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ABSTRACT 

This paper discusses fast parallel algorithms for evaluating 

betweenness centrality in complex network analysis for 

weighted graphs. The previous studies on this topic mainly 

focused on unweighted graphs. Moreover, we will try to 

implement a shortest path algorithm which is the input of the 

parallel algorithm. These algorithms have been optimized to 

exploit properties typically observed in real-world large scale 

networks. The algorithm are implemented  on real datasets 

such as the web graph, protein-interaction networks, movie-

actor and citation networks, and report impressive parallel 

performance for evaluation of the computationally intensive 

centrality metrics on high-end shared memory symmetric 

multiprocessor and multithreaded architectures. For instance, 

we compute the exact betweenness centrality value for each 

vertex in a large US patent citation network (3 mil- lion 

patents, 16 million citations) in 42 minutes on 16 processors, 

utilizing 20GB RAM of the IBM p5 570. Current SNA 

packages on the other hand cannot handle graphs with more 

than hundred thousand edges. 
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1. INTRODUCTION 
In any graph or network, the topology determines an influence 

structure among the nodes. Identifying the most important 

nodes in a network helps in explaining the network’s 

dynamics, e.g., the distribution of power in exchange 

networks or migration in biological networks, as well as in 

designing optimal ways to externally influence the network, 

e.g., attack vulnerability of networks [1]. However, node 

importance is a rather vague concept and can be interpreted in 

various ways, giving rise to multiple coexisting centrality 

measures, the most common being degree closeness 

eigenvector and betweenness centrality. Finally, in 

betweenness centrality, the centrality of a node is given by the 

frequency of this node belonging to the shortest path between 

other two nodes in the network. Network analysis and 

modeling have received considerable attention in recent times, 

but algorithms are relatively less studied. Real-world 
networks are often very large in size, ranging from several 

hundreds of thousands to billions of vertices and edges. A 

space-efficient memory representation of such graphs is itself 

a big challenge, and dedicated algorithms have to be designed 

exploiting the unique characteristics of these networks. On 

single processor workstations, it is not possible to do exact in-

core computations on large graphs due to the limited physical 

memory. Current high-end parallel computers have sufficient 

physical memory to handle large graphs, and a naıve in-core 

implementation of a graph theory problem is typically two 

orders of magnitude faster than the best external memory 

implementation [2]. Algorithm design is further simplified on 

parallel shared memory systems; due to the globally address 

memory space, there is no need to partition the graph, and we 

can avoid the overhead of message passing. However, 

attaining good performance is still a challenge, as a large class 

of graph algorithms are combinatorial in nature, and involve a 

significant number of non-contiguous, concurrent accesses to 

global data structures with low degrees of locality. 

2.  CENTRALITY MATRICS 
One of the fundamental problems in network analysis is to 

determine the importance of a particular vertex or an edge in a 

network. Quantifying centrality and connectivity helps us 

identify portions of the network that may play interesting 

roles. Researchers have been proposing metrics for centrality 

for the past 50 years, and there is no single accepted 

definition. The metric of choice is dependent on the 

application and the network topology. Almost all metrics are 

empirical, and can be applied to element-level [3], grouplevel 

[4], or network-level analyses. We present a few commonly 

used indices in this section. 

2.1 Preliminaries 
Consider a graph G = (V,E), where V is the set of vertices 

representing actors or nodes in the social network, and E, the 

set of edges representing the relationships between the actors. 

The number of vertices and edges are denoted by n and m, 

respectively. The graphs can be directed or undirected. Let us 

assume that each edge e ∈ E has a positive integer weight 

w(e). For unweighted graphs, we use w(e) = 1. A path from 

vertex s to t is defined as a sequence of edges (ui, ui+1), 0 ≤ i 

≤ l, where u0 = s and ul = t. The length of a path is the sum of 

the weights of edges. We use d(s, t) to denote the distance 

between vertices s and t (the minimum length of any path 

connecting s and t in G). Let us denote the total number of 

shortest paths between vertices s and t by σst, and the number 

passing through vertex v by σst(v). 

2.1.1 Degree Centrality  
The degree centrality DC of a vertex v is simply the degree 

deg(v) for undirected graphs. For directed graphs, we can 

define two variants: in-degree centrality and out-degree 

centrality. This is a simple local measure, based on the notion 

of neighborhood. This index is useful in case of static graphs, 

for situations when we are interested in finding vertices that 

have the most direct connections to other vertices.  

