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ABSTRACT 
Density-based clustering is one of the most important sciences 

nowadays. A various number of datasets depend on it. Since 

homogeneous clustering may generate a large number of 

smaller useless clusters, a good clustering method should give 

the permission to a significant density variation. This paper 

focuses on enhancing the clustering results after using density-

based cluster algorithms DBSCAN (Density-based spatial 

clustering of applications with noise) or OPTICS (Ordering 

points to identify the clustering structure) by using statistical 

models. The use of statistical models supports improving 

results by reducing the number of noise points with the same 

cluster number and expand the selected area as recognized as 

cluster.  
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1. INTRODUCTION 
Cluster analysis stands as one of the most significant and 

influential sciences these days. It tries to bring a group of 

properties together and then classify them into one group. This is 

valuable in the fields of data mining, statistics, and data analysis. 

The techniques of clustering are applied in many fields such as 

image processing, pattern recognition, machine learning, and 

information retrieval and others more. [1][2] 

As mentioned earlier, clustering is analyzing the data into 

groups of related objects. There are various approaches to data 

clustering that differ in their complexity and influence, due to 

the huge number of applications that the algorithms have. For 

instance, from a machine learning perspective, clusters 

correspond to hidden patterns, the search for clusters is an 

independent learning, and the resulting system represents a data 

concept. On the other hand, from a practical perspective, 

clustering performs an important role in data mining 

applications such as scientific data exploration, information 

retrieval and text mining, spatial database applications, web 

analysis, marketing, medical diagnostics, computational biology, 

and many others. Although there has been a large amount of 

research into the role of clustering, nowadays-popular clustering 

methods often lose the chance to find high-quality clusters. 

It is worthy to mention that Driver established cluster analysis in 

anthropology and Kroeber in 1932, brought in to psychology by 

Zubin in 1938 and Robert Tryon in 1939, and used by Cattell in 

1943 in personality psychology. 

There are two main types of clustering algorithms: partitioning 

and hierarchical algorithms. To begin with, partitioning 

algorithms build a partition of a database of   objects into a set 

of   clusters. 

  is an input parameter for these algorithms. The partitioning 

algorithm usually begins with an initial partition of   and then 

uses an iterative control strategy to optimize an objective 

function. Each cluster is represented by the gravity center of the 

cluster (k-means algorithms) or by one of the cluster objects 

located near its center (k-medoid algorithms  ( .  

Partitioning algorithms use a two-step procedure. First, 

determine   representatives minimizing the objective function. 

Second, appoint each object to the cluster with its representative 

“closest” to the considered object. The second step indicates that 

a partition is equivalent to a voronoi diagram and each cluster is 

embodied in one of the voronoi cells as shown in Figure 1 [3].  

Correspondingly, the shape of all clusters found by a 

partitioning algorithm is convex, meaning it is very restrictive. 

Secondly, hierarchical algorithms build a hierarchical 

decomposition of  . The hierarchical decomposition is 

presented by a dendrogram as shown in Figure 2, a tree that 

splits in repetition into smaller subsets until each subset contains 

only one object. In this type of a hierarchy, each node of the tree 

represents a cluster of  . 

 

Figure 1: 20 points and their Voronoi cells 

In addition, the dendrogram can have either agglomerative 

approach, created from the leaves up to the root, or divisive 

approach, from the root down to the leaves by merging or 

dividing clusters at each step. In contrast to partitioning 

algorithms, hierarchical algorithms do not need   as an input.  
However, a termination condition has to be denoted indicating 

when the merge or division process should be terminated. One 

example of a termination condition in the agglomerative 

approach is the critical distance       between all the clusters 

of  . 
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Figure 2: Hierarchical clustering and dendrogram. 5 data 

points are clustered, and the dendrogram on the right side 

shows the clustering result. The height of each subtree 

represents the distance between the two children 

 

 

Figure 3: Samples of Density-based clustering 

Density-based cluster is used in clustering analysis; it depends 

on locating big groups into smaller sets of groups depending on 

the density of the group as shown in Figure 3. A Density-based 

approach is to identify clusters in k-dimensional point sets. The 

data set is partitioned into a number of non-overlapping cells 

and histograms are constructed. Cells that have relatively high 

frequency counts of points are called the potential cluster centers 

and the boundaries between clusters are located in the “valleys” 

of the histogram. This method is capable of identifying clusters 

of any shape.  

