
 International Journal of Computer Applications (0975 – 8887)

 Volume 181 – No. 28, November 2018

9

Survey on a Google File System (GFS)

Saleh A. Khawatreh
Dept. of Computer Engineering

Faculty of Engineering, Al-Ahliyya Amman
University

Amman-Jordan

Enas N. Al-Zubi
Dept. of Computer Engineering

Faculty of Engineering, Al-Ahliyya Amman
University

Amman, Jordan

ABSTRACT
The Google File System (GFS), a proprietary scalable

distributed file system sophisticated by Google to be used for its

huge distributed data applications, primarily the search engine. It

improves efficiency, reliability, scalability, transparency,

security and fault tolerance despite of using cheap commodity

computers and serving a large number of clients. GFS is similar

with the previous distributed file systems in the goals, it divides

the files into chunks of data each one is 64 MB in size and

generate several copies of each data chunk. Then mounts these

data chunks on several servers which could be based on global

geographical locations, and that will enhance the reliability of

retrieving files online and overcome any limited access to one or

more servers. It will also enhance the concurrency access and

control over files online due to the fact that several copies of

each file do exist at the same time. GFS has successfully met

Google’s storage needs, for generation and data processing such

as research and development issues that need huge data sets. The

biggest cluster provides hundreds of TBs of storage distributed

in thousands of disks on thousand machines, and it provides

concurrency access by hundreds of users.

Keywords

Destributed File Systems, Google File System (GFS) clustered

storage, data storage, performance, fault tolerance.

1. INTRODUCTION
To meet the fast increasing applications of Google’s information

processing demands, the Google File System (GFS) have been

designed. GFS is developed from Google effort “ Big Files”

which was presented by Larry Page and Sergey Brin in the early

time of Google, it has the same goals of the previews systems

including performance, scalability, availability, security,

transparency, openness, and fault tolerance template. However,

key observations of Google application workloads and new

technologies have improved the GFS design and reexamined the

previous ones and introduced different points in the design ways.

GFS divides the files into fixed-size chunks, each one is 64 MB,

as in clusters and sectors in regular file systems, that are rarely

overwritten or shrunk, but they are usually read or appended to.

It is designed to work on Google’s clusters, that consists of

cheap commodities, so precautions must be taken against the

high rates of failure proposed by the nodes itself or the

subsequent data loss. When the high data throughput is needed,

other design concepts are proposed and here are:

First, multiple nodes are consisted the GFS cluster, nodes in the

cluster are connected as centralized style where there is one

master node and a large number of chunk servers. Because of the

large number of nodes which reaches to hundreds or even

thousands of storage nodes that consist of cheap commodity

components, which make the failure is norm not an exception,

these problems occurred by application or operating system

bugs, user errors, failures of connections, memory, disks,

network, or power supplies. So, error detections, periodic

monitoring, fault tolerance limits, and self-recovery must be

taken part in the system.

Second, traditional files are huge in size, generally multi-GBs.

Every file contains application objects such as web documents.

Working with high increasing data sets consisting of many TBs

including billions of objects, it is difficult to manage billions of

KB-sized files even if the file system can support it. So,

parameters and design assumptions have to be adopted.

Third, appending new data is often used rather than overwriting

existing one. When written, the files are read only and only

sequentially. Different types of data sharing, some constitute

huge repositories which data analysis processes scan though,

others may be data streams operated in continuous manner by

processing applications, some may be archived information,

some may be temporal results presented on one machine and to

be continued on another one, however, in the same time or later.

Working such as access ways on large files, appending will be

the basic of performance optimizations and success guarantees,

while forwarding data blocks in the client lose its appeal.

Fourth, participating the applications and the file system

improves the whole system by increasing the flexibility, such as,

relaxed GFS’s consistency model to simplify the system without

forcing an exhausted load on the applications. Also, introducing

an atomic suffix process so that many users can append to a file

concurrently without any synchronization among them, more

details are presented later in the paper.

