
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.3, July 2018

20

Performance Enhancement of Distributed System

through Load Balancing and Task Scheduling

Abhijit A. Rajguru
Research Scholar at Walchand Institute of

Technology
Solapur, Maharashtra, India

Sulabha S. Apte, PhD
WIT, Solapur

Maharashtra, India

ABSTRACT

Task scheduling & load balancing in distributed network are the

most challenging research area in computer science. In

distributed systems, scheduling mechanism has more issues as

there is no centralized authority to allocate the workload among

multiple processors. Further, handling both load balancing and

scheduling at hand is a daunting task. In this paper, we propose a

fuzzy based load balancing and task scheduling technique to

optimize the performance of distributed system. Initially, clusters

are formed and node with larger buffer availability and high CPU

speed is elected as cluster head. Tasks are prioritized into flexible

and non-flexible using task prioritizing strategy. Non-Flexible

tasks are prioritized over flexible tasks. For non-flexible tasks,

essential information of nodes such as CPU speed, work load and

distance from cluster head are made pass through the fuzzy

system. Node state is obtained as output. Based on states of node,

non-flexible tasks are allocated. Our technique dynamically

handles scheduling and load balancing at hand. We use

simulation results to prove efficiency of our technique.

Keywords

Distributed Computing, Fuzzy Logic, Load Balancing, Task

Scheduling.

1. INTRODUCTION

1.1 Distributed Systems
A distributed system consists of set of communication and

computing resources, which are shared by active users. [1] In

other words, a large loosely coupled distributed system is formed

by connecting a group of work stations through the

communication channel. [2] Resource sharing is the foremost

advantage of distributed system. Reliability, scalability,

economy, inherent distribution and functional separation are the

features of distributed system. [3]

On account of time accuracy and other features of distributed

system, it is mainly useful in telecommunication networks such

as telephone networks and computer networks (Internet).

Distributed system has many application like aircraft control

system, industrial control systems, multiplayer online games and

virtual reality etc.[4]

1.2 Load balancing
In parallel & distributed systems, multiple programs are

processed parallelly by multiple processors. The quantity of time

assigned to a processor to execute task is termed as work load of

a processor. [5] The process of equalizing loads among the

processors is known as load balancing. This technique attains

good throughput without the requirements of additional

hardware. [6]

Load balancing can be achieved statically (at the beginning) or

dynamically (run time). Based on this, it is classified into two

types as static load balancing and dynamic load balancing. [7]

A. Static Load- balancing
Static load balancing balances the load of system using priori

knowledge of applications and statistical knowledge about the

system. The entire process is performed by considering average

behavior of system.

B. Dynamic load-balancing
In dynamic load balancing technique, loads are allocated to work

stations dynamically to balance the work load. This process is

continued until processes are completed or terminated. New jobs

may be added to the cluster of machines at any time by the user

and are scheduled by load balancing system. [8]

The problem of load balancing becomes significant as demand

for computing power increases. The main objective of load

balancing is to improve the distributed system performance by

means of allocating loads appropriately. [7] In parallel and

distributed systems, load balancing is considered to be a critical

issue for it has to assure fast processing and good utilization. [9]

1.3 Scheduling in distributed systems
Apart from load balancing, task scheduling is also an important

technique to improve the performance and throughput of

distributed network. [10] The process of distributing tasks among

processors is defined as scheduling. Task scheduling is

differentiated into local scheduling and global scheduling.[5]

A. Local scheduling
This technique allocates the processes to the time slices of the

processor.

B. Global scheduling
Global scheduling makes a decision of place to execute a process

in the multiprocessor system. Here, the scheduling is

accomplished either by a central/ master device or may be

distributed among the processing elements. Global scheduling is

further divided into two types as static scheduling and dynamic

scheduling[5].

In static scheduling processes are assigned to processors before

execution starts. On other hand dynamic scheduling can reassign

the processes to the processor during execution.

1.4 Issues of load balancing and scheduling
The load balancing and scheduling mechanism in distributed

systems has various issues as there is no centralized authority to

allocate the workload among multiple processors. Some of the

issues are described below:

1) Achieving load balancing in the network is difficult, as

processes move from a node to another amidst execution of work

load. [5]

2) The diverse nature of both huge users and computing

resources present more complicated challenges in scheduling and

processing resources. [11]

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.3, July 2018

21

3) An efficient load balancing scheme should support

characteristics such as stable, scalable and low overhead.