2.1.2 Closeness Centrality 
This index measures the closeness, in terms of distance, of an 

actor to all other actors in the network. Vertices with a smaller 

total distance are considered more important. Several 

closeness-based metrics [5, 6, 7] have been developed by the 

SNA community. A commonly used definition is the 
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reciprocal of the total distance from a particular vertex to all 

other vertices: 

CC(v) = 1 /(u∈V d(v, u)) 

 Unlike degree centrality, this is a global metric. To calculate 

the closeness centrality of a vertex v, we may apply 

breadthfirst search (BFS, for unweighted graphs) or a single-

source shortest paths (SSSP, for weighted graphs) algorithm 

from v. 

2.1.3 Betweenness Centrality 
Betweenness Centrality is another shortest paths enumeration-

based metric, introduced by Freeman in [8]. Let δst(v) denote 

the pairwise dependency, or the fraction of shortest paths 

between s and t that pass through v: 

δst(v) = σst(v) /σst 

This metric can be thought of as normalized stress centrality. 

Betweenness centrality of a vertex measures the control a 

vertex has over communication in the network, and can be 

used to identify key actors in the network. High centrality 

indices indicate that a vertex can reach other vertices on 

relatively short paths, or that a vertex lies on a considerable 

fraction of shortest paths connecting pairs of other vertices. 

We discuss algorithms to compute this metric in detail in the 

next section. This index has been extensively used in recent 

years for analysis of social as well as other large scale 

complex networks. Some applications include biological 

networks [9, 10, 11], study of sexual networks and AIDS [12], 

identifying key actors in terrorist networks, organizational 

behavior, supply chain management, and transportation 

networks. There are a number of commercial and 

research software packages for SNA (e.g., Pajek 

[13], InFlow, UCINET) which can also be used to 

determine these centrality metrics. However, they 

can only be used to study comparatively small 

networks (in most cases, sparse graphs with less 

than 40,000 vertices). Our goal is to develop fast, 

high performance implementations of these metrics 

so that we can analyze large-scale real-world graphs of 

millions to billions of vertices. 

3. BETWEENNESS CENTRALITY 

ALGORITHM 
These two metrics require shortest paths enumeration and we 

design our parallel algorithm based on Brandes’ [14] 

sequential algorithm for sparse graphs. Alg. 1 outlines the 

general approach for the case of unweighted graphs. On each 

BFS computation from s, the queue Q stores the current set of 

vertices to be visited, S contains all the vertices reachable 

from s, and P(v) is the predecessor set associated with each 

vertex v ∈ V . The arrays d and σ store the distance from s, 

and shortest path counts, respectively. The centrality values 

are computed in steps 22–25, by summing the dependencies 

δ(v), v ∈ V . The final scores need to be divided by two if the 

graph is undirected, as all shortest paths are counted twice. 

We observe that parallelism can be exploited at two levels: 

 

Algorithm 

Input: Graph G(V, E), the betweenness centrality values 

BCG of G, and new edge e ∈V *V  

Output: The betweenness centrality values BCG’’ of 

graph G’’ that is constructed by inserting edge e to 

graph G  

1: Find the biconnected components of G’’ 

2: Let B’e (V’Be, E’Be) be the biconnected component of 

G’’ that edge e belongs to 

 3: Let Be (VBe, EBe) be B’e (V’Be, E’Be -{e}) 

4: Let e =(v1,v2)  

5: Perform a breadth-first search to compute the 

distance dv1s between v1 and s in Be  

6: Perform a breadth-first search to compute the 

distance dv2s between v2 and s in Be  

7: for all nodes s ∈  VBe do  

8: if dv1s  ≠ dv2s then  

9: Add s to Q  

10: for all nodes s ∈  Q do  

11: Find σs[v] and Ps[v] for v ∈  VBe (BFS from s) 12: 

 s[v] = 0 for v ∈  VBe  

13:  Gs[v] = 0 for v ∈  VBe 

14: for all nodes w ∈  VBe in reverse BFS order from s 

do  

15: if s and w are articulation points then  

16:  Gs[w]= |VGs|.|VGw|  

17: for p ∈ Ps[w] do  

18:  s[p] =  s[p] +( σs[p]/ σs[w] ) . (1+  s[w]) 

19: if s is an articulation point then  

20:  s[p] =   s[p] +  s[w] .( σs[p]/ σs[w] ) 

21: if w ≠ s then  

22: BCG’ [w]= BCG’ [w]-  s[w]/2.0 

23: if s is an articulation point then  

24: BCG’ [w]= BCG’ [w]-  s[w]. |VGs| 

25: BCG’ [w]= BCG’ [w]-  Gs[w]/2.0 

26: Find σ’s[v] and P’s[v] for V’Be (partial BFS from s) 

