
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 24, October 2018

33

Replication Effect over Hadoop MapReduce

Performance using Regression Analysis

Aisha Shabbir
School of Computing

Faculty of Engineering
University Technology Malaysia

Skudai, Johor Malaysia

Kamalrulnizam Abu Bakar
School of Computing

Faculty of Engineering
University Technology Malaysia

Skudai, Johor Malaysia

Raja Zahilah Raja Mohd.
Radzi

School of Computing
Faculty of Engineering

University Technology Malaysia
Skudai, Johor Malaysia

ABSTRACT

Hadoop MapReduce is the community accepted platform that

deals with the gigantic data in an efficient and cost-effective

manner. To cope up with ever growing datasets and shrinking

time to analyze them, Hadoop MapReduce leveraged

parallelize computations on large distributed clusters

consisting of many machines. Careful consideration of the

factors affecting the Hadoop MapReduce can enhance its

performance. Many researches has been done for improving

the total job execution time of MapReduce by optimizing

different parameters. The replication factor is still unexplored

for its effect on the MapReduce job completion time. This

paper focuses on the evaluation of data replication factor on

MapReduce job completion time using regression analysis.

The performance of the Hadoop MapReduce job in terms of

total job completion time is monitored experimentally by

changing different values of replication. The evaluation

results evidently shows the dependence of the job completion

time on the replication factor. The dependence of total job

completion time on the replication has been verified both

analytically and experimentally.

General Terms

Big Data Processing, Distributed Computing Systems,

Statistical/Machine Learning Techniques, and Performance

Analysis.

Keywords

Hadoop MapReduce, Big Data, Regression Analysis, Data

Replication, Job optimization

1. INTRODUCTION
The dramatic evolution of digital world results in surges of

volumes of data. The International Data Corporation Gens and

Predictions [1] claimed that there might be a chance to have

40 folds data growth from the year 2012 to 2020 and expected

that it would double for the every two years interval. The

main production sources of big data are social media like

Facebook, twitter, emails, mobile applications and the

migration of manual to automatic of almost every entity. The

amount of information has burst out each time and thus need

for invention of a new storage method. For handling huge

volume storage, Big Data storage companies such as IBM,

EMC Amazon utilizing the tools like Apache Drill, SAMOA,

NoSQL, IKANOW, Hadoop MapReduce and Horton Works

[2]. Efficient processing and analyzing huge volume and

variety of data has become the major source of innovation for

compute intensive and data-intensive applications.

Hadoop is an indispensable component of the big data. It is an

open source platform that uses the MapReduce model as a

backbone. It is designed for executing data-intensive

distributed computing applications. Hadoop comprises three

main sub frameworks: Hadoop Common, Hadoop Distributed

File System (HDFS), and Hadoop MapReduce. Hadoop

Common offers the utility functions, including remote

procedure call (RPC) facilities and object serialization

libraries that are leveraged by the HDFS and MapReduce

frameworks. HDFS is an implementation of a distributed file

system that is based on Google’s distributed file system,

named GFS (Google File System). MapReduce is initially

established by Google and it is designed for processing big

data by exploiting the parallelism among a cluster of

machines. Such parallelization enables compute frameworks

to cope with growth in datasets being faster than Moore's law.

The real implementation of MapReduce for huge scale data

sets usually takes place on more than one machine or on a

number of machines [3-4]. There are many factors which can

affect the Hadoop MapReduce performance.

To achieve a better performance, the careful consideration of

the factors is needed. There are some factors explored by

many researches for Hadoop MapReduce optimization. Some

researchers focused on the scheduling techniques to improve

the overall job execution time of MapReduce jobs [5-8].

Similarly, some researches focused on particular phase

scheduling [9-11]. Some research has been done to improve

the fault tolerance [12-13]. Some tried to focus on the

reliability issues [14]. There are many factors contributing

towards the job execution. This study is focusing on the

analysis of the unexplored factor i.e. replication factor

towards the overall job execution time. The basic reason of

making the replication in the distributed file system to

increase the reliability and making the system fault tolerant. If

any of the task’s data is lost or the job is killed by any of the

reason. Then, the replicated copy has been sent to complete

the job. Suitable selection of this parameter is important

because the inappropriate selection of replication factor may

deteriorates severely the Hadoop MapReduce performance.

