
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 23, October 2018

1

Parallel Algorithms for Evaluating Centrality for

Weighted Graphs

Noor Mohammad Zahid
American International University-Bangladesh

Dhaka, Bangladesh

Badrun Nahar Khan
American International University-Bangladesh

Dhaka, Bangladesh

ABSTRACT

This paper discusses fast parallel algorithms for evaluating

betweenness centrality in complex network analysis for

weighted graphs. The previous studies on this topic mainly

focused on unweighted graphs. Moreover, we will try to

implement a shortest path algorithm which is the input of the

parallel algorithm. These algorithms have been optimized to

exploit properties typically observed in real-world large scale

networks. The algorithm are implemented on real datasets

such as the web graph, protein-interaction networks, movie-

actor and citation networks, and report impressive parallel

performance for evaluation of the computationally intensive

centrality metrics on high-end shared memory symmetric

multiprocessor and multithreaded architectures. For instance,

we compute the exact betweenness centrality value for each

vertex in a large US patent citation network (3 mil- lion

patents, 16 million citations) in 42 minutes on 16 processors,

utilizing 20GB RAM of the IBM p5 570. Current SNA

packages on the other hand cannot handle graphs with more

than hundred thousand edges.

General Terms

Parallel algorithm, centrality measurement, beweenness

centrality

Keywords

Parallel algorithm, weighted graph, centrality, betweenneess

centrality etc

1. INTRODUCTION
In any graph or network, the topology determines an influence

structure among the nodes. Identifying the most important

nodes in a network helps in explaining the network’s

dynamics, e.g., the distribution of power in exchange

networks or migration in biological networks, as well as in

designing optimal ways to externally influence the network,

e.g., attack vulnerability of networks [1]. However, node

importance is a rather vague concept and can be interpreted in

various ways, giving rise to multiple coexisting centrality

measures, the most common being degree closeness

eigenvector and betweenness centrality. Finally, in

betweenness centrality, the centrality of a node is given by the

frequency of this node belonging to the shortest path between

other two nodes in the network. Network analysis and

modeling have received considerable attention in recent times,

but algorithms are relatively less studied. Real-world
networks are often very large in size, ranging from several

hundreds of thousands to billions of vertices and edges. A

space-efficient memory representation of such graphs is itself

a big challenge, and dedicated algorithms have to be designed

exploiting the unique characteristics of these networks. On

single processor workstations, it is not possible to do exact in-

core computations on large graphs due to the limited physical

memory. Current high-end parallel computers have sufficient

physical memory to handle large graphs, and a naıve in-core

implementation of a graph theory problem is typically two

orders of magnitude faster than the best external memory

implementation [2]. Algorithm design is further simplified on

parallel shared memory systems; due to the globally address

memory space, there is no need to partition the graph, and we

can avoid the overhead of message passing. However,

attaining good performance is still a challenge, as a large class

of graph algorithms are combinatorial in nature, and involve a

significant number of non-contiguous, concurrent accesses to

global data structures with low degrees of locality.

2. CENTRALITY MATRICS
One of the fundamental problems in network analysis is to

determine the importance of a particular vertex or an edge in a

network. Quantifying centrality and connectivity helps us

identify portions of the network that may play interesting

roles. Researchers have been proposing metrics for centrality

for the past 50 years, and there is no single accepted

definition. The metric of choice is dependent on the

application and the network topology. Almost all metrics are

empirical, and can be applied to element-level [3], grouplevel

[4], or network-level analyses. We present a few commonly

used indices in this section.

2.1 Preliminaries
Consider a graph G = (V,E), where V is the set of vertices

representing actors or nodes in the social network, and E, the

set of edges representing the relationships between the actors.