However, the space and run-time requirements for storing and 

searching multidimensional histograms can be excessive. Even 

if the space and run-time requirements are optimized, the 

performance of such an approach mainly depends on the size of 

the cells [3]. Therefore, it can find out the clusters of different 

shapes and sizes from a large amount of data, which is 

containing noise and outliers. On the other hand, it fails to 

manage the local density variation that exists within the cluster 

[4]. The most common and used algorithm is DBSCAN 

(Density-based spatial clustering of applications with noise). It 

was proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander 

and Xiaowei Xu in 1996. 

Using Density-based clustering has various benefits as: 

 Clusters can have arbitrary shape and size. 

 Number of clusters is determined automatically. 

 Can separate clusters from surrounding noise. 

 Can be supported by spatial index structures. 

Clustering of any type of data depends on the definition of a 

similarity or of a distance measure. The Euclidean distance is 

one of the popular distance measures, and a famous choice in 

time series clustering. The Euclidean distance measure is a 

special case of a    norm.    Norms may fail to hold similarity 

well when being applied [5]. 

It worth mentioning that clusters cannot only be defined based 

on the density attractors or modes but also as regions that are 

continuously above a threshold [6]. Such a definition give the 

permission to multiple attractor regions to be connected into one 

arbitrarily shaped cluster. 

In the next section, more about density-based algorithms will be 

discussed and how they work and implemented, section three 

will introduce statistical models and focuses on more details 

about the selection model. Then in section four, we will explain 

our proposed work that describes how the statistical models 

were employed to improve the quality of applying density-based 

algorithms for clustering data. Section 5 discuss the 

experimental procedural and technical properties used for 

enhancing the outcome and compare the results. Finally, the 

conclusion will summarize the result and which quality metric 

of statistical models get the best case of solution. 

2. RELATED WORK 
The DBSCAN (Density-based Spatial Clustering of 

Applications with Noise) is a trend algorithm of Density-based 

clustering. It involves two input parameters,   (the radius of the 

cluster) and MinPts (the minimum data objects required inside 

the cluster). The DBSCAN burdens the responsibility of 

choosing parameter values that will bring on the discovery of 

acceptable clusters. An object   is said to be core if it has 

(closed)   -neighborhood. These parameter settings are usually 

experimentally set and difficult to determine. DBSCAN does 

not determine upper limit of a core object. As a result, the 

clusters detected by it, are having a broad variation in local 

density and forms clusters of any arbitrary shape [4]. 

Definition: Density Reachability - A point "p" is said to be 

density reachable from a point "q" if point "p" is within ε 

distance from point "q" and "q" has sufficient number of points 

in its neighbors, which are within distance ε. 

Definition: Density Connectivity - A point "p" and "q" are said 

to be density connected if there exist a point "r" which has 

sufficient number of points in its neighbors and both the points 

"p" and "q" are within the ε distance. This is chaining process. 

So, if "q" is neighbor of "r", "r" is neighbor of "s", "s" is 

neighbor of "t" which in turn is neighbor of "p" implies that "q" 

is neighbor of "p". 

The clusters are defined in such a way that they are unions of   -

neighborhoods of core points and two core points belong to the 

same cluster if and only if one of them is density reachable from 

the other one; recall that an object y is density reachable from x 

provided there are core points.  

                  

Such that                for every   and            . 
Objects   such that         does not contain any core point are 

called noise objects; these objects do not belong to any cluster. 

One of the major problems with DBSCAN is the choice of the 

radius  ; small   means that many objects are noise and large   
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means that essentially different clusters can be joined together. 

To defeat these difficulties, in [7] the authors proposed OPTICS 

(Ordering Points to Identify the Clustering Structure) algorithm. 

Analogously as DBSCAN, also OPTICS depends on the 

distance   and two parameters   max and       . However, 

unlike DBSCAN, OPTICS is not a clustering algorithm. Its 

purpose is to  order all objects in such a way that closest objects 

(according to the distance  ) become neighbors in the ordering. 

This is accomplished by defining the so-called core-distance 

      and reachability-distance       for every object  . 

OPTICS guarantees that, for every          , if          

then   belongs to the same  -DBSCAN cluster as its 

predecessor. Thus, for any given         , the  -DBSCAN 

clusters correspond to the maximal intervals in the OPTICS 

ordering such that         for every  , but the first object of 

the interval. Regarding the choice of   max, if it is too small, 

OPTICS cannot extract information about clustering structure. 

On the other hand, with growing   max the runtime complexity 

of OPTICS grows greatly. Growing effort was committed to the 

choice of the density threshold for DBSCAN and OPTICS [8]. 