For huge sets of data processing, large amount of data will be

replicated over the computational resources and large storage

capacity will be needed and it leads to huge burden over the

network also.

Regression analysis comes under both statistical and machine

learning techniques. It is one of the mostly chosen technique

by researchers for making the predictions [15]. Regression

analysis has widely used also for the selection criteria of a

factor on a particular task. To elaborate it further, the

regression analysis predictive values can make the hypothesis

wrong or right. This study is focusing on the analysis of the

contribution of replication factor towards the overall job

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 24, October 2018

34

execution time. Let us suppose, for replication of the data of a

certain size by two can be generally assumed as that it will

delay a job completion time by two times of its basic

execution time. Thus, to make this illustration true or false

regression analysis will be performed. This study evaluates

the dependence of replication factor over the total job

completion time of Hadoop MapReduce through regression

analysis. The general view of the idea described is shown in

Figure 1.

Figure 1: Computational framework overview

The organization of the paper is as follows: Section I is about

the introduction. Section II describes the preliminaries i.e.

giving the overview of Hadoop MapReduce and its

architectural details. In addition, it briefly describes about the

Regression analysis. Section III is about the problem insight.

In Section IV, presents the experimental evaluation. Section V

comprises the results and discussions. Last section i.e. VI is of

conclusion and following then are the acknowledgements and

references of this study.

2. PRELIMINARIES

2.1 An Overview of Hadoop MapReduce
The concept of the Hadoop was initiated by the google to

work toward an innovative approach that has the capability of

handling the enormous data. Later on, different procedures

were introduced to deal with the storing, processing, and

analysis of the avalanche of data. The Doug Cutting was

among the pioneer and he used his son’s toy name for this

framework. It has the capability to deal with the gigantic data

using its central characteristic i.e. the distributed system.

Although the internal configuration of the Hadoop is

complicated task, however, the detailed insight of the various

component of the MapReduce job enable the developers and

other associated personnel for required tuning according to the

circumstances. The Hadoop is based on the Google File

System and it uses the MapReduce that extends it processing

from single server to thousands of servers. It provides a

transparent parallel processing that uses many distributed

nodes. It also provides transparency to the other features such

as the reliability that hides the failure of the underlying tasks

or subtasks, and the alliance of the processed results.

Hadoop MapReduce generally executes a job in two phases.

During the map section, it divides the data input and run it on

the given set of nodes. The mappers produces the output as a

key and value pairs. These pairs are passed to the reducers to

reduce it for the final result. Thus, in the reduce phase, the

output of mappers are treated as input generally termed as

intermediate data. There exists a merge and sort section

named as shuffle between the map and reduce phase. In this

shuffle phase, the data added to the mappers are divided and

exchanged to the ideal machines executing the reduce section

services.

2.2 Hadoop MapReduce Architecture
In the basic Hadoop MapReduce architecture, the master node

runs two Hadoop components which are often called Hadoop

daemons: NameNode and Job Tracker. Each slave node in the

Hadoop cluster also runs two Hadoop daemons: DataNode

and Task Tracker [16]. The NameNode and DataNode are the

Hadoop daemons in charge of managing HDFS. Each file that

is written to HDFS is split into blocks of 64 MB or 128MB

and each block is stored on the storage device of the node

where DataNode is running. In addition, each block is

replicated three times (default value) and stored on different

DataNode to provide data redundancy and availability. It is

the job of NameNode to keep track of which DataNode stores

the blocks of a particular file (which is referred to as the

metadata of HDFS). Another important function of

NameNode (master) is to direct DataNode (slaves) to perform

HDFS block operations (creation, deletion, and replication).

DataNode keep in constant contact with NameNode to receive

instructions and also have to handle read and write requests

from HDFS clients. Figure 2 gives an overview of the Hadoop

MapReduce architecture.

Figure 2: Hadoop MapReduce architecture [16]

2.3 Regression Analysis
Regression analysis comes under both statistical and machine

learning techniques. Regression analysis has been used for the

qualification and disqualification of a variable for the

particular dependent variable or task. There are many

configuration parameters for the Hadoop MapReduce job.

One of the configuration parameter is the replication factor.

Whether Hadoop MapReduce job performance really depends

upon the replication or not will be explored using regression

analysis in this research study. The qualification for

dependence of the variable depends upon the prediction value

of the regression analysis results. Predictive values normally

called as P-values. If a P-value against the variable is less than

0.05 then the variable has no effect over the given task i.e. on

the dependent variable and can be neglected in the overall

calculation [17].

