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ABSTRACT 

Hadoop MapReduce is the community accepted platform that 

deals with the gigantic data in an efficient and cost-effective 

manner. To cope up with ever growing datasets and shrinking 

time to analyze them, Hadoop MapReduce leveraged 

parallelize computations on large distributed clusters 

consisting of many machines. Careful consideration of the 

factors affecting the Hadoop MapReduce can enhance its 

performance.  Many researches has been done for improving 

the total job execution time of MapReduce by optimizing 

different parameters. The replication factor is still unexplored 

for its effect on the MapReduce job completion time. This 

paper focuses on the evaluation of data replication factor on 

MapReduce job completion time using regression analysis. 

The performance of the Hadoop MapReduce job in terms of 

total job completion time is monitored experimentally by 

changing different values of replication. The evaluation 

results evidently shows the dependence of the job completion 

time on the replication factor. The dependence of total job 

completion time on the replication has been verified both 

analytically and experimentally.   

General Terms 

Big Data Processing, Distributed Computing Systems, 

Statistical/Machine Learning Techniques, and Performance 

Analysis. 
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1. INTRODUCTION 
The dramatic evolution of digital world results in surges of 

volumes of data. The International Data Corporation Gens and 

Predictions [1] claimed that there might be a chance to have 

40 folds data growth from the year 2012 to 2020 and expected 

that it would double for the every two years interval. The 

main production sources of big data are social media like 

Facebook, twitter, emails, mobile applications and the 

migration of manual to automatic of almost every entity. The 

amount of information has burst out each time and thus need 

for invention of a new storage method.  For handling huge 

volume storage, Big Data storage companies such as IBM, 

EMC Amazon utilizing the tools like Apache Drill, SAMOA, 

NoSQL, IKANOW, Hadoop MapReduce and Horton Works 

[2]. Efficient processing and analyzing huge volume and 

variety of data has become the major source of innovation for 

compute intensive and data-intensive applications.  

Hadoop is an indispensable component of the big data. It is an 

open source platform that uses the MapReduce model as a 

backbone. It is designed for executing data-intensive 

distributed computing applications. Hadoop comprises three 

main sub frameworks: Hadoop Common, Hadoop Distributed 

File System (HDFS), and Hadoop MapReduce. Hadoop 

Common offers the utility functions, including remote 

procedure call (RPC) facilities and object serialization 

libraries that are leveraged by the HDFS and MapReduce 

frameworks. HDFS is an implementation of a distributed file 

system that is based on Google’s distributed file system, 

named GFS (Google File System). MapReduce is initially 

established by Google and it is designed for processing big 

data by exploiting the parallelism among a cluster of 

machines. Such parallelization enables compute frameworks 

to cope with growth in datasets being faster than Moore's law. 

The real implementation of MapReduce for huge scale data 

sets usually takes place on more than one machine or on a 

number of machines [3-4]. There are many factors which can 

affect the Hadoop MapReduce performance.  

To achieve a better performance, the careful consideration of 

the factors is needed. There are some factors explored by 

many researches for Hadoop MapReduce optimization. Some 

researchers focused on the scheduling techniques to improve 

the overall job execution time of MapReduce jobs [5-8]. 

Similarly, some researches focused on particular phase 

scheduling [9-11]. Some research has been done to improve 

the fault tolerance [12-13]. Some tried to focus on the 

reliability issues [14]. There are many factors contributing 

towards the job execution. This study is focusing on the 

analysis of the unexplored factor i.e. replication factor 

towards the overall job execution time. The basic reason of 

making the replication in the distributed file system to 

increase the reliability and making the system fault tolerant. If 

any of the task’s data is lost or the job is killed by any of the 

reason. Then, the replicated copy has been sent to complete 

the job. Suitable selection of this parameter is important 

because the inappropriate selection of replication factor may 

deteriorates severely the Hadoop MapReduce performance. 

For huge sets of data processing, large amount of data will be 

replicated over the computational resources and large storage 

capacity will be needed and it leads to huge burden over the 

network also. 

