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ABSTRACT 
The Google File System (GFS), a proprietary scalable 

distributed file system sophisticated by Google to be used for its 

huge distributed data applications, primarily the search engine. It 

improves efficiency, reliability, scalability, transparency, 

security and fault tolerance despite of using cheap commodity 

computers and serving a large number of clients. GFS is similar 

with the previous distributed file systems in the goals, it divides 

the files into chunks of data each one is 64 MB in size and 

generate several copies of each data chunk. Then mounts these 

data chunks on several servers which could be based on global 

geographical locations, and that will enhance the reliability of 

retrieving files online and overcome any limited access to one or 

more servers. It will also enhance the concurrency access and 

control over files online due to the fact that several copies of 

each file do exist at the same time. GFS has successfully met 

Google’s storage needs, for generation and data processing such 

as research and development issues that need huge data sets. The 

biggest cluster provides hundreds of TBs of storage distributed 

in thousands of disks on thousand machines, and it provides 

concurrency access by hundreds of users.  
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1. INTRODUCTION 
To meet the fast increasing applications of Google’s information 

processing demands, the Google File System (GFS) have been 

designed. GFS is developed from Google effort “ Big Files” 

which was presented by Larry Page and Sergey Brin in the early 

time of Google, it has the same goals of the previews systems 

including performance, scalability, availability, security, 

transparency, openness, and fault tolerance template. However, 

key observations of Google application workloads and new 

technologies have improved the GFS design and reexamined the 

previous ones and introduced different points in the design ways. 

GFS divides the files into fixed-size chunks, each one is 64 MB, 

as in clusters and sectors in regular file systems, that are rarely 

overwritten or shrunk, but they are usually read or appended to. 

It is designed to work on Google’s clusters, that consists of 

cheap commodities, so precautions must be taken against the 

high rates of failure proposed by the nodes itself or the 

subsequent data loss. When the high data throughput is needed, 

other design concepts are proposed and here are: 

First, multiple nodes are consisted the GFS cluster, nodes in the 

cluster are connected as centralized style where there is one 

master node and a large number of chunk servers. Because of the 

large number of nodes which reaches to hundreds or even  

thousands of storage nodes that consist of cheap commodity 

components, which make the failure is  norm not an exception, 

these problems occurred by application or operating system 

bugs, user errors, failures of connections, memory, disks, 

network, or power supplies. So, error detections, periodic 

monitoring, fault tolerance limits, and self-recovery must be 

taken part in the system. 

Second, traditional files are huge in size, generally multi-GBs. 

Every file contains application objects such as web documents. 

Working with high increasing data sets consisting of many TBs 

including billions of objects, it is difficult to manage  billions of 

KB-sized files even if the file system can support it. So, 

parameters and design assumptions have to be adopted. 

Third, appending new data is often used rather than overwriting 

existing one. When written, the files are read only and only 

sequentially. Different types of data sharing, some constitute 

huge repositories which data analysis processes scan though, 

others may be data streams operated in continuous manner by 

processing applications, some may be archived information, 

some may be temporal results presented on one machine and to 

be continued on another one, however, in the same time or later. 

Working such as access ways on large files, appending will be 

the basic of performance optimizations and success guarantees, 

while forwarding data blocks in the client lose its appeal. 

Fourth, participating the applications and the file system 

improves the whole system by increasing the flexibility, such as, 

relaxed GFS’s consistency model to simplify the system without 

forcing an exhausted load on the applications. Also, introducing 

an atomic suffix process so that many users can append to a file 

concurrently without any synchronization among them, more 

details are presented later in the paper. 

Many GFS clusters now are implemented for various purposes. 

The biggest ones have more than 1000 storage nodes, more than 

300 TB of disk storage, and accessed by hundreds of clients on 

different machines. 

2. DESIGN OVERVIEW 

A. Assumptions 

First, to design a file system, assumptions must be guided to 

offer opportunities and challenges, and these are: 

The primary components that used in the system are cheap 

commodities which often fail. It must evolve continuous   

monitor and detect, tolerate, and recover from failures as a 

routine manner. 

Storing a modest number of large files in the system, 

approximately few million files, each file with 100 MB or more. 

Multi-GB files are the basic issue and must be managed in 

efficient way. Small files should be supported. 

Two kinds of reads are implemented in the workloads: large 

streaming reads and small random reads. The large streaming 

reads provide individual operations that read hundreds of KBs, 

commonly 1 MB or more. Successive processes from the same 

user usually read from a contiguous area of a file. A small 

random read often reads a few KBs at some specific offset.  