However, these characteristics are interdependent in nature. [7]

4) Handling both scheduling and load balancing at hand is a

daunting task. [10] Further, the main attributes of scheduling

algorithm namely fairness and locality often conflict each other.

[12]

1.5 Problem Identification
Till date, the literature has enormous work for load balancing and

task scheduling in distributed system. But they did not

concentrate on the task requests which may be flexible during

task allocation.

Resource aware distributed scheduling strategies for distributed

systems are described in [11]. In this work, the major

consideration is provided to sink nodes and not to source nodes.

Also, the sink nodes are selected based on buffer information

alone. But there are other factors which influence the task

scheduling like distance between each cluster members,

workload and deadline of each task etc. They do not use any

specific mechanism to elect the coordinator node (cluster head).

To overcome the above described problems, we propose to

develop a fuzzy based load balancing and task scheduling

technique for distributed system which provides more accuracy

and efficiency.

2. RELATED WORK
Daniel Grosu et al [1] have presented a game theoretic

framework for obtaining a fair load balancing scheme. Their

main goal was to derive a fair and optimal allocation scheme.

They have formulated the load balancing problem in single class

job distributed systems as a cooperative game among computers

and it is also a fair solution. In [7] the same authors have used a

game theoretic frame work for obtaining a fair balancing scheme.

In this case they have formulated the load balancing problem in

heterogeneous distributed systems as a noncooperative game

among users. In both cases they have showed that the Nash

Bargaining Solution (NBS) of this game provides a Pareto

optimal operation point for the distributed system.

M. Nikravan et al. [10] have presented a new method for process

scheduling in distributed systems. The scheduling in distributed

systems is known as an NP-complete problem even in the best

conditions, and methods based on heuristic search have been

proposed to obtain optimal and suboptimal solutions. In this

paper, they have used the power of genetic algorithms for

balancing the load efficiently.

Sivakumar et al. [11] have proposed distributed algorithms

referred to as Resource-Aware Dynamic Incremental Scheduling

(RADIS) strategies. These strategies are specifically designed to

handle large volumes of computationally intensive arbitrarily

divisible loads submitted for processing at cluster/grid systems

involving multiple sources and sinks (processing nodes). The

design of these strategies adopts the divisible load paradigm,

referred to as the divisible load theory (DLT).

Michael Isard et al. [12] have introduced a powerful and flexible

new framework for scheduling concurrent distributed jobs with

fine-grain resource sharing. In that, the scheduling problem is

mapped to a graph data structure, where edge weights and

capacities encode the competing demands of data locality,

fairness, and starvation-freedom, and a standard solver computes

the optimal online schedule according to a global cost model.

Xuan Lin et al. [13] have addressed the problem of providing

deterministic QoS to arbitrarily divisible applications executing

in a cluster. Four contributions are made. First, they have extent

DLT to compute the minimum number of processors required to

meet an application deadline. Second, based on this, a novel

algorithmic approach integrating DLT and EDF scheduling has

been proposed. Third, important design parameters are identified

that affect the performance of real-time divisible-load scheduling

algorithms. Finally, they systematically investigated the effects

of these design parameters on a set of real-time scheduling

algorithms.

Kento Aida et al. [14] have investigated the scheduling of mixed-

parallel applications, which exhibit task and data parallelism, in

advance reservations settings. They have defined two scheduling

problems, RESSCHED and RESSCHEDDL, depending on

whether the goal is to minimize application turn around- time or

to meet a deadline, respectively. For each problem, they have

proposed and evaluated a set of scheduling algorithms. These

algorithms were compared for both their performance (i.e., turn-

around-time and tightest deadline met) and their resource

consumption.

Ananda Basu et al. [15] have proposed a scheduling mechanism

for distributed system. Their proposed method is based on

performing model checking for knowledge properties. It allows

identifying where the local information of a process is sufficient

to schedule the execution of a high priority transition. As a result

of the model checking, the program is transformed to react upon

the knowledge it has at each point. The transformed version has

no priorities, and uses the gathered information and its

knowledge to limit the enabled ness of transitions so that it

matches or approximates the original specification of priorities.

