
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 21, October 2018

11

Transfer Learning Approach for Fast Convergence of

Deep Q Networks in Game Pong

Baomin Shao

Department of Computer Science
and Technology, Shandong

University of Technology
No. 266, Xincun Xi Road, Zibo,

Shandong, China

Xue Jiang

Department of Computer Science
and Technology, Shandong

University of Technology
No. 266, Xincun Xi Road, Zibo,

Shandong, China

Qiuling Li

Department of Computer Science
and Technology, Shandong

University of Technology
No. 266, Xincun Xi Road, Zibo,

Shandong, China

ABSTRACT

By simulating the psychological and neurological system,

deep reinforcement learning method has been playing an

important role in the development and application of artificial

intelligence with the help of the powerful feature

representation capability of deep neural networks. The deep Q

network which improves traditional RL methods by breaking

out the learning mechanism of value function approximation

and policy search based on shallow structure, has the

capabilities of hierarchical feature extraction and accurate Q

value approximation in various high-dimensional sensing

environments.

In this paper, DQN was adapted into Game Pong playing,

however, it was found that by adjusting hyperparameters

(network architecture, exploration, learning rate), the Q-

values could not converge easily. The lacking convergence of

the Q-loss might be the limiting factor for better game playing

results. A transfer learning approach has been adopted for fast

convergence of DQN in game Pong, several measure

standards was used as rewards to train DQN, experiments

showed that this approach can get fast convergence of DQN

training, and DQN network play good performance on game

Pong.

General Terms

Deep Reinforce Learning, Digital Image Processing.

Keywords

DQN; Transfer Learning, Game Pong, Image Evaluation

1. INTRODUCTION
Pong is one of the earliest arcade video games. It is a "tennis

like" game featuring simple two-dimensional graphics which

was originally manufactured by Atari. There are two paddles

and a ball on the stage, the goal is to move two paddles to

keep a ball in play to defeat the opponent by being the first

one to gain certain points, a player gets a point once the

opponent misses a ball. There are three actions that each

agent can take: move up, move down, stay at the same place.

The game ends when one team reach the maximum score. It

has been studied in a variety of contexts as an interesting RL

domain. In pong game, agents can easily last thousands of

time steps, which is far more time consuming compared with

other domains [1]. On the other side, its observations are also

complex, containing the comprehension of players' score and

side walls, which information need to be extracted from raw

game scene image.

By simulating the psychological and neurological system,

deep reinforcement learning method has been playing an

important role in the development and application of artificial

intelligence with the help of the powerful feature

representation capability of deep neural network[2-4]. In recent

years, the progress reports on RL agents have had tremendous

influence in the field of machine learning and artificial

intelligence. In this area the deep Q network (DQN) proposed

by Google DeepMind[5], represents a major technical step

forward in the quest for general AI, it demonstrated a general-

purpose agent that is able to continually adapt its behavior

without any human intervention. Inspired by the features and

advantages of DQN, different background applications have

been developed: using DQN to character segmentation of

license plate images[6], DQN for financial signal

representation and trading[7], using DQN in text-based games

for language understanding[8]. Many studies showed that game

playing agents trained by DQN was able to surpass the overall

performance of a professional human reference player, that

shows that DQN has the capability of scene value evaluation

in various high-dimensional sensing environments. Besides

the application development combined with different research

areas, many researchers dedicated to optimize the structure of

DQN for a better and more stable performance, and numerous

algorithms were proposed[9-11], however, The powerful feature

representation and function approximation of deep neural

networks often mean a high cost of computation, it’s found

that in many applications the Q-values can’t converge easily

and the algorithm consumes much more time for training.

Furthermore, the agent in game normally needs to constantly

interact with the environment to make decisions. Thus, the

process takes even longer time.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 21, October 2018

12

Figure 1 The plot shows cost function changes per iteration, there is no sign of convergence in the first 50000 iterations

Although transfer RL is not a new research area, few studies

focus on deep RL algorithms, such as transfer DQN.