The number of vertices and edges are denoted by n and m,

respectively. The graphs can be directed or undirected. Let us

assume that each edge e ∈ E has a positive integer weight

w(e). For unweighted graphs, we use w(e) = 1. A path from

vertex s to t is defined as a sequence of edges (ui, ui+1), 0 ≤ i

≤ l, where u0 = s and ul = t. The length of a path is the sum of

the weights of edges. We use d(s, t) to denote the distance

between vertices s and t (the minimum length of any path

connecting s and t in G). Let us denote the total number of

shortest paths between vertices s and t by σst, and the number

passing through vertex v by σst(v).

2.1.1 Degree Centrality
The degree centrality DC of a vertex v is simply the degree

deg(v) for undirected graphs. For directed graphs, we can

define two variants: in-degree centrality and out-degree

centrality. This is a simple local measure, based on the notion

of neighborhood. This index is useful in case of static graphs,

for situations when we are interested in finding vertices that

have the most direct connections to other vertices.

2.1.2 Closeness Centrality
This index measures the closeness, in terms of distance, of an

actor to all other actors in the network. Vertices with a smaller

total distance are considered more important. Several

closeness-based metrics [5, 6, 7] have been developed by the

SNA community. A commonly used definition is the

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 23, October 2018

2

reciprocal of the total distance from a particular vertex to all

other vertices:

CC(v) = 1 /(u∈V d(v, u))

 Unlike degree centrality, this is a global metric. To calculate

the closeness centrality of a vertex v, we may apply

breadthfirst search (BFS, for unweighted graphs) or a single-

source shortest paths (SSSP, for weighted graphs) algorithm

from v.

2.1.3 Betweenness Centrality
Betweenness Centrality is another shortest paths enumeration-

based metric, introduced by Freeman in [8]. Let δst(v) denote

the pairwise dependency, or the fraction of shortest paths

between s and t that pass through v:

δst(v) = σst(v) /σst

This metric can be thought of as normalized stress centrality.

Betweenness centrality of a vertex measures the control a

vertex has over communication in the network, and can be

used to identify key actors in the network. High centrality

indices indicate that a vertex can reach other vertices on

relatively short paths, or that a vertex lies on a considerable

fraction of shortest paths connecting pairs of other vertices.

We discuss algorithms to compute this metric in detail in the

next section. This index has been extensively used in recent

years for analysis of social as well as other large scale

complex networks. Some applications include biological

networks [9, 10, 11], study of sexual networks and AIDS [12],

identifying key actors in terrorist networks, organizational

behavior, supply chain management, and transportation

networks. There are a number of commercial and

research software packages for SNA (e.g., Pajek

[13], InFlow, UCINET) which can also be used to

determine these centrality metrics. However, they

can only be used to study comparatively small

networks (in most cases, sparse graphs with less

than 40,000 vertices). Our goal is to develop fast,

high performance implementations of these metrics

so that we can analyze large-scale real-world graphs of

millions to billions of vertices.

3. BETWEENNESS CENTRALITY

ALGORITHM
These two metrics require shortest paths enumeration and we

design our parallel algorithm based on Brandes’ [14]

sequential algorithm for sparse graphs. Alg. 1 outlines the

general approach for the case of unweighted graphs. On each

BFS computation from s, the queue Q stores the current set of

vertices to be visited, S contains all the vertices reachable

from s, and P(v) is the predecessor set associated with each

vertex v ∈ V . The arrays d and σ store the distance from s,

and shortest path counts, respectively. The centrality values

are computed in steps 22–25, by summing the dependencies

δ(v), v ∈ V . The final scores need to be divided by two if the

graph is undirected, as all shortest paths are counted twice.

We observe that parallelism can be exploited at two levels:

Algorithm

Input: Graph G(V, E), the betweenness centrality values

BCG of G, and new edge e ∈V *V

Output: The betweenness centrality values BCG’’ of

graph G’’ that is constructed by inserting edge e to

graph G

1: Find the biconnected components of G’’

2: Let B’e (V’Be, E’Be) be the biconnected component of

G’’ that edge e belongs to

 3: Let Be (VBe, EBe) be B’e (V’Be, E’Be -{e})

4: Let e =(v1,v2)