Many GFS clusters now are implemented for various purposes.

The biggest ones have more than 1000 storage nodes, more than

300 TB of disk storage, and accessed by hundreds of clients on

different machines.

2. DESIGN OVERVIEW

A. Assumptions

First, to design a file system, assumptions must be guided to

offer opportunities and challenges, and these are:

The primary components that used in the system are cheap

commodities which often fail. It must evolve continuous

monitor and detect, tolerate, and recover from failures as a

routine manner.

Storing a modest number of large files in the system,

approximately few million files, each file with 100 MB or more.

Multi-GB files are the basic issue and must be managed in

efficient way. Small files should be supported.

Two kinds of reads are implemented in the workloads: large

streaming reads and small random reads. The large streaming

reads provide individual operations that read hundreds of KBs,

commonly 1 MB or more. Successive processes from the same

user usually read from a contiguous area of a file. A small

random read often reads a few KBs at some specific offset.

Implementing well-defined semantics for multi-clients

concurrently append to the same file. These files also, called

 International Journal of Computer Applications (0975 – 8887)

 Volume 181 – No. 28, November 2018

10

producer-consumer queues or of more ways merging. Hundreds

of producers, working one in each machine, and need to append

to a file. Atomicity with minimum synchronization overhead is

primary. The file may be read after some time, or a consumer

may be reading among the file in the same time.

 The high bandwidth is more essential than low latency the

applications mostly focus on processing data in bulk at a high

rate, but few have stringent time to response for every read or

write.

B. Maintaining the Integrity of the Specifications

The template is used to format your paper and style the text. All

margins, column widths, line spaces, and text fonts are

prescribed; please do not alter them. You may note peculiarities.

For example, the head margin in this template measures

proportionately more than is customary. This measurement and

others are deliberate, using specifications that anticipate your

paper as one part of the entire proceedings, and not as an

independent document. Please do not revise any of the current

designations.

C. Interface

The interface in GFS is general, files are ordered in hierarchal

way and known by pathnames. Ordinary operations such as:

create, open, delete, close, write, and read.

D. Architecture

 When talking about architecture, there are three types which

are distributed, centralized, and hybrid. In GFS, the system is

consisting from clusters, and each cluster consists of one master

node and multiple chunk servers typically a cheap commodity

Linux machines operating as a user-level server process, and is

accessed by many users, as shown in Fig. 1. It is easy to process

a chunk server and a client on that machine.

 GFS divides the files into fixed-size chunks of 64 MB, every

chunk has a unique global identifier chunk handle consisting of

64 bit and is assigned by the master node in the creation period,

chunk servers keep chunks in local disks as Linux files, and

every read or write is specified by the chunk handle.

 The master stores the system metadata, and includes the

namespace the translation from files to chunks, access control,

and the actual locations of chunks. It also manages system-wide

works such as chunk lease controlling, garbage collection of

unused chunks, and chunk mixing between chunk servers. Heart

Beat messages are sent from the master to the chunk servers to

manage and control it and know its states.

 GFS user code linked into each application presents the file

system API and communicates with the master and the chunk

servers, so read or write on data is occurred. Users take metadata

from the master, and communicate with chunk servers for data.

GFS do not implement the POSIX API and the Linux vnode

layer.

 Caching file data are not used in the client nor in the chunk

serve. Client caches do not offer a huge improvement because

the most applications stream use huge files and have working

sets very large for caching.

D. Single Master
 Master manages and sophisticates chunk placement and

replication orders by global information. However, it is good to

minimize the master responsibilities such as reads and writes to

avoid the bottleneck, clients do not read or write through the

master, although, the client communicates with the master to

know which chunk server it must contact. This information is

cached for a time and transfers to the chunk servers directly to

perform the operation.

 Fig.1 GFS architecture.

