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ABSTRACT 
K-means algorithm is one of the most famous clustering 

algorithms in data mining due to its simplicity. 

Kernel K-means is an extension of K-means to cluster nonlinear 

separable data. However, it still has some limitations like 

sensitivity and convergence to the local optima. In this paper, we 

show how to implement a new novel kernel-clustering algorithm 

that is robust and converges to the global solution. We show 

using artificial and real data sets that the proposed kernel 

algorithm performs better than the standard kernel K-means 

algorithm. 
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1. INTRODUCTION 
Cluster analysis [1, 2] which is an unsupervised learning, is 

considered as one of the hot topics in data mining and machine 

learning. It is a process of dividing unlabeled data into groups 

‘clusters’, so each cluster contains data that shares the same 

properties and differs from data of the other clusters. Clustering 

algorithms are used in several areas such as Marketing, 

bioinformatics, libraries, medicine, image processing, etc [3, 4]. 

While there is a vast number of clustering algorithms in the 

literature, there is no unique algorithm that is suitable for all 

different datasets. For example, current clustering algorithms do 

not address all requirements such as convergence to global 

solution, accuracy, time complexity, ability to deal with noise 

and outliers, scalability, usability, etc. Clustering algorithms 

could be divided into categories based on the type of the real 

datasets and applications e.g. partitional, hierarchical, and 

density based clustering algorithms [5]. 

2. RELATED WORK 
K-means is considered as one of the most well known algorithm 

used to classify or group a set of data into K number of disjoint 

clusters, where K is a predefined value [6].  

The operation of the iterative K-means is divided into two 

separated phases. The first phase is to select K initial centroids, 

one for each cluster. The next phase is to assign each point in 

data set to the closest centroid. Euclidean distance is used to 

determine the distance between data points and the centroids. 

The first step is completed when all the points are attached to 

some clusters. At this point, each cluster centroid is updated to 

be the average of data points allocated to each centriod. Once K 

new centroids are found, a new binding is to be created between 

the same data points and the closest new centroid, producing a 

loop. As a result of this loop, the K centroids may are 

repositioned in a step by step manner. The algorithm converges 

when the centroids do not move anymore [7].  

[8] present the global K-means algorithm which is an 

incremental trend for clustering. In this agorithm, one cluster  

centroid   is added dynamically at a time using a deterministic 

global search procedure cosisting of N executions of the K-

means algorithm from suitable initial positions where N is the 

number os points in the data set. 

[9] introduce a new algorithm based on density canopy to 

enhance the K- means'  accuracy and stability and to optimize 

centroids initalization for K-means. This algorithm uses the 

clustering results of K-means, then, the result transformed by 

combining with hierarchial algorithm to find  the better inital 

cluster centroids for K-means algorithm. 

[10] introduce a new group of algorithms that solve the problem 

of sensitivity to initial conditions in K-means. The basic idea of 

these algorithms is that each centroid  responds to positions of 

all other centroids' and to their locations with respect to the data 

points before they  move to any new locations. As a result, it is 

possible for it to identify the free clusters that are not recognized 

by the other centroids.  

S. Khan et al. [11] propose an algorithm for initial cluster 

centroids computation for K-means clustering based on 

individual attributes of the pattern, which may provide some 

information about initial cluster centers. The operation of the 

proposed algprithm is to apply the K-means for each attribute 

inorder to compute cluster centroids for individual attributes. 

This is achieved assuming that the attributes of the pattern space 

are normally distributed.  Then the normal curve is divided into 

K segments, and the K-means algorithm is applied on this 

attribute. The previous cluster labels  are allocated to every 

pattern, and K-means  ia applied to the complete data set. 

Finally, a center of these classes must be found and used as 

centroid for K-means among the set of class labels in each 

pattern. 

[12] enhance the K-means algorithm through using  a seeding 

technique  instead of substituting the random choosing of the 

centroids. There experimental results shows how their algorithm 

is better in term of time and accuracy. 