3. FUZZY BASED LOAD BALANCING &

TASK SCHEDULING TECHNIQUE

3.1 Overview
In this paper, we propose a fuzzy based load balancing and task

scheduling technique in distributed systems. Our proposed

network contains a set of client (C) and server (S) nodes. These

nodes form clusters and node with larger buffer and high CPU

speed is elected as cluster head (CH). The elected CH is

responsible for coordinating and scheduling tasks. Tasks are

prioritized using a Boolean value. Flexible tasks are represented

by Boolean value 1 and value 0 denotes non-flexible tasks. When

C nodes receive a new task, it forwards the task details to CH.

The CH looks for flexible field, for non-flexible tasks, it collects

information such as work load, CPU speed and distance from

CH. These values are made pass through the fuzzy system.

Fuzzification is performed by representing input and output

variables in membership functions. Fuzzy rules are evaluated and

as an outcome of fuzzy system, S’ nodes are classified into three

states as, schedulable (SC), likely to be schedulable (LS) and not

schedulable (NS). Non-flexible tasks are allocated to S’ nodes in

schedulable state and when buffer requirement exceeds the buffer

availability of SC state nodes, then they are allocated to S’ nodes

in LS state. The flexible tasks are allocated to S’ nodes in likely

to be scheduled (LS) state.

3.2 Computation of Metrics
3.2.1 Available Buffer Estimation
The buffer availability of node ‘n’ at time‘t+1’ can be calculated

as follows,

1t

niAvaB

p
n

AvaBnI

I

n

I

n

nt

ni













 














1

0

1

0
)((

(1)

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.3, July 2018

22

Where, I denote iteration number, n stands for node in the

network,

nt

niAvaB 

 is the available buffer computed previously

at t-x and p is buffer estimating probability, usually set to 0.95.

3.2.2 Work load calculation
Work load (WL) at a node is calculated as follows,

WLi = NT × ST (2)

Here, NT is the number of tasks to be computed and ST size of

tasks.

3.3 Network Architecture
Consider the distributed system comprises of set of client nodes

(C’s) and server nodes (S’s). Client nodes (C’s) are nodes that

have tasks to be processed by server nodes (S’s). Both client and

server nodes are formed clusters. Each cluster has a cluster head

(CH), it is responsible for coordinating and scheduling tasks. The

network architecture is given below in figure-1.

Figure 1: Network Architecture

3.3.1 Cluster Head Selection
In each cluster, a cluster head (CH) is elected considering larger

buffer size and high CPU speed. The step by step process of

cluster head (CH) selection is given below,

(i) After the deployment of nodes in the network, both C’s and

S’s form clusters.

(ii) Within the cluster, each node estimated available buffer

 value (
nt

niAvaB 

) using equation (1)

(iii) Each node broadcasts Nw Info (Network Information)

message in the cluster. Nw Info message includes

nt

niAvaB 

value and CPU speed.

Node  NwInfo

Cluster

(iv) Each node receives the broadcasted value and finally a

 node with larger buffer size (

nt

niAvaB 

) and high CPU

 speed is selected as cluster head (CH).

(v) The selected CH broadcasts this selection information to

 all nodes in the cluster.

CH  CHselecion

Nodes in the CH

The selected CH is responsible for controlling, coordinating and

scheduling the tasks among C’s and S’s nodes.

3.4 Task Prioritization Strategy
The C’s nodes contain tasks to be computed and these tasks are

distributed among S’s nodes by the CH. In real time situations,

the task contains stringent deadline requirements, which should

be satisfied to avoid unsolicited packet losses. To bring this

consideration in our technique we use task prioritization strategy.

By this, each task is marked and prioritized using Boolean value.

In general, each task consists of unique task id, task size and

deadline (execution time) fields. In addition to these fields, an

extra Boolean field is added to specify the priority of tasks. The

Boolean value 1 represents flexible and 0 represents non-flexible.

We set priority to non-flexible task over flexible. For flexible

task, we can extend its execution time (dead line) when its

deadline is missed. But, in the case of non- flexible tasks,

deadline should not be missed and the tasks have to be processed

immediately. The header of task is shown in table-1.