Implementing well-defined semantics for multi-clients 

concurrently append to the same file. These files also, called 
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producer-consumer queues or of more ways merging. Hundreds 

of producers, working one in each machine, and need to append 

to a file. Atomicity with minimum synchronization overhead is 

primary. The file may be read after some time, or a consumer 

may be reading among the file in the same time. 

    The high bandwidth is more essential than low latency the 

applications mostly focus on processing data in bulk at a high 

rate,  but few have stringent time to response for every read or 

write. 

B. Maintaining the Integrity of the Specifications 

The template is used to format your paper and style the text. All 

margins, column widths, line spaces, and text fonts are 

prescribed; please do not alter them. You may note peculiarities. 

For example, the head margin in this template measures 

proportionately more than is customary. This measurement and 

others are deliberate, using specifications that anticipate your 

paper as one part of the entire proceedings, and not as an 

independent document. Please do not revise any of the current 

designations. 

C. Interface 

The interface in GFS is general, files are ordered in hierarchal 

way and known by pathnames. Ordinary operations such as: 

create, open, delete, close, write, and read.  

D. Architecture 

  When talking about architecture, there are three types which 

are distributed, centralized, and hybrid. In GFS, the system is 

consisting from clusters, and each cluster consists of one master 

node and multiple chunk servers typically a cheap commodity 

Linux machines operating as a user-level server process, and is 

accessed by many users, as shown in Fig. 1. It is easy to process 

a chunk server and a client on that machine. 

  GFS divides the files into fixed-size chunks of 64 MB, every 

chunk has a unique global identifier chunk handle consisting of 

64 bit and is assigned by the master node in the creation period, 

chunk servers keep chunks in local disks as Linux files, and 

every read or write is specified by the chunk handle. 

  The master stores the system metadata, and includes the 

namespace the translation from files to chunks, access control, 

and the actual locations of chunks. It also manages system-wide 

works such as chunk lease controlling, garbage collection of 

unused chunks, and chunk mixing between chunk servers. Heart 

Beat messages are sent from the master to the chunk servers to 

manage and control it and know its states. 

  GFS user code linked into each application presents the file 

system API and communicates with the master and the chunk 

servers, so read or write on data is occurred. Users take metadata 

from the master, and communicate with chunk servers for data. 

GFS do not implement the POSIX API and the Linux vnode 

layer. 

   Caching file data are not used in the client nor in the chunk 

serve. Client caches do not offer a huge improvement because 

the most applications stream use huge files and have working 

sets very large for caching.  

D. Single Master 
   Master manages and sophisticates chunk placement and 

replication orders by global information. However, it is good to 

minimize the master responsibilities such as reads and writes to 

avoid the bottleneck, clients do not read or write through the 

master, although, the client communicates with the master to 

know which chunk server it must contact. This information is 

cached for a time and transfers to the chunk servers directly to 

perform the operation. 

                       Fig.1 GFS architecture. 
 

According to Fig. 1, the simple read is as following: first, 

application originates the read request, then GFS client translates 

the request and send it to master. Master gives the chunk handle 

and replica location, after that, client communicates with a 

location and sends the request, chunk server send the data to the 

client, and finally client forwards the requested data to the 

application. In writes, first, application starts the request, and 

sends it to GFS client to transfer the request and sends it to the 

master, master responds with chunk handle and replica locations, 

then the client pushes the new data to all locations, this data is 

stored in the buffers, and when the client sends write command 

to primary, then primary checks serial order for data in the 

buffers and writes the data in that order to the chunks, then 

primary sends the serial order to all the secondary nodes and ask 

them to write, when secondary nodes finish the writes, they 

respond back to primary, and the primary acknowledges the 

client. 

E. Chunk Size 
        GFS choose 64 MB that bigger than ordinary file system 

block sizes and this is one of the design parameters. Every chunk 

replica is kept as a plain Linux file in a chunk server and take 

place as needed. Lazy space allocation is good to avoid wasting 

space because of the internal fragmentation. 

  This large chunk size has many advantages, one of them is, it 

decreases clients’ interactions with the master because reads and 

writes to a chunk needs only one starting request to the master to 

ask for chunk location. And this decrease is important for this 

workload because applications usually read and write huge files 

in sequential way. Also, small random reads, the client cache the 

chunk locations for a multi-TB working methods. Another 

advantage is that, the client is better performing multi-operations 

in a specific chunk, and reduce network overhead by using TCP 

connection to the chunk server in a limited period of time. 