Compared with traditional back propagation networks, radial

basis function networks, and MDP, a deep neural network has

more layers, more parameters, and longer training time. To

accelerate the process of learning, it is necessary to study the

method of transfer learning in DQN. If the errors from action

estimation cannot be theoretically eliminated, the transfer

process of DQN may accumulate these errors to cause the

poor performance of the algorithm. Therefore, a double DQN

is adopted in this paper to remove the influence of action

overestimation.

The rest of this paper is organized as follows: Section II

introduces several background techniques of DQN in our

experiment and out model and algorithm in detail. In Section

III, experiment results and discussion were given, some

conclusion were made in this section.

2. PROPOSED METHOD

2.1 DQN
Deep reinforce learning method considers tasks as an agent

training procedure interacts with certain environment  ,

which is composed with a sequence of actions, observations

and rewards. The agent selects an action ta from the action

set of game environment, ={1...N} . The selected action

was used to play the game and get a new observation.

Normally the observation is represented as an image that is a

vector of raw pixel value. The agent also receives a reward

value tr to record the human understanding of the

observation. In Pong game, the reward can only be received

when a ball was missed, maybe thousands of time-steps have

elapsed. Because the agent can only get the observation of

current stage, sometimes some frames before current stage

can be buffered, it’s less realistic to totally understand the

situation of current observation and give it an evaluation

value. So a sequence of actions 1 1 2 2 1, , , ,..., ,t tx a x a a x and

observations was considered to learn dependencies upon this

sequence and learn game playing strategy. The goal of the

agent is to select actions by maximize reward of next frame,

and interact with the game, repeat this process and get a good

final reward. An optimal action-value function
*(,)Q s a was

defined as the maximum expected value after one moving

strategy,
*(,) max [, ,]t t tQ s a R s s a a     , where

 is a policy distributions over actions. The basic idea of

DQN is maximizing the expected value of
* ' '(,)r Q s a ,

future rewards are assumed to discount by this factor  .

'
'

* * ' '

~
(,) [max (,) ,]

s
a

Q s a E r Q s a s a


  . DQN uses a

non-linear neural network function as Q evaluation network,

this network was trained by minimizing the loss function

()i iL  in each iteration i ,

2

, ~ (.)() [((, ;))]i i s a i iL E y Q s a  

Where iy is the target for iteration i and (,)s a is a

probability distribution over sequence and actions. it is often

computationally expedient to optimize the loss function by

stochastic gradient descent., The parameters from the previous

iteration are held fixed when optimizing the loss function.

2.2 Transfer Learning
If knowledge from related tasks, such as weights, value

functions, and policies, can be transferred to target tasks, the

learning difficulties can be sharply reduced. Many researchers

have tried to resolve this problem by three approaches: model

transfer, sample transfer, and feature transfer. Model transfer

is the simplest and most direct approach. Fachantidis et al [12].

transferred the state transition and reward function models of

source tasks to target tasks. In this way, they realize the

transfer from 2-D to 3-D in the mountain car task. However,

the algorithm performance will be affected by the model

dependence between related tasks. Compared with model

transfer, sample transfer is more general. It is reported in[13]

that even if there are obvious model differences between

source and target tasks, the sample transfer from source tasks

can still help the target task reduce requirements for samples.

When directly using pong score as the loss function

computing parameters, as is shown in Figure 1, the cost

function is difficult to convergence, this is because only the

left paddle touches the ball score value will change, and in

other time changing frames, the score doesn’t change, this

leads to less training data, it is difficult to achieve the purpose

reinforcement learning training. The experimental results also

prove that the operation of the paddle is essentially moving

randomly, the moving has no relationship with better score. In

view of this, the parameters that can measure the change of

the environment in the time sequence were introduced, the

following different distances are used to measure the value of

different frames, and a new reward function based on these

distances was built.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 21, October 2018

13

Figure 2 Pong environment and different evaluation

methods, these methods use different distance between

position of ball and the center point of left paddle that

agent controls

The most commonly used distance is the Euclidean distance.