According to Fig. 1, the simple read is as following: first,

application originates the read request, then GFS client translates

the request and send it to master. Master gives the chunk handle

and replica location, after that, client communicates with a

location and sends the request, chunk server send the data to the

client, and finally client forwards the requested data to the

application. In writes, first, application starts the request, and

sends it to GFS client to transfer the request and sends it to the

master, master responds with chunk handle and replica locations,

then the client pushes the new data to all locations, this data is

stored in the buffers, and when the client sends write command

to primary, then primary checks serial order for data in the

buffers and writes the data in that order to the chunks, then

primary sends the serial order to all the secondary nodes and ask

them to write, when secondary nodes finish the writes, they

respond back to primary, and the primary acknowledges the

client.

E. Chunk Size
 GFS choose 64 MB that bigger than ordinary file system

block sizes and this is one of the design parameters. Every chunk

replica is kept as a plain Linux file in a chunk server and take

place as needed. Lazy space allocation is good to avoid wasting

space because of the internal fragmentation.

 This large chunk size has many advantages, one of them is, it

decreases clients’ interactions with the master because reads and

writes to a chunk needs only one starting request to the master to

ask for chunk location. And this decrease is important for this

workload because applications usually read and write huge files

in sequential way. Also, small random reads, the client cache the

chunk locations for a multi-TB working methods. Another

advantage is that, the client is better performing multi-operations

in a specific chunk, and reduce network overhead by using TCP

connection to the chunk server in a limited period of time.

Finally, it decreases the size of the metadata in the master, and

that provides more spaces in the memory as it is shown in the

next section.

 Although, there are several advantages for this large size

chunk, there are some disadvantages, such as when the file is

small, it needs a small number of chunks may be only one, and

when many clients ask for this junk, a hot spot is happened.

 GFS solves this problem by keeping executable chunks that

have a higher replication factor, and by operating the batch

queue system stagger application start times. A likely solution is

by making clients read data from other clients in some cases.

F. Metadata
Three types of metadata are stored in the memory of the master

and these are: the file and chunk namespaces, the translation

 International Journal of Computer Applications (0975 – 8887)

 Volume 181 – No. 28, November 2018

11

from the files to chunks, and the locations of chunk’s replicas.

The two types are stored permanently through logging mutations

to an operation log kept in the local disk on the master and

replicated on other machines. The advantage of using the log is

to update the master state without risking inconsistencies of the

master crash. Chunk locations are not stored persistently,

although, it requests its chunk in all chunk servers at the setup or

when a new chunk server is added to the cluster.

Since metadata is stored in memory, expert operations are quick.

Besides, it is simple and effective for the expert to occasionally

look over its whole state out of sight. This intermittent

examining is utilized to actualize chunk garbage accumulation,

re-replication in the vicinity of chunk server failures, what's

more, chunk movement to adjust load and disk space utilization

crosswise over chunk servers.

One potential sympathy toward this memory-just approach is

that the number of chunks and thus the limit of the entire

framework is restricted by the amount of memory the expert has.

This is not a genuine constraint. The master maintains under 64

bytes of metadata for each 64 MB chunk. Most chunks are full

on the grounds that most records contain numerous chunks, just

the remainder of which may be somewhat filled. Likewise, the

file namespace information ordinarily requires less than 64 bytes

for each file because it stores document names utilizing prefix

pressure.

The master does not store a constant record of which chunk

servers have a reproduction of a given chunk. It essentially

surveys chunk servers for that data at startup. The master can

stay up with the latest from that point that it controls all chunk

placement and screens chunk server status with customary Pulse

messages named “Heart Beat”.

The authors, at first endeavored to keep chunk location data

diligently at the master, yet they concluded that it was much

easier to demand the information from chunk servers at startup,

what's more, intermittently from that point. This dispensed with

the issue of keeping the master and chunk servers in a state of

harmony as chunk servers join and leave the cluster, change

names, come up short, restart, and so on. In a cluster with

hundreds of servers, these occasions happen very frequently.