Finally, it decreases the size of the metadata in the master, and 

that provides more spaces in the memory as it is shown in the 

next section. 

  Although, there are several advantages for this large size 

chunk, there are some disadvantages, such as when the file is 

small, it needs a small number of chunks may be only one, and 

when many clients ask for this junk, a hot spot is happened. 

  GFS solves this problem by keeping executable chunks that 

have a higher replication factor, and by operating the batch 

queue system stagger application start times.  A likely solution is 

by making clients read data from other clients in some cases.        

F. Metadata 
Three types of metadata are stored in the memory of the master 

and these are: the file and chunk namespaces, the translation 
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from the files to chunks, and the locations of chunk’s replicas. 

The two types are stored permanently through logging mutations 

to an operation log kept in the local disk on the master and 

replicated on other machines. The advantage of using the log is 

to update the master state without risking inconsistencies of the 

master crash. Chunk locations are not stored persistently, 

although, it requests its chunk in all chunk servers at the setup or 

when a new chunk server is added to the cluster. 

Since metadata is stored in memory, expert operations are quick. 

Besides, it is simple and effective for the expert to occasionally 

look over its whole state out of sight. This intermittent 

examining is utilized to actualize chunk garbage accumulation, 

re-replication in the vicinity of chunk server failures, what's 

more, chunk movement to adjust load and disk space utilization 

crosswise over chunk servers.  

One potential sympathy toward this memory-just approach is 

that the number of chunks and thus the limit of the entire 

framework is restricted by the amount of memory the expert has. 

This is not a genuine constraint. The master maintains under 64 

bytes of metadata for each 64 MB chunk. Most chunks are full 

on the grounds that most records contain numerous chunks, just 

the remainder of which may be somewhat filled. Likewise, the 

file namespace information ordinarily requires less than 64 bytes 

for each file because it stores document names utilizing prefix 

pressure. 

The master does not store a constant record of which chunk 

servers have a reproduction of a given chunk. It essentially 

surveys chunk servers for that data at startup. The master can 

stay up with the latest from that point that it controls all chunk 

placement and screens chunk server status with customary Pulse 

messages named “Heart Beat”. 

The authors, at first endeavored to keep chunk location data 

diligently at the master, yet they concluded that it was much 

easier to demand the information from chunk servers at startup, 

what's more, intermittently from that point. This dispensed with 

the issue of keeping the master and chunk servers in a state of 

harmony as chunk servers join and leave the cluster, change 

names, come up short, restart, and so on. In a cluster with 

hundreds of servers, these occasions happen very frequently.  

Another approach to comprehend this design decision is to 

figure it out that a chunk server has the last word over what 

chunks it does or does not have on its own disks. There is no 

point in attempting to keep up a perspective view of this data  

on the master due to the fact that mistakes on a chunk server 

may bring about chunks to vanish suddenly (e.g., a disk might 

have crashed also, be crippled) or an administrator might rename 

a chunk server. 

  The operation log contains a verifiable record of basic metadata 

changes. It is integral to GFS. Not just is it the just tenacious 

record of metadata, yet it additionally serves as a time stamp of 

the sequence of operations. Files and chucks and in addition 

their variants are all interestingly and unceasingly recognized by 

the sensible times at which they were made. 

   Due to the critical factor of the operation log, it must be stored 

reliably and not allow changes to be visible to clients till 

metadata changes are be continuous. On the other hand, 

effectively loose the all file system or modern client operations 

although the chunks are alive. Thus, replicate it to many remote 

machines and serve client’s processes only after flushing the 

symmetrical log record to disk both locally and remotely. The 

master impresses many log records together before flushing 

thereby reducing the impact of flushing and replication on all the 

system. 

Through replaying the operation log, the master returns its file 

system state. Log must be kept small to decrease the startup 

time. To be sure that the log does not increase, the master must 

check its state so it will restart by loading the new checkpoint 

from the local disk and only replaying a specific range of 

records. This checkpoint is in the form of B-tree and could 

mapped directly to memory and used in namespace search 

without additional parsing. That can improve the speed of restart 

and the availability. 