Regression analysis comes under both statistical and machine 

learning techniques. It is one of the mostly chosen technique 

by researchers for making the predictions [15]. Regression 

analysis has widely used also for the selection criteria of a 

factor on a particular task. To elaborate it further, the 

regression analysis predictive values can make the hypothesis 

wrong or right. This study is focusing on the analysis of the 

contribution of replication factor towards the overall job 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 24, October 2018 

34 

execution time. Let us suppose, for replication of the data of a 

certain size by two can be generally assumed as that it will 

delay a job completion time by two times of its basic 

execution time.  Thus, to make this illustration true or false 

regression analysis will be performed. This study evaluates 

the dependence of replication factor over the total job 

completion time of Hadoop MapReduce through regression 

analysis. The general view of the idea described is shown in 

Figure 1.    

  

Figure 1: Computational framework overview 

The organization of the paper is as follows: Section I is about 

the introduction. Section II describes the preliminaries i.e. 

giving the overview of Hadoop MapReduce and its 

architectural details. In addition, it briefly describes about the 

Regression analysis. Section III is about the problem insight. 

In Section IV, presents the experimental evaluation. Section V 

comprises the results and discussions. Last section i.e. VI is of 

conclusion and following then are the acknowledgements and 

references of this study. 

2. PRELIMINARIES 

2.1 An Overview of Hadoop MapReduce 
The concept of the Hadoop was initiated by the google to 

work toward an innovative approach that has the capability of 

handling the enormous data. Later on, different procedures 

were introduced to deal with the storing, processing, and 

analysis of the avalanche of data. The Doug Cutting was 

among the pioneer and he used his son’s toy name for this 

framework. It has the capability to deal with the gigantic data 

using its central characteristic i.e. the distributed system. 

Although the internal configuration of the Hadoop is 

complicated task, however, the detailed insight of the various 

component of the MapReduce job enable the developers and 

other associated personnel for required tuning according to the 

circumstances. The Hadoop is based on the Google File 

System and it uses the MapReduce that extends it processing 

from single server to thousands of servers. It provides a 

transparent parallel processing that uses many distributed 

nodes. It also provides transparency to the other features such 

as the reliability that hides the failure of the underlying tasks 

or subtasks, and the alliance of the processed results.  

Hadoop MapReduce generally executes a job in two phases. 

During the map section, it divides the data input and run it on 

the given set of nodes. The mappers produces the output as a 

key and value pairs. These pairs are passed to the reducers to 

reduce it for the final result. Thus, in the reduce phase, the 

output of mappers are treated as input generally termed as 

intermediate data. There exists a merge and sort section 

named as shuffle between the map and reduce phase. In this 

shuffle phase, the data added to the mappers are divided and 

exchanged to the ideal machines executing the reduce section 

services. 

2.2 Hadoop MapReduce Architecture 
In the basic Hadoop MapReduce architecture, the master node 

runs two Hadoop components which are often called Hadoop 

daemons: NameNode and Job Tracker. Each slave node in the 

Hadoop cluster also runs two Hadoop daemons: DataNode 

and Task Tracker [16]. The NameNode and DataNode are the 

Hadoop daemons in charge of managing HDFS. Each file that 

is written to HDFS is split into blocks of 64 MB or 128MB 

and each block is stored on the storage device of the node 

where DataNode is running. In addition, each block is 

replicated three times (default value) and stored on different 

DataNode to provide data redundancy and availability. It is 

the job of NameNode to keep track of which DataNode stores 

the blocks of a particular file (which is referred to as the 

metadata of HDFS). Another important function of 

NameNode (master) is to direct DataNode (slaves) to perform 

HDFS block operations (creation, deletion, and replication). 

DataNode keep in constant contact with NameNode to receive 

instructions and also have to handle read and write requests 

from HDFS clients. Figure 2 gives an overview of the Hadoop 

MapReduce architecture. 

 

Figure 2: Hadoop MapReduce architecture [16] 

2.3 Regression Analysis 
Regression analysis comes under both statistical and machine 

learning techniques. Regression analysis has been used for the 

qualification and disqualification of a variable for the 

particular dependent variable or task. There are many 

configuration parameters for the Hadoop MapReduce job. 

One of the configuration parameter is the replication factor. 

Whether Hadoop MapReduce job performance really depends 

upon the replication or not will be explored using regression 

analysis in this research study. The qualification for 

dependence of the variable depends upon the prediction value 

of the regression analysis results. Predictive values normally 

called as P-values. If a P-value against the variable is less than 

0.05 then the variable has no effect over the given task i.e. on 

the dependent variable and can be neglected in the overall 

calculation [17].  