27:  ’s[v] = 0 for v ∈  V’Be 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 23, October 2018 

3 

28:  ’Gs[v] = 0 for v ∈  V’Be 

29: for all nodes w ∈  V’Be in reverse BFS order from s 

do  

30: if s and w are articulation points then  

31:  ’Gs[w] = |VGs|.|VGw| 

32: for p ∈  P’s [w] do  

33:  ’s[p] =  ’s[p] +( σ’s[p]/ σ’s[w] ) . (1+  ’s[w]) 

34: if s is an articulation point then  

35:  ’s[p] =   ’s[p] +  ’s[w] .( σ’s[p]/ σ’s[w] ) 

36: if w ≠ s then  

37: BCG’ [w]= BCG’ [w]+  s[w]/2.0 

38: if s is an articulation point then  

39: BCG’ [w]= BCG’ [w] +  s[w]. |VGs| 

40: BCG’ [w]= BCG’ [w] + Gs[w]/2.0  

 41: return BCG’ 

 
The algorithm works as follows: Line 1 decomposes the input 

graph G’ into its biconnected components using Hopcroft and 

Tarjan algorithm. Then, Line 2 identifies biconnected 

component B’e that is affected by the graph update. It 

performs the biconnected components decomposition on G’ 

instead of G to support the general case when the inserted 

edge ‘e’ connects multiple biconnected components of G. 

Following, Lines 5–9 identify set Q by performing two 

breadth-first traversals in Be. For all nodes in set Q, Lines 10–

40 iteratively update the betweenness centrality of nodes in 

B’e by performing a breadth-first and a reverse breadth-first 

search, respectively. The updates are done in two steps: 

subtracting the old source and external graph dependencies; 

i.e., A[v], B[v], and C[v] (Lines 11–25), and adding the new 

source and external graph dependencies; i.e., A’[v], B’[v], and 

C’[v]  (Lines 26–40). Computing and adding A’[v], B’[v], and 

C’[v] are done similarly in Lines 26–40. Computing the 

source dependencies that encapsulate node pairs in A[v] is 

done with a direct application of Equation (4) in Line 18. 

These source dependencies are subtracted from the 

betweenness centrality values in Line 22. The pair 

dependencies in B[v] are encapsulated in  s[w]. |VGs|, which is 

subtracted in Line 24. This is done only if ‘s’ is an 

articulation. The case of pair dependencies in C[v] is more 

involved, and requires maintaining the structure  Gs[v]to 

compute the external graph dependencies (Line 13). 

Computing  Gs[v] starts with the base case when both the 

source s and the node considered in the reverse breadth-first 

search (i.e, w) are articulation points. This is done in Line 16. 

The external graph dependency on node w is computed  if the 

source s is an articulation point in Line 20. Note that  Gs.(w) is 

defined only if ‘s’ is an articulation point, because that is the 

case when external graph dependencies are defined and 

needed to be propagated to nodes in B’e. Note that  s.(w)and 

 Gs.(w) in Lines 22 and 25 to avoid counting the same path 

twice, since the input graph is undirected. 

The alorithm utilizes the fact that many σsv values remain 

unchanged in the breadth-first search DAG of s after inserting 

edge ‘e’, even when s∈Q. Let ‘l’ be the node of ‘e’ further 

from ‘s’ in its breadth-first search DAG. To find the nodes for 

which σsv changes, we only need to start a breadth-first search 

from ‘l’ in the breadth-first DAG of ‘s'. We refer to this 

optimized traversal as partial breadth-first search (Line 26). 

4.  CONCLUSION 
We present parallel algorithms for evaluating several network 

indices, including betweenness centrality, optimized for 

Symmetric Multiprocessors and multithreaded architectures. 

To our knowledge, this is the first effort at parallelizing these 

widely-used social network analysis tools. Our 

implementations are designed to handle problem sizes in the 

order of billions of edges in the network, and this is three 

orders of magnitude larger than instances that can be handled 

by current social network analysis tools. We are currently 

working on improving the betweenness centrality 

implementation on the MTA-2, and also extend it to 

efficiently compute scores for weighted graphs. Previously, 

the works were based on unweighted graph. In future, we plan 

to implement and analyze performance of approximate 

algorithms for closeness and betweenness centrality detailed 

the paper, and also apply betweenness centrality values to 

solve harder problems like graph clustering.
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