In an image space, the Euclidean distance is the straight-line

distance between two pixels. The distance between two points

p and q is defined as the square root of the sum of the squares

of the differences between the corresponding coordinates of

the points. The two-dimensional Euclidean geometry, the

Euclidean distance between two points paddle center 1 1(,)x y

and ball 2 2(,)x y is defined as:

2 2

1 2 1 2() ()Ed x x y y   

This distance is shown as an orange line in Figure 2.

The manhattan distance between two points in an image space

is based on a strictly horizontal and/or vertical path as

opposed to the diagonal. It’s the simple sum of the horizontal

and vertical components, it is also called the L1 distance of

two points, then the manhattan distance between two points

paddle center 1 1(,)x y and ball 2 2(,)x y is given by

1 2 1 2MHd x x y y   

The manhattan distance is shown as the yellow line in Figure

2.

The chessboard distance metric measures the path between the

pixels based on an 8-connected neighborhood. Pixels whose

edges or corners touch are 1 unit apart. The chessboard

distance is a metric defined on a vector space where the

distance between two vectors is the greatest of their

differences along any coordinate dimension. In two

dimensions, i.e. image space of Pong frame, their chessboard

distance is
1 2 1 2max(,)chessd x x y y   , in Figure 2 it

corresponds with the bottom yellow line. If the maximum

function in chessboard distance is changed into minimum

function, then city block distance can be calculated.

3. EXPERIMENTS AND RESULTS

3.1 Deep Neural Network Architecture
The DQN network model had three convolutional layers

followed by three fully connected layers. In the input layer,

there was one channel getting the sequential frames. One

frame was an 84x84 vector. In the first convolutional layer,

there were 32 filters. The filter size was 3x3 with stride 4. In

the second convolutional layer, there were 32 filters with filter

size 3x3 with stride 2. The third convolutional layer had 32

filters with filter size 3x3 with stride 1. After three

convolutional layers, there were one flatten layer and three

fully connected layers. The output dimension was equal to the

number of actions in the Game Pong DQN agent. In Game

Pong, the total number of actions for each character was 3.

These actions were the moving directions of left paddle. (Up,

Down, and Hold-on). As is shown in Figure 3. The target net

had the same structure with the evaluation net, in the training

period, the parameters in the target net were fixed, and the

parameters in the evaluation net were updated using gradient

descent method, whose loss function could be changed with

different evaluation standards. After numerous iteration of

training, the parameters in the evaluation net were copied to

target net.

Figure 3 The structure of DQN for Game Pong

Transfer learning significantly improved the performance of

our network. When the four measuring methods were adopted

in the network, its performance was improved more quickly

than the network trained from scratch on the game score. As is

shown in Figure 4, the above four distance measurement of

scenes were respectively adopted as the parameters of DQN

training. Compared with the initial score parameters, all of

them could converge better. Moreover, the experimental

scenario also showed that a better play could be achieved.

Due to different parameters, the city block distance converges

the fastest, and after 10,000 iterations the game could achieve

a better playing scene. The first manhattan distance is more

stable, it almost has the same performance as the agent using

priori knowledge. When the other two distances were adopted,

paddles could hit the ball when moving, but when the distance

was far away, there would be shock, which might be because

the direction of movement could not be determined during

training.