3. PROBLEM INSIGHT
Nowadays, Hadoop has been used typically in conjunction

with cloud computing, for executing various Big Data

applications, including web analytics applications, scientific

applications, data mining applications, and enterprise data-

processing applications [18]. A set of machines (where each

machine is called a node) that runs a job by using the

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 24, October 2018

35

MapReduce framework workflow is referred to as a

MapReduce based cluster. MapReduce is proposed by Google

to simplify massively distributed parallel processing so that

very large and complex datasets can be processed and

analyzed efficiently.

The MapReduce system carried out the job execution in

Hadoop and Hadoop Distributed File System (HDFS) such

that the input data is loaded and subdivided into pieces, with

each piece of data is replicated over multiple nodes. The

default value of the replication is three. When a user uploads

files to HDFS, files could be splitted into chunks with the

range of a chunk size from 64MB to 128MB. Thus, on

submission of a job, the input data is divided according to the

split size defined by the user. Thus, for the job size bigger

than a fundament split size requires more than one node.

MapReduce accomplish job processing on huge datasets by

supposing that large dataset storage is distributed over a large

number of machines. The computation is done in two main

phases i.e. Map and Reduce. There is another phase i.e.

shuffle phase also for dealing with intermediate data. The

details of the MapReduce job computation are as follows:

i. Preparation of the input data: MapReduce uses

Google's file system which is called GFS or HDFS,

as an underlying storage layer for reading input and

saving output. GFS is a distribution system

distributed block that supports error tolerance by

separating and replicating data.

ii. Map phase: The input data is divided into small

chunk on different worker nodes and results are in

form of key value pairs.

iii. Shuffle phase: The output from mappers is sorted

and sent to reduce processors.

iv. Reduce phase: The sorted output data group (each

key) is processed in parallel to each reduced node.

User-defined reducing functions are implemented

once for every key value generated by map steps.

v. Final output: The MapReduce system finally

collects all of the reduce outputs to produce the final

output. The results are stored in the GFS.

MapReduce computes a job into different phases and during

its operation it follow the general workflow as shown Figure 3

for all types of jobs.

Figure 3: MapReduce workflow [19]

4. EXPERIMENTAL EVALUATION
The implementation and evaluation of this work has been

conducted in Hadoop version 2.7.1. Several MapReduce jobs

with different sizes of input data ranging from Bytes to Giga

bytes has been evaluated against different replication figures.

Hadoop MapReduce job has many configuration factors

including replication factor. The configuration settings with

the replication value 1 is shown in the Figures 4. Regression

analysis has been done in the Microsoft excel. The total job

completion time has been used as a performance evaluation

metric.

Figure 4: MapReduce job configuration with replication 1

5. RESULTS AND DISCUSSION
It has been observed that the variation of the replication factor

has a great effect on the total job completion time. The results

are extracted from the logs after running the Hadoop

MapReduce Jobs. The extraction is done for the total job

execution time against different values of replication factor

and are given in the Tables 1-3. The replication factor has

been changed from 1 to 5. The replication values in the

configuration settings can be viewed from Figures 4. The

input data size has been varied from Bytes to Gigabytes (GB)

for each replication value. It has been observed that changing

the input data size has effect on total job completion time.

Figure 5 is clearly depicting that with the increase in input

data size the total job completion time also increases. Figure 5

also shows that with the increase of replication value over the

same sets of data the total job execution time becomes more.

The default value of the replication factor is 3 for the Hadoop

MapReduce. Moreover, with increasing the input data size

with even default values results in much larger total execution

time.

The core idea of making the replication is to enhance the

reliability. On the other hand, replication of big data sets

results in wastage of resources as well. Thus it is important to

consider the cases where replication is necessary and where it

deteriorates the system’s performance. Several simulations

has been done and simulation results are analyzed. Hadoop,

the open source implementation of MapReduce runs in three

modes standalone, pseudo-distributed and fully distributed.

Figure 6 results shows the long list of job history against the

replication factor with the minimum value i.e. 1. More than

hundred simulations with different configuration in standalone

and pseudo distributed modes has been done. The point which

is noticeable that all the jobs are successfully completed with

all the tasks of every job as depicted from Figure 8. Thus,

doing the replication in standalone and pseudo-distributed

modes has no point of failure as observed by the simulation

results. Unless if there will be some hardware failure occurs.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 24, October 2018

36

Thus the replication for these cases would merely increase the

total job execution time and results in in-efficient usage of

storage assets.

