

[5] Santosh .S. Padwal, Ahishi . P. Duthate, Shivkumar

Vishnupurikar and P.M. Chawman, (2012). “Cache

Memory organization”. International Journal of

Networking and Parallel computing. Vol 1, issue 2,

November 2012. Page 12-16.

[6] Margaret Rouse (2014). “Cache memory” Available

from www.searchstorage.tectarget.com/definition/cache-

memory.

[7] Howtoitz (2017). “ What is Cache Memory? “ Available

from www.howtoitz.com. Retrieved on 4/4/18.

[8] Dinesh T, (2010) “Operating System”. E-Computer

Notes. Available from www.ecomputernotes.com.

Retrieved on 5/4/18.

[9] IDC-Technologies. “Operating System Memory

Mangement”. Available from www.idc-

online.com/technical -references/information-

technologies/O/S-memory-mgt.

[10] Geeks for Geeks(n.d). “Page Replacement Algorithms”.

Available from www.geeksforgeeks.org/operating-

system-page-replacement-algorithm.

[11] Operating Systems Study Guide (2015). “Page faults”.

Available from faculty.salima.k-state.edu.

[12] Juhi Kumari, Sonam Kumari and Devendra Prasad

(2016). “ A comparison of Page Replacement

Algorithms: A survey”. International Journal of

Scientific & Engineering Research. Volume 7, issue 12,

December 2016.

[13] Juhi Kumari, Sonam Kumari and Devendra Prasad

(2016). “ A comparison of Page Replacement

Algorithms: A survey”. International Journal of

Scientific & Engineering Research. Volume 7, issue 12,

December 2016.

[14] Priyanka Yadav, Vishal Sharma and Priti Yadav, (2014).

“Cache Memeory; various algorithm”. International

Journal of computer science and mobile computing. Vol

3, issue 9, sept 2014, pp 838-840.

[15] Priyanka Yadav, Vishal Sharma and Priti Yadav, (2014).

“Cache Memeory; various algorithm”. International

Journal of computer science and mobile computing. Vol

3, issue 9, sept 2014, pp 838-840.

[16] Santosh .S. Padwal, Ahishi . P. Duthate, Shivkumar

Vishnupurikar and P.M. Chawman, (2012). “Cache

Memory organization”. International Journal of

Networking and Parallel computing. Vol 1, issue 2,

November 2012. Page 12-16.

[17] Jacob Queen (2018). “Why is Virtual Memory

Important?” Available

fromwww.techwalla.com/articles/why-is-virtual-

memory-important.

[18] Carniegie Mellon University World Wide Knowledge

Base . CMU school of computing Science. Available at

http:// www.cs.cmu.edu. Retrieved on 23rd January,

2016.

[19] General Note (2018). “ Cache Memory”. Available from

www.gegralnote.com/Basic- computer/cache-

memory-php.

[20] IBM Knowledge Center (n.d). Advantage of Storage data

caching”. Available from

www.ibm.com/support/knowledge-centre.

IJCATM : www.ijcaonline.org

http://www.smallbuisness.chron.com/Concept-Virtual-memory
http://www.smallbuisness.chron.com/Concept-Virtual-memory
http://www.techwalla.com/articles/why-is-virtual-memory-important
http://www.techwalla.com/articles/why-is-virtual-memory-important
http://www.utilizewindow.com/
http://www.smallbuisness.chron.com/Concept-Virtual-memory
http://www.smallbuisness.chron.com/Concept-Virtual-memory
http://www.searchstorage.tectarget.com/definition/cache-memory
http://www.searchstorage.tectarget.com/definition/cache-memory
http://www.howtoitz.com/
http://www.ecomputernotes.com/
http://www.idc-/
http://www.idc-/
http://www.geeksforgeeks.org/operating-system-page-replacement-algorithm
http://www.geeksforgeeks.org/operating-system-page-replacement-algorithm
http://www.techwalla.com/articles/why-is-virtual-memory-important
http://www.techwalla.com/articles/why-is-virtual-memory-important
http://www.gegralnote.com/Basic-
http://www.ibm.com/support/knowledge-centre

