Abstract

Autonomous vehicle technology has seen immense breakthroughs in recent years. Currently existing models, however, are inoperable in moderate to highly adverse environments, clearly indicating a need for refinement in all three key aspects of a self-driving vehicle, which are navigation, system interconnection and security systems. A self-driving vehicle must be able to traverse difficult terrain in adverse weather conditions and reach its destination accurately before its navigation systems can be deemed fit for public usage. Self-driving vehicles must be interconnected and must work efficiently in cooperation to minimize traffic and time delay in travel while also having adequate backup systems to cope with interconnection and network failures. In this paper are reviewed multiple different approaches to the solution of each of these aspects of a self-driving car. Based on the inferences of this review, the areas where improvement could result in more breakthroughs which could make autonomous vehicle technology get implemented in the near future are highlighted.

References
2. World Health Organization Global status report on Road Safety 2015
5. Zhilu Chen and Xinming Huang "End-to-End Learning for Lane Keeping of Self-Driving Cars" IEEE Intelligent Vehicles Symposium (IV) 2017, pp.1856-1860

Index Terms

Computer Science Security
Keywords

Cybersecurity, intrusion detection, navigation, self-driving car, system-of-systems, Voronoi cells.