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ABSTRACT 

By simulating the psychological and neurological system, 

deep reinforcement learning method has been playing an 

important role in the development and application of artificial 

intelligence with the help of the powerful feature 

representation capability of deep neural networks. The deep Q 

network which improves traditional RL methods by breaking 

out the learning mechanism of value function approximation 

and policy search based on shallow structure, has the 

capabilities of hierarchical feature extraction and accurate Q 

value approximation in various high-dimensional sensing 

environments. 

In this paper, DQN was adapted into Game Pong playing, 

however, it was found that by adjusting hyperparameters 

(network architecture, exploration, learning rate), the Q-

values could not converge easily. The lacking convergence of 

the Q-loss might be the limiting factor for better game playing 

results. A transfer learning approach has been adopted for fast 

convergence of DQN in game Pong, several measure 

standards was used as rewards to train DQN, experiments 

showed that this approach can get fast convergence of DQN 

training, and DQN network play good performance on game 

Pong. 
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1. INTRODUCTION 
Pong is one of the earliest arcade video games. It is a "tennis 

like" game featuring simple two-dimensional graphics which 

was originally manufactured by Atari. There are two paddles 

and a ball on the stage, the goal is to move two paddles to 

keep a ball in play to defeat the opponent by being the first 

one to gain certain points, a player gets a point once the 

opponent misses a ball.  There are three actions that each 

agent can take: move up, move down, stay at the same place. 

The game ends when one team reach the maximum score. It  

has been studied in a variety of contexts as an interesting RL 

domain. In pong game, agents can easily last thousands of 

time steps, which is far more time consuming compared with 

other domains [1]. On the other side, its observations are also 

complex, containing the comprehension of players' score and 

side walls, which information need to be extracted from raw 

game scene image. 

By simulating the psychological and neurological system, 

deep reinforcement learning method has been playing an 

important role in the development and application of artificial 

intelligence with the help of the powerful feature 

representation capability of deep neural network[2-4]. In recent 

years, the progress reports on RL agents have had tremendous 

influence in the field of machine learning and artificial 

intelligence. In this area the deep Q network (DQN) proposed 

by Google DeepMind[5], represents a major technical step 

forward in the quest for general AI, it demonstrated a general-

purpose agent that is able to continually adapt its behavior 

without any human intervention. Inspired by the features and 

advantages of DQN, different background applications have 

been developed: using DQN to character segmentation of 

license plate images[6], DQN for financial signal 

representation and trading[7], using DQN in text-based games 

for language understanding[8]. Many studies showed that game 

playing agents trained by DQN was able to surpass the overall 

performance of a professional human reference player, that 

shows that DQN has the capability of scene value evaluation 

in various high-dimensional sensing environments. Besides 

the application development combined with different research 

areas, many researchers dedicated to optimize the structure of 

DQN for a better and more stable performance, and numerous 

algorithms were proposed[9-11], however, The powerful feature 

representation and function approximation of deep neural 

networks often mean a high cost of computation, it’s found 

that in many applications the Q-values can’t converge easily 

and the algorithm consumes much more time for training. 

Furthermore, the agent in game normally needs to constantly 

interact with the environment to make decisions. Thus, the 

process takes even longer time.  
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Figure 1 The plot shows cost function changes per iteration, there is no sign of convergence in the first 50000 iterations 

Although transfer RL is not a new research area, few studies 

focus on deep RL algorithms, such as transfer DQN. 

Compared with traditional back propagation networks, radial 

basis function networks, and MDP, a deep neural network has 

more layers, more parameters, and longer training time. To 

accelerate the process of learning, it is necessary to study the 

method of transfer learning in DQN. If the errors from action 

estimation cannot be theoretically eliminated, the transfer 

process of DQN may accumulate these errors to cause the 

poor performance of the algorithm. Therefore, a double DQN 

is adopted in this paper to remove the influence of action 

overestimation.  

The rest of this paper is organized as follows: Section II 

introduces several background techniques of DQN in our 

experiment and out model and algorithm in detail.  In Section 

III, experiment results and discussion were given, some 

conclusion were made in this section. 