Another approach to comprehend this design decision is to

figure it out that a chunk server has the last word over what

chunks it does or does not have on its own disks. There is no

point in attempting to keep up a perspective view of this data

on the master due to the fact that mistakes on a chunk server

may bring about chunks to vanish suddenly (e.g., a disk might

have crashed also, be crippled) or an administrator might rename

a chunk server.

 The operation log contains a verifiable record of basic metadata

changes. It is integral to GFS. Not just is it the just tenacious

record of metadata, yet it additionally serves as a time stamp of

the sequence of operations. Files and chucks and in addition

their variants are all interestingly and unceasingly recognized by

the sensible times at which they were made.

 Due to the critical factor of the operation log, it must be stored

reliably and not allow changes to be visible to clients till

metadata changes are be continuous. On the other hand,

effectively loose the all file system or modern client operations

although the chunks are alive. Thus, replicate it to many remote

machines and serve client’s processes only after flushing the

symmetrical log record to disk both locally and remotely. The

master impresses many log records together before flushing

thereby reducing the impact of flushing and replication on all the

system.

Through replaying the operation log, the master returns its file

system state. Log must be kept small to decrease the startup

time. To be sure that the log does not increase, the master must

check its state so it will restart by loading the new checkpoint

from the local disk and only replaying a specific range of

records. This checkpoint is in the form of B-tree and could

mapped directly to memory and used in namespace search

without additional parsing. That can improve the speed of restart

and the availability.

Checkpoints take some time, so the master’s internal state is

operated in a manner that a latest checkpoint could be made

without extra delay. The master switches to a new log file and

makes the latest checkpoint in an individual request. These

checkpoints contain the whole mutations before this switch. It

could be made in a less than minute or for a cluster that has a

million files. When finished, it is stored to disk in local and

remote.

G. Consistency Model
 GFS has a consistency model which develops distributed

applications and keeps the simple and efficient implementations.

In this part, GFS guarantees are discussed and how GFS keeps

these guarantees.

 File namespace changes (e.g., file creation) are atomic. They

are made by the master: namespace locking guarantees atomicity

and correctness, the master’s operation log provides a global

order of these operations.

 The type of the change is responsible of the state of a file

region after data change. Never the less, it succeeds or fails, or

there are continuous changes. Table 1 show the result.

A file location is reliable if all clients will continuously see the

same information, regardless to which replicas they read from. A

location is characterized after a file information change in the

event that it is reliable and customers will see what the change

writes in its whole. At the point when a change succeeds without

impedance from simultaneous access, the influenced location is

characterized (and by suggestion reliable): all clients will

dependably see what the transformation has composed.

Simultaneous fruitful transformations leave the locale location

however steady: all clients see the same information; however, it

may not reflect what any one change has composed. Regularly,

it comprises of blended parts from different transformations. A

fizzled transformation makes the location conflicting

(subsequently likewise unclear): different clients might see

diverse information at distinctive times. The authors depict

underneath how the applications can recognize characterized

locales from indistinct locations.

 GFS applications may adjust the relaxed consistency model

with simple methods needed already for some purposes:

depending on attaches rather than overwrites, check pointing,

and writing self-validating, self-identifying records.

 In practice, all the applications turn into files by affixing rather

than overwriting. In one ordinary use, a writer produces

a file from the start to the end. It basically changes the name of

the file to a permanent name after writing all the data, or

checkpoints in every specific period of time how much has been

successfully written. Checkpoints may also have application-

level checksums. Readers verify and process only the file region

up to the last checkpoint, which is known to be in the defined

state. Regardless of consistency and concurrency issues, this

approach has served us well. Appending is far more efficient and

 International Journal of Computer Applications (0975 – 8887)

 Volume 181 – No. 28, November 2018

12

more resilient to application failures than random writes. Check

pointing allows writers to restart incrementally and keeps

readers from processing successfully written file data that is still

incomplete from the application’s perspective.