Checkpoints take some time, so the master’s internal state is 

operated in a manner that a latest checkpoint could be made 

without extra delay. The master switches to a new log file and 

makes the latest checkpoint in an individual request. These 

checkpoints contain the whole mutations before this switch. It 

could be made in a less than minute or for a cluster that has a 

million files. When finished, it is stored to disk in local and 

remote.   

G. Consistency Model 
  GFS has a consistency model which develops distributed 

applications and keeps the simple and efficient implementations. 

In this part, GFS guarantees are discussed and how GFS keeps 

these guarantees. 

  File namespace changes (e.g., file creation) are atomic. They 

are made by the master: namespace locking guarantees atomicity 

and correctness, the master’s operation log provides a global 

order of these operations. 

  The type of the change is responsible of the state of a file 

region after data change. Never the less, it succeeds or fails, or 

there are continuous changes. Table 1 show the result.  

A file location is reliable if all clients will continuously see the 

same information, regardless to which replicas they read from. A 

location is characterized after a file information change in the 

event that it is reliable and customers will see what the change 

writes in its whole. At the point when a change succeeds without 

impedance from simultaneous access, the influenced location is 

characterized (and by suggestion reliable): all clients will 

dependably see what the transformation has composed. 

Simultaneous fruitful transformations leave the locale location 

however steady: all clients see the same information; however, it 

may not reflect what any one change has composed. Regularly, 

it comprises of blended parts from different transformations. A 

fizzled transformation makes the location conflicting 

(subsequently likewise unclear): different clients might see 

diverse information at distinctive times. The authors depict 

underneath how the applications can recognize characterized 

locales from indistinct locations. 

     GFS applications may adjust the relaxed consistency model 

with simple methods needed already for some purposes: 

depending on attaches rather than overwrites, check pointing, 

and writing self-validating, self-identifying records. 

  In practice, all the applications turn into files by affixing rather 

than overwriting. In one ordinary use, a writer produces 

a file from the start to the end. It basically changes the name of 

the file to a permanent name after writing all the data, or 

checkpoints in every specific period of time how much has been 

successfully written. Checkpoints may also have application-

level checksums. Readers verify and process only the file region 

up to the last checkpoint, which is known to be in the defined 

state. Regardless of consistency and concurrency issues, this 

approach has served us well. Appending is far more efficient and 
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more resilient to application failures than random writes. Check 

pointing allows writers to restart incrementally and keeps 

readers from processing successfully written file data that is still 

incomplete from the application’s perspective. 

Table 1. File Region State After Mutation 

 

3. SYSTEM INTERACTIONS 
The  system was designed to decrease the master’s 

responsibilities. Here are how client, master, and chunk servers 

communicate with each other to perform data changes, snapshot, 

and atomic record append. 

E. Leases and Mutation Order 

A mutation is a process which changes the contents or metadata 

of a chunk like  a write or an append process. Every mutation is 

implemented at all the chunk’ replicas. Leases are used to 

maintain a continuous  mutation order across replicas. The 

master awards a chunk lease to a replica, that  called the 

primary. The primary chooses a serial order for all mutations to  

chunks. All replicas do the same as that order  applying 

mutations. So, the global mutation order is created  at the start 

through the lease award order  that picked by the master, and 

with  a lease by the serial identifiers assigned by the primary. 

The lease technique is created to eliminate  management 

overhead at the master. A lease has an primary  timeout of 60 

seconds. Although, thus, the chunk is being mutated, the primary 

can ask and typically get domains from the master indefinitely. 

These domains requests and grants are piggybacked on the Heart 

Beat messages in regular way 

exchanged between the master and all chunk servers. The master 

can sometimes try to drag a lease before it endears (e.g., when 

the master wants to weaken mutations on a file that was  

renamed). Although, if the master loses interactions with a 

primary, it can safely allow a new lease to another replica after 

the old lease dies. Figure 2,  shows this process through the 

control flow of a write by these steps: 

1. The client requests the master that chunkserver 

keeps the present lease for the chunk and the 

locations  of the all replicas. If no one has a lease, 

the masterpicks one to a replica it chooses. 

2.  The master responds with the identity of the 

primary and all locations of the secondary replicas. 

The client stores these data to next mutations. It 

needs to communicates with the master next time 

when only the primary can not be reached or 

replies which it no longer has a lease. 

3. The client caches the data to the replicas. A client 

may do so in different order. Every chunk server will 

keep this data in an internal LRU buffer cache till the 

data is in use or dropped out. Through separating the 

data sent from the control flow, so, performance will 

be improved by ordering the important data flow 

according to the network regardless of which chunk 

server is the primary. 