5: Perform a breadth-first search to compute the

distance dv1s between v1 and s in Be

6: Perform a breadth-first search to compute the

distance dv2s between v2 and s in Be

7: for all nodes s ∈ VBe do

8: if dv1s ≠ dv2s then

9: Add s to Q

10: for all nodes s ∈ Q do

11: Find σs[v] and Ps[v] for v ∈ VBe (BFS from s) 12:

 s[v] = 0 for v ∈ VBe

13: Gs[v] = 0 for v ∈ VBe

14: for all nodes w ∈ VBe in reverse BFS order from s

do

15: if s and w are articulation points then

16: Gs[w]= |VGs|.|VGw|

17: for p ∈ Ps[w] do

18: s[p] = s[p] +(σs[p]/ σs[w]) . (1+ s[w])

19: if s is an articulation point then

20: s[p] = s[p] + s[w] .(σs[p]/ σs[w])

21: if w ≠ s then

22: BCG’ [w]= BCG’ [w]- s[w]/2.0

23: if s is an articulation point then

24: BCG’ [w]= BCG’ [w]- s[w]. |VGs|

25: BCG’ [w]= BCG’ [w]- Gs[w]/2.0

26: Find σ’s[v] and P’s[v] for V’Be (partial BFS from s)

27: ’s[v] = 0 for v ∈ V’Be

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 23, October 2018

3

28: ’Gs[v] = 0 for v ∈ V’Be

29: for all nodes w ∈ V’Be in reverse BFS order from s

do

30: if s and w are articulation points then

31: ’Gs[w] = |VGs|.|VGw|

32: for p ∈ P’s [w] do

33: ’s[p] = ’s[p] +(σ’s[p]/ σ’s[w]) . (1+ ’s[w])

34: if s is an articulation point then

35: ’s[p] = ’s[p] + ’s[w] .(σ’s[p]/ σ’s[w])

36: if w ≠ s then

37: BCG’ [w]= BCG’ [w]+ s[w]/2.0

38: if s is an articulation point then

39: BCG’ [w]= BCG’ [w] + s[w]. |VGs|

40: BCG’ [w]= BCG’ [w] + Gs[w]/2.0

 41: return BCG’

The algorithm works as follows: Line 1 decomposes the input

graph G’ into its biconnected components using Hopcroft and

Tarjan algorithm. Then, Line 2 identifies biconnected

component B’e that is affected by the graph update. It

performs the biconnected components decomposition on G’

instead of G to support the general case when the inserted

edge ‘e’ connects multiple biconnected components of G.

Following, Lines 5–9 identify set Q by performing two

breadth-first traversals in Be. For all nodes in set Q, Lines 10–

40 iteratively update the betweenness centrality of nodes in

B’e by performing a breadth-first and a reverse breadth-first

search, respectively. The updates are done in two steps:

subtracting the old source and external graph dependencies;

i.e., A[v], B[v], and C[v] (Lines 11–25), and adding the new

source and external graph dependencies; i.e., A’[v], B’[v], and

C’[v] (Lines 26–40). Computing and adding A’[v], B’[v], and

C’[v] are done similarly in Lines 26–40. Computing the

source dependencies that encapsulate node pairs in A[v] is

done with a direct application of Equation (4) in Line 18.

These source dependencies are subtracted from the

betweenness centrality values in Line 22. The pair

dependencies in B[v] are encapsulated in s[w]. |VGs|, which is

subtracted in Line 24. This is done only if ‘s’ is an

articulation. The case of pair dependencies in C[v] is more

involved, and requires maintaining the structure Gs[v]to

compute the external graph dependencies (Line 13).

Computing Gs[v] starts with the base case when both the

source s and the node considered in the reverse breadth-first

search (i.e, w) are articulation points. This is done in Line 16.

The external graph dependency on node w is computed if the

source s is an articulation point in Line 20. Note that Gs.(w) is

defined only if ‘s’ is an articulation point, because that is the

case when external graph dependencies are defined and

needed to be propagated to nodes in B’e. Note that s.(w)and

 Gs.(w) in Lines 22 and 25 to avoid counting the same path

twice, since the input graph is undirected.