Several simulations has been done and it is difficult to present

all the simulation results here. The total job execution time

results against different input data sizes from some bytes to

Gigabytes with replication factor as 1 has been shown in the

Table 1.

Table 1: Job completion times with replication 1

Input data size

(MB)
Replication

Total Execution Time

(sec)

0.0005 1 20

120.42 1 38

260.76 1 43

521.53 1 50

1180 1 101

1600 1 121

2005 1 143

2600 1 178

3050 1 205

3500 1 217

3900 1 257

4155 1 266

4700 1 310

5100 1 380

5700 1 399

6110 1 408

The total job execution time results against different input

data sizes from some bytes to Gigabytes with replication

factor as three has been shown in the Table 2.

Table 2: Job completion times with replication 3

Input data size

(MB)
Replication

Total Execution

Time (sec)

0.0005 3 19

120.42 3 39

260.76 3 43

521.53 3 67

1180 3 159

1600 3 165

2005 3 171

2600 3 178

3050 3 183

3500 3 242

3900 3 341

4155 3 480

4700 3 550

5100 3 589

5700 3 623

6110 3 729

The total job execution time results against different input

data sizes from some bytes to Gigabytes with replication

factor as five has been shown in the Table 3.

Table 3: Job completion times with replication 5

Input data size

(MB)
Replication

Total Execution

Time (sec)

0.0005 5 20

120.42 5 39

260.76 5 43

521.53 5 67

1180 5 155

1600 5 181

2005 5 239

2600 5 298

3050 5 361

3500 5 410

3900 5 492

4155 5 503

4700 5 590

5100 5 680

5700 5 710

6110 5 757

For analytical analysis, the technique widely adopted by the

research community i.e. regression analysis has been used.

Regression analysis has been used for predictive analysis and

for the qualification of a variable dependence.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 24, October 2018

37

Figure 5: Total job completion time vs different input data size

Figure 6: Different jobs successful completion along with all the subtask

Table 4: Regression analysis results

 Coefficients Standard

Error

t Stat P-value Lower

95%

Upper

95%

Lower

95.0%

Upper

95.0%

Intercept -8.161713495 37.5138 -0.21757 0.830215 -86.9753 70.65185 -86.9753 70.65185

Replication 7.25 10.30406 0.703606 0.490681 -14.398 28.89804 -14.398 28.89804

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 24, October 2018

38

The regression analysis has been done over the simulations

results to verify the effect of replication on total execution

time. The results of regression analysis are shown in Table 4.

The prediction value i.e. the P-value of the regression has

been used for the qualification criteria for a factor. If the p-

value against a specific factor is less than 0.05 then the factor

has no significant contribution towards the testing

experiment and that factor can be ignored even in analysis.

The P-value for regression factor as shown in Table 4 is

0.490681 which is greater than 0.05. Thus, this P-value of

replication among regression results enables the qualification

of replication factor on total execution time.

6. CONCLUSION
Hadoop MapReduce platform is considered as the most

prominent and effective for the big data problems that allow

the processing of gigantic data over many underlying

distributed nodes. A MapReduce job has many configuration

parameters and their optimal tuning can significantly increase

the Hadoop MapReduce performance. In this paper, an

unexplored factor i.e. the replication factor is evaluated for its

effect on the Hadoop MapReduce total job completion time.

Several simulations has been done by different replication

values and also by varying the input data sizes. It has been

observed that the variation of the replication factor influences

the total job completion time. The results from the Figure 5

shows that increasing the input size with constant replication

has completed a job execution in longer time. Furthermore, an

increase in the replication value will results in higher values

of total job completion time. In addition, Regression analysis

has been used for qualification criteria of a variable on the

dependent one. The evaluation results evidently shows the

dependence of the job completion time on the replication

factor. The results are also validated through regression

analysis p-value. From the Table 4 we can see that p-value is

greater than 0.05 which means replication factor contributes

as major to job completion time. Consequently, the replication

factor has a substantial effect on overall performance of the

Hadoop MapReduce.

7. ACKNOWLEDGMENTS
Special thankful to University Teknologi Malaysia (UTM) for

providing the good research environment, tools and facilities

to accomplish this research work. I would like to express my

very great appreciation to my supervisor Prof. Dr.