Table 1. File Region State After Mutation

3. SYSTEM INTERACTIONS
The system was designed to decrease the master’s

responsibilities. Here are how client, master, and chunk servers

communicate with each other to perform data changes, snapshot,

and atomic record append.

E. Leases and Mutation Order

A mutation is a process which changes the contents or metadata

of a chunk like a write or an append process. Every mutation is

implemented at all the chunk’ replicas. Leases are used to

maintain a continuous mutation order across replicas. The

master awards a chunk lease to a replica, that called the

primary. The primary chooses a serial order for all mutations to

chunks. All replicas do the same as that order applying

mutations. So, the global mutation order is created at the start

through the lease award order that picked by the master, and

with a lease by the serial identifiers assigned by the primary.

The lease technique is created to eliminate management

overhead at the master. A lease has an primary timeout of 60

seconds. Although, thus, the chunk is being mutated, the primary

can ask and typically get domains from the master indefinitely.

These domains requests and grants are piggybacked on the Heart

Beat messages in regular way

exchanged between the master and all chunk servers. The master

can sometimes try to drag a lease before it endears (e.g., when

the master wants to weaken mutations on a file that was

renamed). Although, if the master loses interactions with a

primary, it can safely allow a new lease to another replica after

the old lease dies. Figure 2, shows this process through the

control flow of a write by these steps:

1. The client requests the master that chunkserver

keeps the present lease for the chunk and the

locations of the all replicas. If no one has a lease,

the masterpicks one to a replica it chooses.

2. The master responds with the identity of the

primary and all locations of the secondary replicas.

The client stores these data to next mutations. It

needs to communicates with the master next time

when only the primary can not be reached or

replies which it no longer has a lease.

3. The client caches the data to the replicas. A client

may do so in different order. Every chunk server will

keep this data in an internal LRU buffer cache till the

data is in use or dropped out. Through separating the

data sent from the control flow, so, performance will

be improved by ordering the important data flow

according to the network regardless of which chunk

server is the primary.

4. When all replicas receive the acknowledgment,

the client requests write to the primary. The request

knows the data previous cached to all replicas. The

primary specifies s serial numbers to the all

mutations it receives, may be from multiple clients,

that supplies the primary serialization. It supplies the

change to its own local state in sequence.

5. The primary sends the write requests to all

secondary replicas. Every secondary replica supplies

changes in the same sequential number assigned by

the primary.

6. The secondary nodes reply to the primary

signalizing that they have finished the

process.

7. The primary sends back to the client. Any

errors met at any of replicas are reported to

the client. If there are errors, the write may

have passed at the primary and a subset of the

secondary replicas. (If it had not passed at the

primary, it would not have been created a

serial number and send it.) The client request

is assumed to have dropped, and the modified

location is left in not continuous state. The

client code treats these errors through trying

the failed mutation again. It will make a few

tries at steps (3) to (7) before falling back to a

retry from the starting of the write.

Fig. 2. Write Control and Data Flow

F. Data Flow

The flow of data is different from the flow of control to use the

network maximum efficiency. But control flows from client to

primary and then to secondary nodes, data is cached along

choose sequence of chunk servers in a pipelined model. The

goals are to utilize fully every machine’s network bandwidth,

against network bottleneck and huge-latency links, and decrease

the latency to cache by all the data. To utilize every machine’s

network bandwidth, the data is cached along a series of chunk

servers not as distributed in some other topology (e.g., tree). So,

every machine’s full outbound bandwidth is used to transfer data

quickly as can rather than divided between multiple recipients.

 International Journal of Computer Applications (0975 – 8887)

 Volume 181 – No. 28, November 2018

13

G. Atomic Record Appends

GFS applies an atomic approach process called record append.

In an ordinary write, the client chooses a specific offset in that

data is to be written. Continuous writes to the same locations are

not serialize: the location may end up consisting of data

fragments from many clients. In a record append, although, the

client specifies only the data. GFS appends it to the file once at

least atomically (i.e., as one continuous serialize order of bytes)

at an offset of GFS’s choosing and returns that offset to the

client. This is the same as to writing to a file opened in O

APPEND mode in UNIX without the strain conditions when

multiple writers do so concurrently. Record append is mostly

used by distributed applications in that multi clients get the same

file concurrently.