[13, 14] develop a new K-Harmonic means algorithm which 

converges to a better solution than both traditional K-means or a 

group of experts trained using the EM algorithm. The output of 

this algorithm is less prone to findinga local minimum as a result 

of its bad initialization. 

[15] develops a recursive algorithm for adaptation of fuzzy rule-

based model structure using online clustering of the input-output 

data with a recursively calculated spatial proximity measure. 

The resulting evolving fuzzy rule-based models have high 

degree of transparency, compactform, and computational 

efficiency. 

2.1 Kernel K-means Algorithm 
Kernel K-means algorithm is an extension of the K-means 

clustering algorithm that identifies nonlinearly clusters. Kernel 

K-means maps data points to a new space called the feature 

space and then K-means is applied in the feature space [16]. 

The operation of the kernel K-means is as the same of the 

standard K-means, but with one difference in the calculation of 

distance. Kernel K-means algorithm uses kernel method instead 

of the Euclidean distance. The distance between each data point 

and the cluster centroid in the transformed space is calculated 

based on dot product and kernel functions e.g. polynomial, 

Guassian, etc. While this algorithm is able to identify the non-

linear structures and it is best suited for real life data set, it has 
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many drawbacks as the number of cluster centers need to be 

predefined besides its high time complexity and convergence to 

the local optima [17]. 

Many kernel algorithms have been proposed in the recent 

years to improve the kernel K-means and extract clusters that 

are non linearly sperable [18, 19]. 

3. PROPOSED KERNEL CLUSTERING 

ALGORITHM 
The performance function of K-means could be written as 

follows: 
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where    represents data points and    represents prototypes. 

In K-means, each data point is assigned to the closest prototype, 

and then each prototype is updated based on this assignment. 

This makes both K-means and kernel K-means sensitive to the 

initial prototypes and lead to converge to the local optima.  

In [20] we have implemented IWC clustering algorithms which 

is robust, insensitive to the initial conditions, and converges to 

the global solution. The performance function of IWC could be 

written as follows: 
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where    represents data points and    represents prototypes.   

is any positive power. The idea in this performance function is 

to solve the problem of K-means and provides a similarity 

measures between each data point and all other prototypes (not 

only the closest one) without losing the ability to extract 

clusters. Before optimization process, we need each data point to 

respond to all prototypes, and to update each prototype 

iteratively based on the similarity measures between all data 

points and all prototypes. 

We illustrate in this section how to extend IWC for kernel space 

and create new kernel clustering algorithm that is robust, 

converges to the global optima and cluster none linearly 

separable data. 

For IWC we update prototypes iteratively using the following 

derived equation: 

    
       

 
   

    
 
   

                                            (3) 

where 

     
        

 

       
                                                  (4)                                                                         

For kernel space we need to map all data points, using none 

linear equations, in such a way that all none linearly separable 

data in original space become linearly separable in kernel space.  

To update the prototypes iteratively in the kernel space we can 

rewrite equation (3) as follows:  
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where 
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The distance between the data points and prototypes can be 

computed using the inner products and popular kernel functions 

e.g. polynomial kernel, Gaussian kernel, sigmoid kernel, etc.as 

follows:   
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where      ) is a kernel function between points   

and  . 
The proposed kernel-clustering algorithm is implemented 

through the following steps: 

1. Divide data randomly into a specified number of K 

clusters. The number of clusters K is an input 

parameter to the algorithm. 

2. Initialize random weights    
  between all data points 

and prototypes 

3. Compute the kernel matrix between all data points 

using one of the popular kernel functions.  

4. In kernel space, compute the distances between all 

data points and prototypes using equation (6) 

5. Update the weights between data points and 

prototypes using equation (5) 

6. Repeat 3 and 4 until convergence.  

7. Extract clusters by assigning every data point to the 

most similar prototype that gives the maximum 

weight. 

4. EXPERIMENTAL RESULTS 
We test and compare the improved kernel-clustering algorithm 

using artificial and real datasets. 

4.1 Artificial data set 
We have created an artificial datasets consisting of 150 data 

points divided into 7 clusters as shown in Figure1.   