4.  When all replicas receive the acknowledgment, 

the client requests write to the primary. The request 

knows the data previous cached to all replicas. The 

primary specifies s serial numbers to the all 

mutations it receives, may be from multiple clients, 

that supplies the primary serialization. It supplies the 

change to its own local state in sequence. 

5.   The primary sends the write requests to all 

secondary replicas. Every secondary replica supplies 

changes in the same sequential number assigned by 

the primary. 

6. The secondary nodes reply to the primary 

signalizing that they have finished the 

process. 

7. The primary sends back to the client. Any 

errors met at any of replicas are reported to 

the client. If there are errors, the write may 

have passed at the primary and a subset of the 

secondary replicas. (If it had not passed at the 

primary, it would not have been created a 

serial number and send it.) The client request 

is assumed to have dropped, and the modified 

location is left in not continuous state. The 

client code treats these errors through trying 

the failed mutation again. It will make a few 

tries at steps (3) to (7) before falling back to a 

retry from the starting of the write. 

 
 

Fig. 2. Write Control and Data Flow 

F. Data Flow 

The flow of data is different from the flow of control to use the 

network maximum efficiency. But control flows from client to 

primary and then to secondary nodes, data is cached along 

choose sequence of chunk servers in a pipelined model. The 

goals are to utilize fully every machine’s network bandwidth, 

against network bottleneck and huge-latency links, and decrease 

the latency to cache by all the data. To utilize every machine’s 

network bandwidth, the data is cached along a series of chunk 

servers not as distributed in some other topology (e.g., tree). So, 

every machine’s full outbound bandwidth is used to transfer data 

quickly as can rather than divided between multiple recipients. 
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G. Atomic Record Appends 

GFS applies an atomic approach process called record append. 

In an ordinary write, the client chooses a specific offset in that 

data is to be written.  Continuous writes to the same locations are 

not serialize: the location may end up consisting of data 

fragments from many clients. In a record append, although, the 

client specifies only the data. GFS appends it to the file once at 

least atomically (i.e., as one continuous serialize order of bytes) 

at an offset of GFS’s choosing and returns that offset to the 

client. This is the same as to writing to a file opened in O 

APPEND mode in UNIX without the strain conditions when 

multiple writers do so concurrently. Record append is mostly 

used by distributed applications in that multi clients get the same 

file concurrently. 

4. MASTER OPERATION 

The master operates all namespace processes, and controls 

chunk replicas throughout the system: it chooses placement 

decisions, makes the latest chunks and hence replicas, and 

coordinates many system-wide activities to keep chunks 

replicated, to poises load across all the chunk servers, and to 

reused the unused storage. Now these topics are discussed 

below:  

A. Namespace Management and Locking 
Several masters processing require a long time: for example, a 

snapshot process has to change chunk server leases on all chunks 

covered by the snapshot. Delay another processes to be active 

and use locks over locations of the namespace to ensure the best 

serialization. Not as many traditional file systems, GFS does not 

use a per-directory data structure which lists all the files in 

which directory. Nor does it provide aliases for the same file or 

directory (i.e., hard or nominal links in UNIX terms). GFS 

performs its namespace as a lookup table mapping full 

pathnames to metadata. With prefix compressions, this table 

prepared in memory. Each part in the namespace tree (either a 

free file name or a standard directory name) has a read-write 

lock. Every master operation acquires a number of locks before 

it runs. 

B. Replica Placement 
A GFS cluster is almost distributed at deferent levels from each 

other’s. It almost has thousands of chunk servers manipulated 

across multi machines. These chunk servers may be accessed 

from thousands of clients from the same or different machines. 

Communication among two machines on different formats may 

access one or more network switches. In addition, bandwidth 

into a rack may be less than the normal bandwidth of all 

machines with the rack. Multi-level distribution presents a 

unique challenge to distribute data for, reliability, availability, 

and scalability. 

5. FAULT TOLERANCE AND DIAGNOSIS 
One of the hardest challenges in implementing the system is 

operating with frequent component crashes, The quality and 

quantity of nodes together make these problems more than the  

exception: this leads to  cannot completely trust the machines, 

and  cannot trust the disks too. Component crashes can result in 

an unavailable system or, worse, corrupted data.  

A. High Availability 

Keeping the system highly available with two simple effective 

methods:  fast recovery, replication and master replication. 