4. MASTER OPERATION

The master operates all namespace processes, and controls

chunk replicas throughout the system: it chooses placement

decisions, makes the latest chunks and hence replicas, and

coordinates many system-wide activities to keep chunks

replicated, to poises load across all the chunk servers, and to

reused the unused storage. Now these topics are discussed

below:

A. Namespace Management and Locking
Several masters processing require a long time: for example, a

snapshot process has to change chunk server leases on all chunks

covered by the snapshot. Delay another processes to be active

and use locks over locations of the namespace to ensure the best

serialization. Not as many traditional file systems, GFS does not

use a per-directory data structure which lists all the files in

which directory. Nor does it provide aliases for the same file or

directory (i.e., hard or nominal links in UNIX terms). GFS

performs its namespace as a lookup table mapping full

pathnames to metadata. With prefix compressions, this table

prepared in memory. Each part in the namespace tree (either a

free file name or a standard directory name) has a read-write

lock. Every master operation acquires a number of locks before

it runs.

B. Replica Placement
A GFS cluster is almost distributed at deferent levels from each

other’s. It almost has thousands of chunk servers manipulated

across multi machines. These chunk servers may be accessed

from thousands of clients from the same or different machines.

Communication among two machines on different formats may

access one or more network switches. In addition, bandwidth

into a rack may be less than the normal bandwidth of all

machines with the rack. Multi-level distribution presents a

unique challenge to distribute data for, reliability, availability,

and scalability.

5. FAULT TOLERANCE AND DIAGNOSIS
One of the hardest challenges in implementing the system is

operating with frequent component crashes, The quality and

quantity of nodes together make these problems more than the

exception: this leads to cannot completely trust the machines,

and cannot trust the disks too. Component crashes can result in

an unavailable system or, worse, corrupted data.

A. High Availability

Keeping the system highly available with two simple effective

methods: fast recovery, replication and master replication.

B. Data Integrity
Every chunk server makes check summing to detect corruption

of received data. As that a GFS cluster usually has hundreds of

disks on hundreds of machines, it often organizes disk failures

that cause data corruption or loss on both the read and write

operations. They could recover from corruption using another

chunk replica, but, it could be not practical to detect corruption

by comparing replicas across chunk servers. However, divergent

replicas may be legal: the semantics of GFS mutations, in

particular atomic record append, does not guarantee identical

replicas. So, every chunk server must verify in independence the

integrity of its own replica by maintaining checksums.

C. Diagnostic Tools
Extra and detailed diagnostic logging has helped immeasurably

in such problems: isolation, debugging, and performance

evaluations, while using only a little cost. Without logs, it is

difficult to understand transient, non-repeatable communications

between machines. GFS servers create diagnostic logs which

record many significant rolls (for example chunk servers going

up and down) and all RPC requests and replies. Those diagnostic

logs could be free to delete without affecting the correctness of

the system. Although, trying to keep these logs close as far as

space permits.

6. MEASUREMENTS

Many micro-benchmarks are used to measure the bottlenecks

inherent in the GFS systems and architectures, and also many

measurements from real clusters that used in Google.

A. Micro-benchmarks
Measuring performance on a GFS cluster consist of one master,

two master replicas, 16 chunk servers, and16 clients. This

configuration was set up to be easy to use. Ordinary clusters

have thousands of chunk servers and hundreds of clients. All the

machines are configured with dual 1.4 GHz processors, 2 GB of

memory, two 80 GB 5400 rpm disks, and a 100 Mbps full-

duplex Ethernet connection to an HP 2524 switch. All 19 GFS

server machines are interacted with one switch, and all 16 client

machines to the other. The two switches are connected with a 1

Gbps link.