Table-1 Fields in Task Header

Task id Task Size Deadline Flexible/ Non-flexible

3.5 Fuzzy Based Task Scheduling Technique
When C’s have new task to be processed, it sends task details to

the CH. While receiving task details, the CH looks for flexible

field of task. If the value is zero then CH gathers work load, CPU

speed and distance from the CH information from S’s nodes of

its cluster. Work load of node is estimated as per equation (2).

These informations of each server node (S) are made pass

through the fuzzy system to predict the states of S nodes. As an

outcome of fuzzy system, a server node (S) would be in any of

the following three states as schedulable (SC), likely to be

schedulable (LS) and not schedulable (NS).

3.5.1 Fuzzification
In this phase, the input variables work load, CPU speed and

distance from the scheduler are fuzzified by representing in

membership functions. The membership functions for input

variables work load, CPU speed and distance from the scheduler

are given in figure-2, 3 and 4 respectively. Figure-5 represents

the membership function of output variable.

Figure 2: Fuzzy Set for Work Load

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.3, July 2018

23

Figure 3: Fuzzy Set for CPU Speed

Figure 4: Fuzzy Set for Distance

Figure 5: Fuzzy Set for Node State

3.5.2 Fuzzy Inference Engine
In fuzzy logic system, the fuzzy rules make up the fuzzy

inference system. The defined fuzzy rules associates input,

output parameters with membership functions. Fuzzy rules take

if then else rule format. In our system, fuzzy inference system is

constructed considering the following 13 rules in table-2.

Table-2 Fuzzy Rule Set

Rule
Work

Load

CPU

Speed
Distance

Node

State

1 Low Low Low LS

2 Low High Low SC

3 Low High Medium LS

4 Low Low High NS

5 Low High High LS

6 Medium High Low SC

7 Medium High Medium LS

8 Medium Low Medium NS

9 Medium Low High NS

10 High Medium Low NS

11 High Medium Medium NS

12 High High Low LS

13 High Low High NS

In table-2, SC denotes schedulable state, NS stands for not

schedulable state and LS represents the state of likely to be

scheduled. Among 13 rules, we intend to explain the following

two cases,

(1) If (Work Load = Low && CPU Speed = High && Distance =

Low) Then

 “Node State is Schedulable”

 End if

(2) If (Work Load = High && CPU Speed = Low && Distance =

High) Then

“Node State is Not Schedulable”

 End if

3.5.3 Defuzzification
A precise output value from fuzzy set is extracted during

defuzzification phase. We have enormous methods for an

efficient defuzzification. From those we choose to utilize the

weighted mean method. The formulation for defuzzification

process is, [16]

)(/)(OOO Oo 
 (3)

where,
O is the derived output value,

)(OO denotes the

strength of output membership function and O is the centroid of

membership function.

3.5.4 Task Allocation
As a result of fuzzy logic, server nodes (S’s) will be in the

following three states as schedulable (SC), not schedulable (NS)

and likely to be schedulable (LS). While allocating tasks, the CH

checks task length of non-flexible tasks and compare the buffer

length of S nodes in schedulable state. Then, CH allocates non-

flexible tasks to S nodes in schedulable state. When number of S

nodes in schedulable state is less than task length of non-flexible

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.3, July 2018

24

tasks, then the CH looks for nodes in likely to be scheduled (LS)

state. Once, the allocation of non-flexible tasks are gets over, the

CH goes for flexible tasks. The task allocation strategy is given

in algorithm-1.

Algorithm-1
1. Let S be the set of server nodes and C be the set of client

nodes

2. Consider nTi be the set of non-flexible tasks and fTi be the set

of flexible tasks.