3. PROBLEM INSIGHT 
Nowadays, Hadoop has been used typically in conjunction 

with cloud computing, for executing various Big Data 

applications, including web analytics applications, scientific 

applications, data mining applications, and enterprise data-

processing applications [18]. A set of machines (where each 

machine is called a node) that runs a job by using the 
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MapReduce framework workflow is referred to as a 

MapReduce based cluster. MapReduce is proposed by Google 

to simplify massively distributed parallel processing so that 

very large and complex datasets can be processed and 

analyzed efficiently. 

The MapReduce system carried out the job execution in 

Hadoop and Hadoop Distributed File System (HDFS) such 

that the input data is loaded and subdivided into pieces, with 

each piece of data is replicated over multiple nodes. The 

default value of the replication is three. When a user uploads 

files to HDFS, files could be splitted into chunks with the 

range of a chunk size from 64MB to 128MB. Thus, on 

submission of a job, the input data is divided according to the 

split size defined by the user. Thus, for the job size bigger 

than a fundament split size requires more than one node. 

MapReduce accomplish job processing on huge datasets by 

supposing that large dataset storage is distributed over a large 

number of machines. The computation is done in two main 

phases i.e. Map and Reduce. There is another phase i.e. 

shuffle phase also for dealing with intermediate data. The 

details of the MapReduce job computation are as follows: 

i. Preparation of the input data: MapReduce uses 

Google's file system which is called GFS or HDFS, 

as an underlying storage layer for reading input and 

saving output. GFS is a distribution system 

distributed block that supports error tolerance by 

separating and replicating data.  

ii. Map phase: The input data is divided into small 

chunk on different worker nodes and results are in 

form of key value pairs.   

iii. Shuffle phase: The output from mappers is sorted 

and sent to reduce processors. 

iv. Reduce phase: The sorted output data group (each 

key) is processed in parallel to each reduced node. 

User-defined reducing functions are implemented 

once for every key value generated by map steps. 

v. Final output: The MapReduce system finally 

collects all of the reduce outputs to produce the final 

output. The results are stored in the GFS. 

MapReduce computes a job into different phases and during 

its operation it follow the general workflow as shown Figure 3 

for all types of jobs. 

 

Figure 3: MapReduce workflow [19] 

4. EXPERIMENTAL EVALUATION 
The implementation and evaluation of this work has been 

conducted in Hadoop version 2.7.1. Several MapReduce jobs 

with different sizes of input data ranging from Bytes to Giga 

bytes has been evaluated against different replication figures. 

Hadoop MapReduce job has many configuration factors 

including replication factor. The configuration settings with 

the replication value 1 is shown in the Figures 4. Regression 

analysis has been done in the Microsoft excel. The total job 

completion time has been used as a performance evaluation 

metric.   

 

 

Figure 4: MapReduce job configuration with replication 1 

5. RESULTS AND DISCUSSION 
It has been observed that the variation of the replication factor 

has a great effect on the total job completion time. The results 

are extracted from the logs after running the Hadoop 

MapReduce Jobs. The extraction is done for the total job 

execution time against different values of replication factor 

and are given in the Tables 1-3. The replication factor has 

been changed from 1 to 5. The replication values in the 

configuration settings can be viewed from Figures 4. The 

input data size has been varied from Bytes to Gigabytes (GB) 

for each replication value. It has been observed that changing 

the input data size has effect on total job completion time. 

Figure 5 is clearly depicting that with the increase in input 

data size the total job completion time also increases. Figure 5 

also shows that with the increase of replication value over the 

same sets of data the total job execution time becomes more. 

The default value of the replication factor is 3 for the Hadoop 

MapReduce. Moreover, with increasing the input data size 

with even default values results in much larger total execution 

time.  

The core idea of making the replication is to enhance the 

reliability. On the other hand, replication of big data sets 

results in wastage of resources as well. Thus it is important to 

consider the cases where replication is necessary and where it 

deteriorates the system’s performance. Several simulations 

has been done and simulation results are analyzed. Hadoop, 

the open source implementation of MapReduce runs in three 

modes standalone, pseudo-distributed and fully distributed.  

Figure 6 results shows the long list of job history against the 

replication factor with the minimum value i.e. 1. More than 

hundred simulations with different configuration in standalone 

and pseudo distributed modes has been done. The point which 

is noticeable that all the jobs are successfully completed with 

all the tasks of every job as depicted from Figure 8. Thus, 

doing the replication in standalone and pseudo-distributed 

modes has no point of failure as observed by the simulation 

results. Unless if there will be some hardware failure occurs. 
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Thus the replication for these cases would merely increase the 

total job execution time and results in in-efficient usage of 

storage assets.  