3. STATISTICAL MODEL 
A probability model is a useful concept for making sense of 

observations by regarding them as realizations of random 

variables, but the model that we can think of as having given rise 

to the observations is usually too complex to be described in 

every detail from the information available.  

A statistical model embodies a set of assumptions concerning 

the generation of the observed data, and similar data from a 

larger population. A model represents, often in considerably 

idealized form, the data-generating process. The model 

assumptions describe a set of probability distributions, some of 

which are assumed to adequately approximate the distribution 

from which a particular data set is sampled. 

A model is usually specified by mathematical equations that 

relate one or more random variables and possibly other non-

random variables. 

The necessity of introducing the concept of model selection has 

been recognized as one of the important technical areas, and the 

problem is posed on the choice of the best approximating model 

among a class of competing models by a suitable model 

selection criterion given a dataset. Model selection is the task of 

selecting a statistical model from a set of candidate models, 

given data. In the simplest cases, a pre-existing set of data is 

considered. However, the task can also involve the design of 

experiments such that the data collected is well-suited to the 

problem of model selection. Given candidate models of similar 

predictive or explanatory power, the simplest model is most 

likely to be the best choice. Model selection criteria are figures 

of merit, or performance measures, for competing models. In 

this paper, we shall briefly study the basic underlying idea of 

Akaike's information criterion (AIC), Bayesian Information 

Criterion (BIC), Residual Sum of Squares (RSS), and F-

Measure score (F1). 

a. Akaike's information criterion 
The Akaike information criterion (AIC) is a measure of the 

relative quality of a statistical model for a given set of data. That 

is, given a collection of models for the data, AIC estimates the 

quality of each model, relative to each of the other models. 

Hence, AIC provides a means for model selection. 

AIC is founded on information theory: it offers a relative 

estimate of the information lost when a given model is used to 

represent the process that generates the data. In doing so, it deals 

with the trade-off between the goodness of fit of the model and 

the complexity of the model. 

AIC does not provide a test of a model in the sense of testing a 

null hypothesis; i.e. AIC can tell nothing about the quality of the 

model in an absolute sense. If all the candidate models fit 

poorly, AIC will not give any warning of that. 

Suppose that we have a statistical model of some data. Let L be 

the maximized value of the likelihood function for the model; let 

k be the number of estimated parameters in the model. Then the 

AIC value of the model is the following 

            

Given a set of candidate models for the data, the preferred model 

is the one with the minimum AIC value. Hence AIC rewards 

goodness of fit (as assessed by the likelihood function), but it 

also includes a penalty that is an increasing function of the 

number of estimated parameters. The penalty discourages over 

fitting (increasing the number of parameters in the model almost 

always improves the goodness of the fit). 

b. Bayesian Information Criterion 
BIC is a criterion for model selection among a finite set of 

models; the model with the lowest BIC is preferred. It is based, 

in part, on the likelihood function and it is closely related to the 

Akaike information criterion (AIC). 

When fitting models, it is possible to increase the likelihood by 

adding parameters, but doing so may result in over fitting. Both 

BIC and AIC resolve this problem by introducing a penalty term 

for the number of parameters in the model; the penalty term is 

larger in BIC than in AIC. 

The BIC is formally defined as 

                

The BIC generally penalizes free parameters more strongly the 

Akaike information criterion, though it depends on the size of n 

and relative magnitude of n and k. 

It is important to keep in mind that the BIC can be used to 

compare estimated models only when the numerical values of 

the dependent variable are identical for all estimates being 

compared. The models being compared need not be nested, 

unlike the case when models are being compared using an F-test 

c. Residual Sum of Squares 
In statistics, the residual sum of squares (RSS) is the sum of 

squares of residuals. It is also known as the sum of squared 

residuals (SSR) or the sum of squared errors of prediction 

(SSE). It is a measure of the discrepancy between the data and 

an estimation model. A small RSS indicates a tight fit of the 

model to the data. In general,  

Total sum of squares = explained sum of squares + residual sum 

of squares. In a model with a single explanatory variable, RSS is 

given by: 

                
 

 

   

 

Where    is the     value of the variable to be predicted,    is the 

    value of the explanatory variable, and       is the predicted 

value of   . 
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d. F-Measure score 
In statistical analysis of binary classification, the F1 score (also 

F-score or F-measure) is a measure of a test's accuracy. It 

considers both the precision p and the recall r of the test to 

compute the score: p is the number of correct positive results 

divided by the number of all positive results, and r is the number 

of correct positive results divided by the number of positive 

results that should have been returned. The F1 score can be 

interpreted as a weighted average of the precision and recall, 

where an F1 score reaches its best value at 1 and worst score at 

0. 