Ball(x2,y2)

Left Paddle Right Paddle

Paddle Center(x1,y1)

(x3,y1)

Evaluation Net

Input(None, 84, 84 ,1)

Cov2d(3*3*1*32)
stride(1,4,4,1)

Cov2d(3*3*32*32)
stride(1,2,2,1)

Cov2d(3*3*32*32)
stride(1,1,1,1)

Flatten(None, 2048)

FC(2048,200)

FC(200,150)

FC(150,3)

Target Net
Q Target

Value

Loss Function

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 21, October 2018

14

Figure 4 Transfer learning performance after adapting four kinds of evaluation distances, the four methods are manhattan

distance, city block distance, Euclidean distance and chessboard distance

The reason for this improved performance is that the network

likely learned many relevant features for Game Pong during

its training, each action could give the training effective

metric, the rewards were not smooth and strongly encouraged

local optima. After training, the agent switched to the game

score it only had to reweight the network parameter, and it

converged very fast.

In conclusion, the experiment results indicated that transfer

learning was a viable strategy for training an AI for Game

Pong, the introduction of additional parameters based on the

scene information of the game can improve the training

process of DQN and achieve a relatively stable execution

result. However, the game is relatively simple and the

parameter selection is easy to achieve convergence. If there

are more parameters in the complex scene, more analysis and

comparison are required.

4. REFERENCES
[1] M. G. Bellmare, Y. Naddaf, J. Veness and M. Bowling,

The Arcade learning environment: an evaluation

platform for general agents, Journal of Artificial

Intelligence Research, 47, pp.253–279, 2013

[2] D. Zhao and Y. Zhu, MEC-a near-optimal online

reinforcement learning algorithm for continuous

deterministic systems, IEEE Trans. Neural Netw. Learn.

Sys., vol. 26, no. 2, pp. 346–356, Feb. 2015.

[3] B. Piot, M. Geist, and O. Pietquin, Bridging the gap

between imitation learning and inverse reinforcement

learning, IEEE Trans. Neural Netw. Learn. Syst., vol. 28,

no. 8, pp. 1814–1826, Aug. 2017.

[4] J. Li, H. Modares, T. Chai, F. L. Lewis, and L. Xie, Off-

policy reinforcement learning for synchronization in

multiagent graphical games, IEEE Trans. Neural Netw.

Learn. Syst., vol. 28, no. 10, pp. 2434–2445, Oct. 2017.

[5] V. Mnih et al., Human-level control through deep

reinforcement learning, Nature, vol. 518, pp. 529–533,

2015.

[6] F. Abtahi, Z. Zhu, and A. M. Burry, A deep

reinforcement learning approach to character

segmentation of license plate images, in Proc. IAPR Int.

Conf. Mach. Vis. Appl., Jul. 2015, pp. 539–542.

[7] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, Deep

Direct Reinforcement Learning for Financial Signal

Representation and Trading. IEEE Trans. Neural Netw.

Learn. Syst., vol. 28, no. 3, pp. 653–664, Mar. 2017.

[8] K. Narasimhan, T. Kulkarni, and R. Barzilay, Language

understanding for text-based games using deep

reinforcement learning, in Proc. Conf. Empir. Methods

Nature Lang. Process., Sep. 2015, pp. 1–11.

[9] H. Y. Ong, K. Chavez, and A. Hong. (2015). Distributed

deep Q learning. [Online]. Available:

https://arxiv.org/abs/1508.04186

[10] M. E. Taylor, G. Kuhlmann, and P. Stone, Accelerating

search with transferred heuristics, in Proc. ICAPS

Workshop AI Planning Learn., 2007.

[11] M. Riedmiller, Neural fitted Q iteration—First

experiences with a data efficient neural reinforcement

learning method, in Proc. Eur. Conf. Mach. Learn., Oct.

2005, pp. 317–328.

[12] A. Fachantidis, I. Partalas, G. Tsoumakas, and I.

Vlahavas, Transferring models in hybrid reinforcement

learning agents, in Proc. IFIP Adv. Inf. Commun.

Technol., Sep. 2011, pp. 162–171.

[13] A. Lazaric, M. Restelli, and A. Bonarini, Transfer of

samples in batch reinforcement learning, in Proc. 25th

Int. Conf. Mach. Learn., Jul. 2008, pp. 544–551.

IJCATM : www.ijcaonline.org