2. PROPOSED METHOD 

2.1 DQN 
Deep reinforce learning method considers tasks as an agent 

training procedure interacts with certain environment  , 

which is composed with a sequence of actions, observations 

and rewards. The agent selects an action ta  from the action 

set of game environment, ={1...N} . The selected action 

was used to play the game and get a new observation. 

Normally the observation is represented as an image that is a 

vector of raw pixel value. The agent also receives a reward 

value tr  to record the human understanding of the 

observation. In Pong game, the reward can only be received 

when a ball was missed, maybe thousands of time-steps have 

elapsed. Because the agent can only get the observation of 

current stage, sometimes some frames before current stage 

can be buffered, it’s less realistic to totally understand the 

situation of current observation and give it an evaluation 

value. So a sequence of actions  1 1 2 2 1, , , ,..., ,t tx a x a a x  and 

observations was considered to learn dependencies upon this 

sequence and learn game playing strategy. The goal of the 

agent is to select actions by maximize reward of next frame, 

and interact with the game, repeat this process and get a good 

final reward. An optimal action-value function 
*( , )Q s a was 

defined as the maximum expected value after one moving 

strategy, 
*( , ) max [ , , ]t t tQ s a R s s a a     , where   

 is a policy distributions over actions. The basic idea of 

DQN is maximizing the expected value of 
* ' '( , )r Q s a , 

future rewards are assumed to discount by this factor  . 

'
'

* * ' '

~
( , ) [ max ( , ) , ]

s
a

Q s a E r Q s a s a


  . DQN uses a 

non-linear neural network function as Q evaluation network, 

this network was trained by minimizing the loss function 

( )i iL    in each iteration   i , 

 
2

, ~ (.)( ) [( ( , ; )) ]i i s a i iL E y Q s a    

Where iy is the target for iteration i and ( , )s a is a 

probability distribution over sequence and actions. it is often 

computationally expedient to optimize the loss function by 

stochastic gradient descent., The parameters from the previous 

iteration are held fixed when optimizing the loss function. 

2.2 Transfer Learning 
If knowledge from related tasks, such as weights, value 

functions, and policies, can be transferred to target tasks, the 

learning difficulties can be sharply reduced. Many researchers 

have tried to resolve this problem by three approaches: model 

transfer, sample transfer, and feature transfer. Model transfer 

is the simplest and most direct approach. Fachantidis et al [12]. 

transferred the state transition and reward function models of 

source tasks to target tasks. In this way, they realize the 

transfer from 2-D to 3-D in the mountain car task. However, 

the algorithm performance will be affected by the model 

dependence between related tasks. Compared with model 

transfer, sample transfer is more general. It is reported in[13] 

that even if there are obvious model differences between 

source and target tasks, the sample transfer from source tasks 

can still help the target task reduce requirements for samples. 

When directly using pong score as the loss function 

computing parameters, as is shown in Figure 1, the cost 

function is difficult to convergence, this is because only the 

left paddle touches the ball score value will change, and in 

other time changing frames, the score doesn’t change, this 

leads to less training data, it is difficult to achieve the purpose 

reinforcement learning training. The experimental results also 

prove that the operation of the paddle is essentially moving 

randomly, the moving has no relationship with better score. In 

view of this, the parameters that can measure the change of 

the environment in the time sequence were introduced, the 

following different distances are used to measure the value of 

different frames, and a new reward function based on these 

distances was built.  
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Figure 2 Pong environment and different evaluation 

methods, these methods use different distance between 

position of ball and the center point of left paddle that 

agent controls 

The most commonly used distance is the Euclidean distance. 

In an image space, the Euclidean distance is the straight-line 

distance between two pixels. The distance between two points 

p and q is defined as the square root of the sum of the squares 

of the differences between the corresponding coordinates of 

the points. The two-dimensional Euclidean geometry, the 

Euclidean distance between two points paddle center 1 1( , )x y   

and ball 2 2( , )x y is defined as: 

2 2

1 2 1 2( ) ( )Ed x x y y     

This distance is shown as an orange line in Figure 2. 