3. C node receives a new task

4. C transmits task details to CH

5. CH looks for flexible field

6. If (flexible field = 1) Then

6.1 The task is flexible

6.2 Else if (flexible field = 0) Then

6.3 The task is non-flexible

7. End if

8. For (non- flexible tasks)

8.1 CH collects work load, CPU speed and distance

 informations of S’ nodes

8.2 CH forwards these informations into fuzzy system

8.3 Nodes are separated into three states as SC, LS

 and NS

8.4 CH compares nTi task length with buffer

 availability of S’ nodes

8.4.1 If (task length (nTi) < S (buffer availability)) Then

 8.4.1.1. Allocates nTi among S’ nodes in SC state

 8.4.2 Else if (task length (nTi) > S (buffer availability))

 Then

 8.4.1.2 Allocate nTi among S’ nodes in LS state

8.4.3 End if

9. For (flexible tasks)

9.1 CH allocates tasks among S’ nodes in LS state

Our proposed technique is well suited for all real time

applications, where buffer capacities and number tasks to be

computed vary over time. This technique schedules the tasks

adaptively and improves the quality of network. Using fuzzy

logic system, this technique provides accurate load balancing and

scheduling.

4. SIMULATION RESULT

4.1. Simulation Model and Parameters

Figure: 6. Simulation Setup

In this section, we examine the performance of our Fuzzy based

Load Balancing and Task Scheduling Technique (FLBTS) with

an extensive simulation study based on NS-2 [17]. The

simulation topology is given in Figure 6. We compare our results

with QBS(Queue Based Scheduling) with normal scheduling

[11].Various simulation parameters are given in table 3.

Table: 3 Simulation Settings

Mobile Nodes 12

Users 4

Area Size 1000 X 1000

Mac 802.11

Radio Range 250m

Simulation Time 50 sec

Traffic Source CBR

Packet Size 512

Rate 1,1.5,2,2.5 and 3 Mb

4.2. Performance Metrics
In our experiments, we measure the following metrics.

Scheduling delay: It measures the average delay occurred while

scheduling given tasks.

Throughput: It is the amount of work received in terms of

Mbit/s at the receiver.

Data Loss: It is the total number of data packets dropped at the

receiver side.

Success Ratio: It is the ratio of number of tasks completed

successfully to the total number of requested tasks.

4.3. Results
A. Based on Load
In the initial experiment, we vary the work load of the nodes by

varying the size of the tasks as 1, 1.5, 2, 2.5 and 3Mb.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.3, July 2018

25

Figure 7: Load Vs Delay

Figure 8: Load Vs Data Loss

Figure 9: Load Vs Throughput

Figure10. Load Vs Success ratio

Figure 7 and 8 shows that delay and packet drop of FLBTS is

significantly less than the existing QBS technique respectively.

Figure 9 and 10 shows that the throughput and success ratio of

FLBTS is higher than the existing QBS method respectively.

B. Based on Users
In our second experiment, we vary the number of users from 1

from 4 each requesting variable number of tasks with size 1Mb.

Figure 11: Users Vs Delay

Figure 12: Users Vs Drop

Fig 13: Users Vs Throughput

Fig 14: Users Vs Success Ratio

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.3, July 2018

26

Figure 11 and 12 shows that delay and packet drop of FLBTS is

significantly less than the existing QBS technique respectively.

Figure 13 and 14 shows that the throughput and success ratio of

FLBTS is higher than the existing QBS method respectively.

5. CONCLUSION
Load balancing & task scheduling are old problem. But new

solutions are required in modern distributed computing system.

Load balancing & task scheduling algorithm plays very

important role in distributed system for managing load, and

assigning them to appropriate resources. An efficient load

balancing & task scheduling algorithm can reduce the total

execution time and increases throughput of system. In this paper,

we have proposed a fuzzy based load balancing and task

scheduling technique in distributed systems to improve the

performance of distributed system. Fuzzy logic technique has

very much potential in solving load balancing & task scheduling

problem. Fuzzy logic make absolute output from uncertainties

input. Our technique dynamically handles scheduling and load

balancing at hand. The simulation result shows that efficiency of

our technique is better than existing QBS technique. In future we

will present new load balancing & task scheduling technique

using genetic algorithm & neuro-fuzzy technique.

6. REFERENCES
[1] Daniel Grosu, Anthony T. Chronopoulos and Ming-Ying

Leung, “Load Balancing in Distributed Systems: An

Approach Using Cooperative Games”, Proceedings of the

16th International Parallel and Distributed Processing

Symposium, (IPDPS’02), 2002.

[2] Veeravalli Bharadwaj, Depasish Ghose and Thomas G.