The F-measure of the system is defined as the weighted 

harmonic mean of its precision and recall, that is,  

   
 

 
 
 

       
 
 

 

Where the weight α   [0, 1]. The balanced F-measure, 

commonly denoted as F1 or just F, equally weighs precision and 

recall, which means α = 
 

 
. The F1 measure can be written as 

    
   

   
 

The F-measure can be viewed as a compromise between recall 

and precision. It is high only when both recall and precision are 

high. It is equivalent to recall when α = 0 and precision when α 

= 1. The F-measure assumes values in the interval [0, 1]. It is 0 

when no relevant documents have been retrieved, and is 1 if all 

retrieved documents are relevant and all relevant documents 

have been retrieved. 

4. PROPOSED WORK 
In this section of the paper we shed light on the process of 

enhancing the outcome of the clustering data after applying the 

density-based algorithms. This process is called post-processing, 

which means that the proposed work is not executed on density-

based algorithms themselves, but the execution happens after 

getting the first result. The purpose behind using the proposed 

work is to cover some the leak coming from applying DBSCAN 

or OPTICS algorithms. This leak is found when the same cluster 

shape has low dense regions that prevent the algorithms from 

identifying the full cluster shape and instead they divided the 

cluster into separated clusters as shown in Figure 4. 

 

 

Figure 4: Undetected dense region within single cluster 

This leak happens because of selecting specific ε and minPts as 

parameters to applying density-based algorithms DBSCAN or 

OPTICS. Our inability to increase or decrease the values of 

those parameters could result in merging two or more different 

clusters into one cluster and this is not the required outcome as 

shown in Figure 5. 

 

Figure 5: Low dense regions effect on clustering result, also 

two clusters are close to each other and increase/decrease 

values of ε or minPts cause merge.  

      

 
Figure 6: Up: The default result of two separated clusters 

prototype. Bottom: Two crescent clusters containing low 

dense regions causes the devision and the outcome of 

appliying density-based algorithms is preoducing four 

separated clusters 
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For more clarification, we will take the example of the two 

crescents as two separated clusters as shown in Figure 6. The 

issue appears when one of the crescents has low density region 

that causes the algorithm to break it into two clusters in addition 

to the existed crescent.  

One of the solutions for this leak is by adjusting ε or minPts 

but this may cause another issue especially if clusters are close 

to each other enough to be merged as one cluster and this is not 

the required solution nor valid cluster (see Figure 7). 

 

 

Figure 7: Two clusters and the result after applying density-

based algorithms with invalid adjusting ε or minPts 

Our proposed solution work after applying algorithm to expand 

the area of dense regions to link separated clusters as classified 

before. The process of expanding the area depends on selecting 

extra points that were already not selected as core or border 

when executing the algorithm. Selecting these points happens 

through selection models that were explained in section three of 

this paper. 

The main idea of select model process is calculating the distance 

between unselected points and the clustered points. After 

calculation, the selection functions decide which points will be 

included in the closest cluster. The selected models which were 

tested gave us different results with the different arbitrary shapes 

of clusters. The best result was observed when applying F-

measure quality model with density-based algorithm OPTICS. 

The next section discusses selecting statistical models with both 

density-based algorithms DBSCAN and OPTICS. 

5. EXPERIMINTAL RESULTS 
In this paper, the selection and evaluation are applied by 

using laptop with Core2Duo processors under operating system 

windows. 

The experimental implementation handles applying two 

clustering algorithms DBSCAN, and its extension OPTICS on 

1850 artificial random sampling dataset and another dataset on 

the internet about schizophrenia disease divided into two 

clusters for male and female patients. 

The random dataset created fitted many cases like high density 

and low, occasional and close points with arbitrary shape as 

presented in Figure 8. 

As shown in Figure 8, region A presents an isolated cluster with 

small noise surrounding and a good distance away from other 

clusters, while region B contains three different clusters in 

density and distance between each other. In addition, some noise 

causes the merge between upper and lower cluster when 

applying density-based algorithms with high ε. For region C, 

there are two clusters with good noise and good density, and the 

two dense regions are close enough to cause the merge between 

them after applying the algorithms. 