The alorithm utilizes the fact that many σsv values remain

unchanged in the breadth-first search DAG of s after inserting

edge ‘e’, even when s∈Q. Let ‘l’ be the node of ‘e’ further

from ‘s’ in its breadth-first search DAG. To find the nodes for

which σsv changes, we only need to start a breadth-first search

from ‘l’ in the breadth-first DAG of ‘s'. We refer to this

optimized traversal as partial breadth-first search (Line 26).

4. CONCLUSION
We present parallel algorithms for evaluating several network

indices, including betweenness centrality, optimized for

Symmetric Multiprocessors and multithreaded architectures.

To our knowledge, this is the first effort at parallelizing these

widely-used social network analysis tools. Our

implementations are designed to handle problem sizes in the

order of billions of edges in the network, and this is three

orders of magnitude larger than instances that can be handled

by current social network analysis tools. We are currently

working on improving the betweenness centrality

implementation on the MTA-2, and also extend it to

efficiently compute scores for weighted graphs. Previously,

the works were based on unweighted graph. In future, we plan

to implement and analyze performance of approximate

algorithms for closeness and betweenness centrality detailed

the paper, and also apply betweenness centrality values to

solve harder problems like graph clustering.

5. ACKNOWLEDGMENTS
We would like to show our great honor to Dr. Saddam

Hossain Mukta who has introduced with this topic and helped

us to understand the things we could not understand.

6. REFERENCES
[1] Segarra, S., & Ribeiro, A. (2015). Stability and continuity

of centrality measures in weighted graphs. 2015 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP).

doi:10.1109/icassp.2015.7178599

[2] Bader, D., & Madduri, K. (n.d.). Parallel Algorithms for

Evaluating Centrality Indices in Real-world Networks.

2006 International Conference on Parallel Processing

(ICPP06). doi:10.1109/icpp.2006.57

[3] S. Brin and L. Page. The anatomy of a large-scale

hypertextual web search engine. Computer Networks and

ISDN Systems, 30(1–7):107–117, 1998

[4] P. Doreian and L. Albert. Partitioning political actor

networks: Some quantitative tools for analyzing

qualitative networks. Quantitative Anthropology,

161:279–291, 1989.

[5] A. Bavelas. Communication patterns in task oriented

groups. J. Acoustical Soc. of America, 22:271–282, 1950

[6] G. Sabidussi. The centrality index of a graph.

Psychometrika, 31:581–603, 1966.

[7] U. J. Nieminen. On the centrality in a directed graph.

Social Science Research, 2:371–378, 1973

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 23, October 2018

4

[8] L. C. Freeman. A set of measures of centrality based on

betweenness. Sociometry, 40(1):35–41, 1977.

[9] H. Jeong, S. Mason, A.-L. Barabasi, and Z. Oltvai.

Lethality and centrality in protein networks. Nature,

411:41, 2001

[10] J. Pinney, G. McConkey, and D. Westhead.

Decomposition of biological networks using

betweenness centrality. In Proc. Poster Session of the 9th

Ann. Int’l Conf. on Research in Computational

Molecular Biology (RECOMB 2004), Cambridge, MA,

May 2005.

[11] A. del Sol, H. Fujihashi, and P. O’Meara. Topology of

small-world networks of protein-protein complex

structures. Bioinformatics, 21(8):1311–1315, 2005

[12] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley,

and Y. Aberg. The web of human sexual contacts.

Nature, 411:907, 2001

[13] U. Brandes. A faster algorithm for betweenness

centrality. J. Mathematical Sociology, 25(2):163–177,

2001.

[14] F. Jamour, S. Skiadopoulos and P. Kalnis, "Parallel

Algorithm for Incremental Betweenness Centrality on

Large Graphs", IEEE Transactions on Parallel and

Distributed Systems, vol. 29, no. 3, pp. 659-672, 2018.

IJCATM : www.ijcaonline.org