Robertazzi, “Divisible Load Theory: A New Paradigm for

Load Scheduling in Distributed Systems”, Journal of

Cluster computing, Vol-6, Issue-1, 2003.

[3] Krishna Nadiminti, Marcos Dias de Assunção, and Rajkumar

Buyya, “Distributed Systems and Recent Innovations:

Challenges and Benefits”, Grid Computing and Distributed

Systems Laboratory, 2006.

[4] www.wikipedia.org.

[5] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma,

“Performance Analysis of Load Balancing Algorithms”,

World Academy of Science, Engineering and Technology,

2008

[6] Hisao Kameda, El-Zoghdy Said Fathyy and Inhwan Ryuz Jie

Lix, “A Performance Comparison of Dynamic vs. Static

Load Balancing Policies in a Mainframe { Personal

Computer Network Model”, Proceedings of the 39th IEEE

Conference on Decision and Control, 2000.

[7] Daniel Grosua, Anthony T. and Chronopoulosb,”Non-

cooperative load balancing in distributed systems”, Elsevier,

Journal of Parallel and Distributed Computing, 2005.

[8] Chow KP and Kwok YK, “On load balancing for distributed

multiagent computing”, IEEE Transactions on Parallel and

Distributed Systems, Vol- 13, pp- 787-801, 2002.

[9] Jiani Guo and Laxmi Narayan Bhuyan, “Load Balancing in a

Cluster-Based Web Server for Multimedia Applications”,

IEEE Transactions On Parallel and Distributed Systems,

Vol-17, 2006

[10] M. Nikravan and M. H. Kashani, “A Genetic Algorithm for

Process Scheduling in Distributed Operating Systems

Considering Load balancing”, Proceedings 21st European

Conference on Modelling and Simulation (ECMS), 2007.

[11] Sivakumar Viswanathan, Bharadwaj Veeravalli and Thomas

G. Robertazzi, “Resource-Aware Distributed Scheduling

Strategies for Large-Scale Computational Cluster/Grid

Systems”, IEEE Transactions on Parallel and Distributed

Systems, Vol-18,

[12] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi

Wieder, Kunal Talwar and Andrew Goldberg, “Quincy: Fair

Scheduling for Distributed Computing Clusters”,

Proceedings of the ACM SIGOPS 22nd symposium on

Operating systems principles (SOSP '09), 2009.

[13] Xuan Lin, Ying Lu, Deogun, J. and Goddard, “Real-Time

Divisible Load Scheduling for Cluster Computing”,

Proceedings of 13th IEEE Real Time and Embedded

Technology and Applications Symposium, (RTAS '07),

2007.

[14] Kento Aida and Henri Casanova, “Scheduling Mixed-

Parallel Applications with AdvanceReservations”,

Proceedings of the 17th international symposium on High

performance distributed computing (HPDC '08), 2008.

[15] Ananda Basu1, Saddek Bensalem, Doron Peled, and Joseph

Sifakis,” Priority Scheduling of Distributed Systems Based

on Model Checking”, Proceedings of the 21st International

Conference on Computer Aided Verification (CAV ‘09),

2009.

[16] Zuo Jing, Chi Xuefen, Lin Guan and Li Hongxia, “Service-

aware Multi-constrained Routing Protocol with QoS

Guarantee Based on Fuzzy Logic”, IEEE 22nd International

Conference on Advanced Information Networking and

Applications - Workshops, (AINAW), pp- 762 - 767, 2008.

[17]NetworkSimulator:http:///www.isi.edu/nsnam/ns

AUTHOR’S PROFILE
Abhijit Rajguru received the B.E and M.Tech degree in

Computer Science & Engineering, from Shivaji University,

Kolhapur, Maharashtra(INDIA) in 2007 and 2009, respectively.

He is research scholar at WIT, Solapur (Solapur University,

Maharashtra, INDIA). His research interest includes Distributed

System, cloud computing, grid computing, load balancing.

Dr. Mrs. S. S. Apte received Ph.D. degree in Computer

Engineering. She having 33 years teaching experience and 02

years industry experience. She is working as professor in CSE

department in WIT Solapur. Her research interest includes

Computer architecture, distributed system, image processing.

IJCATM : www.ijcaonline.org

http://www.wikipedia.org/
http://www.isi.edu/nsnam/ns