 

Figure 8: Sample dataset contain 1850 random points 

The evaluation is divided into two phases, DBSCAN with 

eps=0.06 and minPts=33 

The selection of these two parameters depend on the density of 

points and is optimized many times to get better clustering for 

sample dataset generated in the current study. For all selection 

models, the best values for BIC, AIC, and RSS are low except 

F-measure score achieved the best result with high value. 

Table 1: Number of clusters for each algorithms 

Algorithm BIC AIC RSS 
F-

Measure 

DBSCAN 6 8 7 6 

OPTICS 7 6 7 4 

Table 1 presents the actual result when applying the two 

clustering algorithms DBSCAN and OPTICS. Variant in results 

indicate good and useless results since the artificial already 

designed with four main clusters, and the close result comes 

from using OPTICS algorithm since it is the extended version of 

DBSCAN algorithm. Close result shaped after using F1 metric 

measurement as shown in Figure 8. 

 

Figure 9: Applying DBSCAN with Euclidean distance and 

optimized by RSS 
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In Figure 9 clearly the result of applying DBSCAN produces 7 

different clusters and a wide range of noise, so I continued with 

testing other selection models to improve the result of cluster 

size. 

 

 

Figure 10: Applying DBSCAN with Euclidean distance and 

optimized by BIC 

When applying BIC function, the observation result became 

negative since the number of clusters decreases and the noise 

points increase as shown clearly in Figure 10. 

 

 

Figure 11: Applying OPTICS with Euclidean distance and 

optimized by AIC 

When the algorithm changed to OPTICS with the same 

parameters ε = 0.06 and minPts=30, then the result was 

optimized using statistical models, the observation achieve 

better result in cluster number as appeared in Figure 11. But 

when applying more testing, the result of clustering get best 

cases with F-measure selection model and OPTICS algorithm 

for both number of clusters and the selected point within each 

cluster as shown clearly in Figure 12. 

 

 

Figure 12: Shows clustering dataset using OPTICS 

algorithm and optimized by F-measure selection model 

The second dataset under this experiment was for a 

schizophrenia patient as shown in Figure 13. It is clear that the 

dataset, divided into two clusters, presents distribution of the 

disease based on gender and age.  

 

Figure 13 : Gender and age of schizophrenia patient’s 

dataset 

This dataset contains 251 record, and the experiments result 

shown below in Figure 14 show the application of DBSCAN 

and OPTICS algorithms with parameters ε = 8 and minPts = 3 

(three patients at least in the range of 8 years). We will realize 

that DBSCAN divided the dataset into seven clusters. On the 

other side, OPTICS divided the dataset into four clusters. 
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Therefore, the observation for the two clustering algorithms has 

a high error rate which results from the two clusters that contain 

variant density data. 

 

 

Figure 14: Results of executing DBSCAN (top) and 

OPTICS (bottom) 

Table 2 below summarizes the applying of selection models 

after executing both of density-based algorithms DBSCAN and 

OPTICS. In addition, it compares the outcome with origin 

dataset that was already clustered to judge which selection 

model get better results after applying. 

 

 

Table 2: Results of applying all selection models after 

executing density-based algorithms with schizophrenia 

patients’ dataset. 

   
# of 

clus

ters 
Description 

D
B

S
C

A
N

 

R
S

S
 

 

5 

Enhancement of 

the number of 

clusters, but the 

error ratio is still 

high 

B
IC

 

 

5 

Same as with 

RSS, the updates 

become in 

selecting points. 

A
IC

 

 

7 

This model 

increases the 

number of 

clusters and this 

is not preferable. 

F
1

 

 

3 

F-score result is 

better than the 

other algorithms 

as seen here. 

O
P

T
IC

S
 

R
S

S
 

 

3 

With OPTICS, 

the result is more 

accurate and 

close to real 

clustered dataset. 

B
IC

 

 

3 

The updates 

focus only on 

selecting points 

within each 

dataset. 
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A
IC

 

 

3 

The selection and 

enhancement 

become better 

and close enough 

to the required 

outcome. 

F
1

 

 

2 

This result is the 

most accurate 

result to real 

clustered dataset  

 

6. CONCLUTION  
This paper studies applying selection modeling to achieve better 

results for clustering dataset with density distribution. 

The selection models that optimize the clustering method are 

BIC, AIC, RSS, and F1. These models already enhance the 

number of points within clustered dataset by DBSCAN or 

OPTICS algorithm. 

The good results appear when applying the F-measure selection 

model as observed in Figures when the number of points within 

the cluster increased and noise points decreased. 

For further future studies, applying these selection models and 

other statistical models on other Density-based clustering 

algorithms is recommended. 
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