The manhattan distance between two points in an image space 

is based on a strictly horizontal and/or vertical path as 

opposed to the diagonal. It’s the simple sum of the horizontal 

and vertical components, it is also called the L1 distance of 

two points, then the manhattan distance between two points 

paddle center 1 1( , )x y   and ball 2 2( , )x y is given by 

1 2 1 2MHd x x y y     

The manhattan distance is shown as the yellow line in Figure 

2. 

The chessboard distance metric measures the path between the 

pixels based on an 8-connected neighborhood. Pixels whose 

edges or corners touch are 1 unit apart. The chessboard 

distance is a metric defined on a vector space where the 

distance between two vectors is the greatest of their 

differences along any coordinate dimension. In two 

dimensions, i.e. image space of Pong frame, their chessboard 

distance is 
1 2 1 2max( , )chessd x x y y   , in Figure 2 it 

corresponds with the bottom yellow line. If the maximum 

function in chessboard distance is changed into minimum 

function, then city block distance can be calculated. 

3. EXPERIMENTS AND RESULTS 

3.1 Deep Neural Network Architecture 
The DQN network model had three convolutional layers 

followed by three fully connected layers. In the input layer, 

there was one channel getting the sequential frames. One 

frame was an 84x84 vector. In the first convolutional layer, 

there were 32 filters. The filter size was 3x3 with stride 4.  In 

the second convolutional layer, there were 32 filters with filter 

size 3x3 with stride 2. The third convolutional layer had 32 

filters with filter size 3x3 with stride 1. After three 

convolutional layers, there were one flatten layer and three 

fully connected layers. The output dimension was equal to the 

number of actions in the Game Pong DQN agent. In Game 

Pong, the total number of actions for each character was 3. 

These actions were the moving directions of left paddle. (Up, 

Down, and Hold-on). As is shown in Figure 3. The target net 

had the same structure with the evaluation net, in the training 

period, the parameters in the target net were fixed, and the  

parameters in the evaluation net were updated using gradient 

descent method, whose loss function could be changed with 

different evaluation standards. After numerous iteration of 

training, the parameters in the evaluation net were copied to 

target net.  

 

Figure 3 The structure of DQN for Game Pong 

Transfer learning significantly improved the performance of 

our network. When the four measuring methods were adopted 

in the network, its performance was improved more quickly 

than the network trained from scratch on the game score. As is 

shown in Figure 4, the above four distance measurement of 

scenes were respectively adopted as the parameters of DQN 

training. Compared with the initial score parameters, all of 

them could converge better. Moreover, the experimental 

scenario also showed that a better play could be achieved. 

Due to different parameters, the city block distance converges 

the fastest, and after 10,000 iterations the game could achieve 

a better playing scene. The first manhattan distance is more 

stable, it almost has the same performance as the agent using 

priori knowledge. When the other two distances were adopted, 

paddles could hit the ball when moving, but when the distance 

was far away, there would be shock, which might be because 

the direction of movement could not be determined during 

training. 

Ball(x2,y2)

Left Paddle Right Paddle

Paddle Center(x1,y1)

(x3,y1)
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Input(None, 84, 84 ,1)
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Figure 4 Transfer learning performance after adapting four kinds of evaluation distances, the four methods are manhattan 

distance, city block distance, Euclidean distance and chessboard distance 

The reason for this improved performance is that the network 

likely learned many relevant features for Game Pong during 

its training, each action could give the training effective 

metric, the rewards were not smooth and strongly encouraged 

local optima.  After training, the agent switched to the game 

score it only had to reweight the network parameter, and it 

converged very fast.  

In conclusion, the experiment results indicated that transfer 

learning was a viable strategy for training an AI for Game 

Pong, the introduction of additional parameters based on the 

scene information of the game can improve the training 

process of DQN and achieve a relatively stable execution 

result. However, the game is relatively simple and the 

parameter selection is easy to achieve convergence. If there 

are more parameters in the complex scene, more analysis and 

comparison are required. 
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