Kamalrulnizam Abu Bakar and co-supervisor Dr. Raja

Zahilah Raja Mohd. Radzi for their guidance and professional

support for the research. I am thankful and indebted to my

senior Tasneem Darwish for her timely contributions and

guidance.

8. REFERENCES
[1] Gens,F., and Predictions, I. (2015)Team IDC Predictions.

[2] Agneeswaran, V. S. (2014). Big data analytics beyond

hadoop: real-time applications with storm, spark, and

more hadoop alternatives: FT Press.

[3] Delimitrou, C., and Kozyrakis, C. (2014). Quasar:

resource-efficient and QoS-aware cluster management.

Paper presented at the ACM SIGPLAN Notices,127-144.

[4] Prajapati, V. (2013). Big data analytics with R and

Hadoop: Packt Publishing Ltd.

[5] Balagoni, Y., and Rao, R. R. (2017). Locality-Load-

Prediction Aware Multi-Objective Task Scheduling in

the Heterogeneous Cloud Environment. Indian Journal of

Science and Technology, 10(9).

[6] Althebyan, Q., Jararweh, Y., Yaseen, Q., AlQudah, O.,

and Al‐Ayyoub, M. (2015). Evaluating map reduce tasks

scheduling algorithms over cloud computing

infrastructure. Concurrency and Computation: Practice

and Experience, 27(18), 5686-5699.

[7] Chen, Q., Zhang, D., Guo, M., Deng, Q., and Guo, S.

(2010). Samr: A self-adaptive mapreduce scheduling

algorithm in heterogeneous environment. Paper

presented at the Computer and Information Technology

(CIT), 2010 IEEE 10th International Conference on,

2736-2743.

[8] Tang, Z., Liu, M., Ammar, A., Li, K., and Li, K. (2016).

An optimized MapReduce workflow scheduling

algorithm for heterogeneous computing. The Journal of

Supercomputing, 72(6), 2059-2079.

[9] Ke, H., Li, P., Guo, S., and Guo, M. (2016). On traffic-

aware partition and aggregation in mapreduce for big

data applications. IEEE Transactions on Parallel and

Distributed Systems, 27(3), 818-828.

[10] Tiwari, N., Sarkar, S., Bellur, U., and Indrawan, M.

(2015). Classification framework of MapReduce

scheduling algorithms. ACM Computing Surveys

(CSUR), 47(3), 49.

[11] Neelakandan, S., Divyabharathi, S., Rahini, S., and

Vijayalakshmi, G. (2016). Large scale optimization to

minimize network traffic using MapReduce in big data

applications, 2016 International Conference on

Computation of Power, Energy Information and

Commuincation (ICCPEIC), 193-199.

[12] Fu, Huansong, Haiquan Chen, Yue Zhu, and Weikuan

Yu."Farms: Efficient Mapreduce Speculation for Failure

Recovery in Short Jobs."Parallel Computing (2017): 68.

[13] Xu, Huanle and Wing Cheong Lau. "Optimization for

Speculative Execution in Big Data Processing Clusters."

IEEE Transactions on Parallel and Distributed Systems

28, no. 2 (2017): 530-45.

[14] Yan, W., Xue, Y., and Malin, B. (2013). Scalable and

robust key group size estimation for reducer load

balancing in MapReduce. Paper presented at the Big

Data, 2013 IEEE International Conference on, 156-162.

[15] M. Khan, Yong Jin “Hadoop Performance Modeling for

Job Estimation and Resource Provisioning”, IEEE

Transactions On Parallel And Distributed Systems, Vol.

27, No. 2, February 2016.

[16] Li, K.-C., Jiang, H., and Zomaya, A. Y. (2017). Big Data

Management and Processing: CRC Press.

[17] http://www.statisticssolutions.com/directory-of-

statistical-analyses-regression-analysis/regression/

[18] Bechini, A., Marcelloni, F., and Segatori, A. (2016). A

MapReduce solution for associative classification of big

data. Information Sciences, 332, 33-55.

[19] Li, R., Hu, H., Li, H., Wu, Y., and Yang, J. (2016).

MapReduce parallel programming model: a state-of-the-

art survey. International Journal of Parallel

Programming, 44(4), 832-866.

IJCATM : www.ijcaonline.org