1. Reads
 Clients read at the same time from the file system. Every client

reads a in a random way selected 4 MB location from a 320 GB

file set. This is repeated 256 times so every client finishes

reading 1 GB of data. The chunk servers taken together have

only 32 GB of memory, thus improving at most a 10% hit rate in

the Linux buffer cache. These results would be close to actual

cache results, and Fib.3 (a) shows the results.

2. Writes
Clients write at the same time to N distinct files. Every client

writes 1 GB of data to another file in a sequence of 1 MB writes.

The write rate and its theoretical ranges are presented in Figure

3(b). The limit at 67 MB/s because of the need to write every

byte to 3 of the 16 chunk servers, every one with a 12.5 MB/s

input connection. The write rate for one client is 6.3 MB/s, half

of the limit. The idea for that is that networks acknowledgments.

It does not interact well with the pipelining model so, using for

storing data to chunk replicas. Delays in propagating data from a

replica to another decrease the overall write rate. Aggregate

write rate is 35MB/s for 16 clients (or2.2 MB/s per client), is

half the theoretical limit. As in the state of reads, it is better that

multiple clients write simultaneously to the same chunk server as

the number of clients increases. In addition, collision is better for

16writers than for 16 readers because of the three different

replicas from every write involves.

3. Record Appends
Showing record appends performance in Fig. 3(c). Clients

append simultaneously to a single file. Performance is decreased

 International Journal of Computer Applications (0975 – 8887)

 Volume 181 – No. 28, November 2018

14

by the network bandwidth of the chunk servers that keep the end

chunk of the file, independently of the number of clients. It starts

at 6.0 MB/s for one client and falls to 4.8 MB/s for 16 clients,

mostly because of the congestion and variances in network

transfer rates caused by the clients.

B. Real World Clusters
Examining two clusters using in Google that are representative

of many others like that. Cluster A is used usually for research

and improvement by hundred engineers. An ordinary task is

identified by a user and processing to several hours. It reads by

many MBs to a few TBs of data, exchanges or analyzes data,

and sends the results back to the cluster. Cluster B is used for

production data processing. Table 2 Shows that, the tasks last

longer and continuously generate and process multi-TB data sets

with only occasional human intervention. In both cases, a single

“task” consists of various processes on many machines read and

write a number of files at the same time. Table 3. Shows the

performance metric for them, and Fig, 3. Shows the throughput

Table 2. Characteristics of two GFS clusters

Table 3: Performance Metrics for Two GFS Clusters

7. COMPARISON BETWEEN GOOGLE

FILE SYSTEM AND HADOOP

DISTRIBUTED FILE SYSTEM
 GFS is discussed above, and now this is small introduction

about Hadoop system (HDFS). As shown in Fig. 4. The

architecture of Hadoop system. And Table 4. Presented the

comparison,

Fig. 4. The HDFS architecture.

8. CONCLUSIONS
The Google File System employs the important essential role in

supporting large-scale data operating workloads on commodity

components. While some design choices are specific to the

specific setting, various of them may apply to data processing

operations of the same magnitude and cost issues.

Starting by repeating ordinary file system theories in case of the

current and anticipated application workloads and technological

mechanism. Our observations led to obvious different views in

the design areas. Treating component crashes as the normal

rather than the exception, optimize for large files that are mostly

appended to and then read, both extend and relax the ordinary

file system interface to improve the overall system. This system

provides fault tolerance by constant monitoring, replicating

critical data, fast and automatic recovery. Chunk replication

tolerate chunk server failures. The frequency of these failures

improves a novel online repair mechanism which in regular and

transparency fixes the failures and compensates for lost replicas

as soon as can. Additionally, using the check summing to detect

data corruption at the disk or IDE subsystem level, that becomes

all common give the quantity of disks in the system. GFS met

the storage needs in successful manner and is mostly used in

Google as the storage platform for research and development as

well as production data operations. It is an important method

which enables user to continue to innovate and attack errors on

the all of the whole web.