B. Data Integrity 
Every chunk server makes check summing to detect corruption 

of received data. As that a GFS cluster usually has hundreds of 

disks on hundreds of machines, it often organizes disk failures 

that cause data corruption or loss on both the read and write 

operations. They could recover from corruption using another 

chunk replica, but, it could be not practical to detect corruption 

by comparing replicas across chunk servers. However, divergent 

replicas may be legal: the semantics of GFS mutations, in 

particular atomic record append, does not guarantee identical 

replicas. So, every chunk server must verify in independence the 

integrity of its own replica by maintaining checksums. 

C. Diagnostic Tools 
Extra and detailed diagnostic logging has helped immeasurably 

in such problems: isolation, debugging, and performance 

evaluations, while using only a little cost. Without logs, it is 

difficult to understand transient, non-repeatable communications 

between machines. GFS servers create diagnostic logs which 

record many significant rolls (for example chunk servers going 

up and down) and all RPC requests and replies. Those diagnostic 

logs could be free to delete without affecting the correctness of 

the system. Although, trying to keep these logs close as far as 

space permits. 

6. MEASUREMENTS 

Many micro-benchmarks are used to measure the bottlenecks 

inherent in the GFS systems and architectures, and also many 

measurements from real clusters that used in Google. 

A. Micro-benchmarks 
Measuring performance on a GFS cluster consist of one master, 

two master replicas, 16 chunk servers, and16 clients.  This 

configuration was set up to be easy to use. Ordinary clusters 

have thousands of chunk servers and hundreds of clients. All the 

machines are configured with dual 1.4 GHz processors, 2 GB of 

memory, two 80 GB 5400 rpm disks, and a 100 Mbps full-

duplex Ethernet connection to an HP 2524 switch. All 19 GFS 

server machines are interacted with one switch, and all 16 client 

machines to the other. The two switches are connected with a 1 

Gbps link. 

1. Reads 
 Clients read at the same time from the file system. Every client 

reads a in a random way selected 4 MB location from a 320 GB 

file set. This is repeated 256 times so every client finishes 

reading 1 GB of data. The chunk servers taken together have 

only 32 GB of memory, thus improving at most a 10% hit rate in 

the Linux buffer cache. These results would be close to actual 

cache results, and Fib.3 (a) shows the results. 

2. Writes 
Clients write at the same time to N distinct files. Every client 

writes 1 GB of data to another file in a sequence of 1 MB writes. 

The write rate and its theoretical ranges are presented in Figure 

3(b). The limit at 67 MB/s because of the need to write every 

byte to 3 of the 16 chunk servers, every one with a 12.5 MB/s 

input connection. The write rate for one client is 6.3 MB/s, half 

of the limit. The idea for that is that networks acknowledgments. 

It does not interact well with the pipelining model so, using for 

storing data to chunk replicas. Delays in propagating data from a 

replica to another decrease the overall write rate. Aggregate 

write rate is 35MB/s for 16 clients (or2.2 MB/s per client), is 

half the theoretical limit. As in the state of reads, it is better that 

multiple clients write simultaneously to the same chunk server as 

the number of clients increases. In addition, collision is better for 

16writers than for 16 readers because of the three different 

replicas from every write involves. 

3. Record Appends 
Showing record appends performance in Fig. 3(c). Clients 

append simultaneously to a single file. Performance is decreased 
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by the network bandwidth of the chunk servers that keep the end 

chunk of the file, independently of the number of clients. It starts 

at 6.0 MB/s for one client and falls to 4.8 MB/s for 16 clients, 

mostly because of the congestion and variances in network 

transfer rates caused by the clients. 

B. Real World Clusters 
Examining two clusters using in Google that are representative 

of many others like that. Cluster A is used usually for research 

and improvement by hundred engineers. An ordinary task is 

identified by a user and processing to several hours. It reads by 

many MBs to a few TBs of data, exchanges or analyzes data, 

and sends the results back to the cluster. Cluster B is used for 

production data processing. Table 2 Shows that, the tasks last 

longer and continuously generate and process multi-TB data sets 

with only occasional human intervention. In both cases, a single 

“task” consists of various processes on many machines read and 

write a number of files at the same time. Table 3. Shows the 

performance metric for them, and Fig, 3. Shows the throughput  

Table 2. Characteristics of two GFS clusters 

Table 3: Performance Metrics for Two GFS Clusters 

 

7. COMPARISON BETWEEN GOOGLE 

FILE SYSTEM AND HADOOP 

DISTRIBUTED FILE SYSTEM  
   GFS is discussed above, and now this is small introduction 

about Hadoop system (HDFS). As shown in Fig. 4. The 

architecture of Hadoop system. And Table 4. Presented the 

comparison, 

 
Fig. 4. The HDFS architecture. 