Several simulations has been done and it is difficult to present 

all the simulation results here. The total job execution time 

results against different input data sizes from some bytes to 

Gigabytes with replication factor as 1 has been shown in the 

Table 1. 

Table 1:  Job completion times with replication 1 

Input data size 

(MB) 
Replication 

Total Execution Time 

(sec) 

0.0005 1 20 

120.42 1 38 

260.76 1 43 

521.53 1 50 

1180 1 101 

1600 1 121 

2005 1 143 

2600 1 178 

3050 1 205 

3500 1 217 

3900 1 257 

4155 1 266 

4700 1 310 

5100 1 380 

5700 1 399 

6110 1 408 

The total job execution time results against different input 

data sizes from some bytes to Gigabytes with replication 

factor as three has been shown in the Table 2. 

Table 2: Job completion times with replication 3 

Input data size 

(MB) 
Replication 

Total Execution 

Time (sec) 

0.0005 3 19 

120.42 3 39 

260.76 3 43 

521.53 3 67 

1180 3 159 

1600 3 165 

2005 3 171 

2600 3 178 

3050 3 183 

3500 3 242 

3900 3 341 

4155 3 480 

4700 3 550 

5100 3 589 

5700 3 623 

6110 3 729 

The total job execution time results against different input 

data sizes from some bytes to Gigabytes with replication 

factor as five has been shown in the Table 3. 

Table 3: Job completion times with replication 5 

Input data size 

(MB) 
Replication 

Total Execution 

Time (sec) 

0.0005 5 20 

120.42 5 39 

260.76 5 43 

521.53 5 67 

1180 5 155 

1600 5 181 

2005 5 239 

2600 5 298 

3050 5 361 

3500 5 410 

3900 5 492 

4155 5 503 

4700 5 590 

5100 5 680 

5700 5 710 

6110 5 757 

 

For analytical analysis, the technique widely adopted by the 

research community i.e. regression analysis has been used. 

Regression analysis has been used for predictive analysis and 

for the qualification of a variable dependence.  
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Figure 5: Total job completion time vs different input data size

 

Figure 6: Different jobs successful completion along with all the subtask

Table 4: Regression analysis results 

  Coefficients Standard 

Error 

t Stat P-value Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept -8.161713495 37.5138 -0.21757 0.830215 -86.9753 70.65185 -86.9753 70.65185 

Replication 7.25 10.30406 0.703606 0.490681 -14.398 28.89804 -14.398 28.89804 
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The regression analysis has been done over the simulations 

results to verify the effect of replication on total execution 

time. The results of regression analysis are shown in Table 4. 

The prediction value i.e. the P-value of the regression has 

been used for the qualification criteria for a factor. If the p-

value against a specific factor is less than 0.05 then the factor 

has no   significant contribution towards the testing 

experiment and that factor can be ignored even in analysis. 

The P-value for regression factor as shown in Table 4 is 

0.490681 which is greater than 0.05. Thus, this P-value of 

replication among regression results enables the qualification 

of replication factor on total execution time. 

6. CONCLUSION  
Hadoop MapReduce platform is considered as the most 

prominent and effective for the big data problems that allow 

the processing of gigantic data over many underlying 

distributed nodes. A MapReduce job has many configuration 

parameters and their optimal tuning can significantly increase 

the Hadoop MapReduce performance. In this paper, an 

unexplored factor i.e. the replication factor is evaluated for its 

effect on the Hadoop MapReduce total job completion time. 

Several simulations has been done by different replication 

values and also by varying the input data sizes. It has been 

observed that the variation of the replication factor influences 

the total job completion time.  The results from the Figure 5 

shows that increasing the input size with constant replication 

has completed a job execution in longer time. Furthermore, an 

increase in the replication value will results in higher values 

of total job completion time. In addition, Regression analysis 

has been used for qualification criteria of a variable on the 

dependent one. The evaluation results evidently shows the 

dependence of the job completion time on the replication 

factor. The results are also validated through regression 

analysis p-value. From the Table 4 we can see that p-value is 

greater than 0.05 which means replication factor contributes 

as major to job completion time. Consequently, the replication 

factor has a substantial effect on overall performance of the 

Hadoop MapReduce. 
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