 International Journal of Computer Applications (0975 – 8887)

 Volume 181 – No. 28, November 2018

15

Fig. 3: Aggregate Throughputs. Top curves show theoretical limits imposed by our network topology. Bottom curves

show measured throughputs. They have error bars that show 95% confidence intervals, which are illegible in some cases

because of low variance in measurements.
Table 4. Some of the Comparative Analysis of GFS and HDFS

Properties GFS HDFS

Design Goals The basic goal of GFS is to support large

files

 made based on the proposals that:

TB data sets will be distributed

across thousands of disks attached to

Commodity compute nodes.

 Used for intensive computing data.

 reliably, till when failures

occur within chunk servers, master, or

network partitions.

 GFS is created more for batch

processing better than interactive use by

users.

The main goals of HDFS is to

support large files.

 made based on the proposals that:

TB data sets will be distributed

across thousands of disks attached to

commodity compute nodes.

 Used for intensive computing data.

 reliably, till when failures

occur within chunk servers, master, or

network partitions

 HDFS is created more for batch

processing rather than interactive use by

users.

Processes Master and chunk server Name node and Data node

File Management Files are supported hierarchically in

directory and defined by path names.

 GFS is exclusively for Google

application.

HDFS supported an ordinary

hierarchical

file organization

 HDFS also supports third-party file

systems such as Cloud Store and

Amazon

Simple Storage Service.

Scalability Cluster based architecture

 The file system consists of hundreds

or

even thousands of storage machines built

from inexpensive commodity parts.

 The largest cluster has over 1000

storage nodes, over 300 TB of disk

storage, and are heavily accessed by

hundreds of clients on distinct machines

on a continuous basis.

 Cluster based architecture

 Hadoop currently runs on clusters

with

thousands of nodes.

 E.g. Face book has 2 major clusters:

- A 1100-machine cluster with 8800

cores and about 12PB raw storage.

- A 300-machine cluster with 2400

cores and about 3PB raw storage.

- Each (commodity) node has 8 cores

and 12 TB of storage.

EBay uses 532 nodes cluster (8*532

cores, 5.3PB)

 Yahoo uses more than 100,000 CPUs

in

>40,000 computers running Hadoop

- biggest cluster: 4500 nodes (2*4cpu

boxes w 4*1TB disk & 16GB RAM)

 International Journal of Computer Applications (0975 – 8887)

 Volume 181 – No. 28, November 2018

16

[10]

 K.Talattinis et.al concluded in their

work

that Hadoop is efficient when

operating in a full distributed system,

although, in order to achieve optimal

results and obtain advantage of Hadoop

scalability, it is necessary to use large

clusters of computers.

Protection Google has their own file system called

GFS. With GFS, files are divided and

stored in multiple pieces on many

machines.

The HDFS supposed a permission

method for files and directories which

shares

data of the POSIX model.

 File or directory have individual

permissions

9. REFERENCES

[1] Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak

Leung. "The Google file system." ACM SIGOPS

operating systems review. Vol. 37. No. 5. ACM, 2003.

[2] Lu, Lanyue, et al. "A study of Linux file system

evolution." ACM Transactions on Storage (TOS) 10.1

(2014): 3.

[3] 5- Yang, Jade. "From Google File System to Omega: a

Decade of Advancement in Big Data Management at

Google." Big Data Computing Service and Applications

(BigDataService), 2015 IEEE First International

Conference on. IEEE, 2015.K. Elissa, “Title of paper if

known,” unpublished.

[4] .’’www.wekipidia.com’’//last seen: Saturday, 19-12-

2015.

[5] Vijayakumari, R., R. Kirankumar, and K. Gangadhara

Rao. "Comparative analysis of Google File System and

Hadoop Distributed File System."ICETS-International

Journal of Advanced Trends in Computer Science and

Engineering 3.1 (2014): 553-558.

IJCATM : www.ijcaonline.org