8. CONCLUSIONS 
The Google File System employs the important essential role in 

supporting large-scale data operating workloads on commodity 

components. While some design choices are specific to the 

specific setting, various of them may apply to data processing 

operations of the same magnitude and cost issues. 

Starting by repeating ordinary file system theories in case of the 

current and anticipated application workloads and technological 

mechanism. Our observations led to obvious different views in 

the design areas. Treating component crashes as the normal 

rather than the exception, optimize for large files that are mostly 

appended to and then read, both extend and relax the ordinary 

file system interface to improve the overall system. This system 

provides fault tolerance by constant monitoring, replicating 

critical data, fast and automatic recovery. Chunk replication 

tolerate chunk server failures. The frequency of these failures 

improves a novel online repair mechanism which in regular and 

transparency fixes the failures and compensates for lost replicas 

as soon as can. Additionally, using the check summing to detect 

data corruption at the disk or IDE subsystem level, that becomes 

all common give the quantity of disks in the system. GFS met 

the storage needs in successful manner and is mostly used in 

Google as the storage platform for research and development as 

well as production data operations. It is an important method 

which enables user to continue to innovate and attack errors on 

the all of the whole web. 
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Fig. 3:  Aggregate Throughputs. Top curves show theoretical limits imposed by our network topology. Bottom curves 

show measured throughputs. They have error bars that show 95% confidence intervals, which are illegible in some cases 

because of low variance in measurements. 
Table 4. Some of the Comparative Analysis of GFS and HDFS 

Properties GFS HDFS 

Design Goals The basic goal of GFS is to support large 

files 

 made based on the proposals that: 

TB data sets will be distributed 

across thousands of disks attached to 

Commodity compute nodes. 

 Used for intensive computing data. 

 reliably, till when failures 

occur within chunk servers, master, or 

network partitions. 

 GFS is created more for batch 

processing better than interactive use by 

users. 

The main goals of HDFS is to 

support large files. 

 made based on the proposals that: 

TB data sets will be distributed 

across thousands of disks attached to 

commodity compute nodes. 

 Used for intensive computing data. 

 reliably, till when failures 

occur within chunk servers, master, or 

network partitions 

 HDFS is created more for batch 

processing rather than interactive use by 

users. 

Processes Master and chunk server Name node and Data node 

File Management Files are supported hierarchically in 

directory and defined by path names. 

 GFS is exclusively for Google 

application. 

HDFS supported an ordinary 

hierarchical 

file organization 

 HDFS also supports third-party file 

systems such as Cloud Store and 

Amazon 

Simple Storage Service. 

Scalability Cluster based architecture 

 The file system consists of hundreds 

or 

even thousands of storage machines built 

from inexpensive commodity parts. 

 The largest cluster has over 1000 

storage nodes, over 300 TB of disk 

storage, and are heavily accessed by 

hundreds of clients on distinct machines 

on a continuous basis. 

 Cluster based architecture 

 Hadoop currently runs on clusters 

with 

thousands of nodes. 

 E.g. Face book has 2 major clusters: 

- A 1100-machine cluster with 8800 

cores and about 12PB raw storage. 

- A 300-machine cluster with 2400 

cores and about 3PB raw storage. 

- Each (commodity) node has 8 cores 

and 12 TB of storage. 

EBay uses 532 nodes cluster (8*532 

cores, 5.3PB) 

 Yahoo uses more than 100,000 CPUs 

in 

>40,000 computers running Hadoop 

- biggest cluster: 4500 nodes (2*4cpu 

boxes w 4*1TB disk & 16GB RAM) 
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 K.Talattinis et.al concluded in their 

work 

that Hadoop is efficient when 

operating in a full distributed system, 

although, in order to achieve optimal 

results and obtain advantage of Hadoop 

scalability, it is necessary to use large 

clusters of computers. 

Protection Google has their own file system called 

GFS. With GFS, files are divided and 

stored in multiple pieces on many 

machines. 

The HDFS supposed a permission 

method for files and directories which 

shares 

data of the POSIX model. 

 File or directory have individual 

permissions 
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