 

Figure 1: Artificial data set consisting of 7 clusters (150 data 

points) 

Figure 2 (a-d) show the results after applying the Kernel K-

means algorithm to the data in Figure 1 four times, each time 

with different initialization of the prototypes. The kernel K-

means still sensitive to the initial parameters as we have 

different results. In addition, kernel K-means failed to extract 
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the correct clusters with some prototypes initializations. It also 

converged to the local optima.  

 

 

                                           (a) 

 

(b) 

 

 

 

 

 

 

 

 

 

(c) 

 

 

(d) 

Figure 2 (a-d): Results of Kernel K-means algorithm (four 

times run with different prototypes initializations) 

We repeat the experiment using the proposed kernel algorithm 

as shown in Figure 3 (a-d). The proposed algorithm succeeds to 

identify the clusters successfully even with poor initialization. It 

is robust and insensitive the initial condition. 

                                          
(b) 
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                                                                      (d)  

Figure 3 (a-d): Results of the proposed Kernel algorithm 

(four times run with different prorotypes initializations) 

4.2 Real datasets 
We apply kernel k-means and the proposed kernel algorithm to 

the following data sets: 

Iris dataset: 150 data points with 4 dimensions and 3 types. 

Glass dataset: 214 data points with 10 dimensions and 6 types. 

Algae1 dataset: 72 data points with 18 dimensions and 9 types.  

Gene’s dataset: 40 data points with 3036 dimensions and 3 types 

of bladder cancer. 

In the experiment, we run each algorithm 10 times with different 

prototypes initializations, and compute the average of the 

resulted quantization errors. In addition, as another 

measurement, we compute the number of errors in classifying 

the data points into the correct clusters. As shown in Table 1, we 

can see that the new proposed kernel algorithm outperforms the 

kernel K-means algorithm. It gives better quantization error and 

less number of errors for all real datasets. 

5. CONCLUSION 
In this paper, we have shown how to implement a new kernel-

clustering algorithm that is insensitive to the prototypes 

initializations. In addition, it is robust and converges to the 

global optima. The proposed kernel algorithm has been 

evaluated and compared using artificial and real datasets. The 

experimental results showed that the proposed algorithm 

outperforms kernel K-means and gives better results. For 

evaluation, the measurements quantization error and the number 

of errors in classifying data points were used.  

 

Table1: The results of applying Kernel K-means and the Proposed Kernel algorithm to the real datasets: Iris, Glass, Algae and Gene. Each 

row shows the quantization error and the number of errors after applying the algorithms 10 times. The average is computed at last column. 

   1 2 3 4 5 6 7 8 9 10 Avg. 

IRIS Kernel K-

means 

QE 124 110 97 115 99 123 97 112 121 99 109.7 

errors 50 16 19 50 19 16 17 50 16 19 27.2 

Proposed 

Kernel 

QE 97 97 97 97 97 97 97 97 97 97 97 

errors 17 17 17 17 17 17 17 17 17 17 17 

Glass Kernel K-

means 

QE 1987 1990 1976 1990 1980 5761 1987 1976 5761 1987 2739.5 

errors 33 27 25 23 75 27 75 23 33 25 36.6 

Proposed QE 1973 1973 1973 1973 1973 1973 1973 1973 1973 1973 1973 
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Kernel 
errors 21 21 19 21 19 19 21 19 21 19 20 

Algae Kernel K-

means 

QE 13 11 13 14 12 12 13 14 11 11 12.4 

errors 14 15 20 19 14 22 14 20 15 20 17.3 

Proposed 

Kernel 

QE 9 9 10 9 10 10 10 9 10 9 9.5 

errors 10 14 10 10 11 14 14 9 9 11 11.2 

Gene Kernel K-

means 

QE 1190 1215 1220 1190 1213 1217 1195 1223 1198 1215 1207.6 

errors 6 14 9 6 14 11 14 9 6 9 9.8 

Proposed 

Kernel 

QE 1187 1187 1187 1187 1187 1187 1187 1187 1187 1187 1187 

errors 6 6 6 6 6 6 6 6 6 6 6 
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