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ABSTRACT 

In order to solve constraint optimization problems, constraints 

should be handled. The most common technique is penalty 

functions. Ant lion optimizer (ALO) is one of meta-heuristic 

algorithms which used to solve optimization problems. In this 

paper, the performance of ALO using different penalty-based 

methods (static penalty, dynamic penalty, and adaptive 

penalty) is compared and we make sensitivity analysis of 

tuning important parameters of penalty methods to show their 

effects on the performance of the penalty methods; six real 

engineering problems are used as a benchmark in this paper.   
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1. INTRODUCTION 
Optimization problems can be written mathematically as: 

       

                   

                           

                          

                (1) 

Equation (1) is called unconstrained optimization problem if 

      0, but if                 then it is called 

constrained optimization problem. 

Where      ,             is the vector of solution such 

that        , S is the search space defined as n-

dimensional bounded space, m is the number of inequality 

constraint, p is the number of equality constraint, and F     

is feasible region which the inequality and equality constraint 

are satisfied. 

Equality constraints       are converted into inequality 

constraint using  

                                          (2)    

        is a very small value. 

With respect to constraint optimization problems, there are 

several approaches to handle constrained problem, one of the 

most popular approach often used is the penalty function [1]. 

The idea of penalty function is transform constraint 

optimization problem into an unconstrained problem by 

adding or subtracting value to the objective function this value 

called penalty term. There are many methods in penalty 

function approach to handle constraint problem such as: static 

penalty, dynamic penalty, adaptive penalty [2]. Each of this 

method follows general idea of penalty function approach, but 

the difference between them is the form of the penalty term. 

The Ant lion optimizer (ALO) considered one of the latest 

nature-inspired algorithms which mimic the intelligent 

behavior of antlion in hunting ants in nature [3]. ALO is one 

of stochastic optimization (metaheuristic) algorithm that 

provides very competitive results in unconstrained or 

constrained optimization problem, using ALO in constrained 

engineering problem need to appropriate constraint handling 

method. 

This paper compares the performance of different penalty 

methods for solving constrained optimization problem with 

ALO. 

2. METHODS OFPENALTY FUNCTION 
Penalty function one of constrained handle approaches which 

proposed by courant in 1940[4]. The main idea of this 

approach is to convert the constrained problem to 

unconstrained one through adding or subtracting value to 

objective function [5]. 

In general the idea of penalty function can be formulated as 

For additive way, 

 

          
                                                  

                                                      
      (3) 

Where          is penalized function,       is objective 

function and       is penalty term. Value of       is zero if no 

violated constraint and positive otherwise. 

For multiplicative way,  

 

          
                                                  

                                                     
            (4) 

 

Value of       is one if no violated constraint and bigger than 

one otherwise. 

In mathematical programming, there are two types of penalty 

function are used: exterior and interior penalty function. In 

exterior type, we begins with an infeasible solution and from 

there we move to the feasible region but in interior type, we 

begins with an initial point inside the feasible region and the 

constraint boundaries make the subsequent point generated 

always lie within the feasible region. One of important 

drawback of implementation interior penalties is that it needs 

to begin with an initial feasible solution and it is difficult, so 

exterior penalties is the most common type used in 

evolutionary algorithms (ALO) [6]. 

The general formulation of exterior penalties is [5]. 
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                           (5) 

Where       shows the new objective function to be 

optimized,    and    penalty parameter,   and    the constraint 

function of        and        respectively. 

The general form of   and    is 

                 
  

            
 
  

Where   and   are 1 or 2. 

In equation (5) the second term in right side called "penalty 

term". If the constraint are hold such that             and  

         then    will be zero and       not effected by 

penalty term, but if there are violation for constraint such that 

         or          , the value of penalty term add 

to       . 

The value of penalty term has an important role in getting 

optimization region. In case of the penalty is too high, 

algorithm will be pushed inside the feasible region very 

quickly and not able to explore in the boundary of the feasible 

region [7, 8]. In case of penalty is too low, algorithm will be 

spent a lot of search time in exploration of the infeasible 

region because the penalty will be negligible with respect to 

the objective function [9] and these is an important issues 

especially if the optimum of the problem laying on the 

boundary of the feasible region [10, 11] so the penalty should 

be kept as low as possible, just above the limit below which 

infeasible solution are optimal (the minimum penalty rule) 

[12]. 

2.1 Static Penalty 
In static penalty method the penalty parameter doesn't depend 

on the current generation of the algorithm that employs the 

function and remain constant during evolutionary process. In 

this method optimization process starts with a random 

population using both feasible and infeasible individuals [13]. 

In this method we evaluate the individual using 

                                
          }                  (6) 

Where d is penalty parameter,       is the unpenalized 

objective function, m is the number of constraints.  

2.2 Dynamic Penalty 
In this method, penalty parameter depends on current 

generation number. The dynamic function evaluates 

individuals at each generation t which proposed by Joines and 

Houck [14] is defined as: 

                                                          (7)   

Where c,  and   are constant determined by the user 

(c=0.5,  = 1 or 2,  = 1 or 2) and            is defined as: 

                     
  

           
 
                      (8)                  

  Where              

        
                                       

                                                          
           (9)                                 

         

       

 
                                               

                                                                           
 (10)   

The value of penalty function increase as generation grows. In 

Joines [10]  and Houck approaches, there found that no 

explanation regarding the sensitivity of the method to 

different values of  , but the quality of the solution is very 

sensitive to changes in value of  and  , and the values 

indicated above for this parameter is good selection, 

Michalewicz [15] state that this values cause premature 

convergence in some example. He also state that the method 

converges either to infeasible solution or solution that is far 

away from an optimal solution.  

2.3 Adaptive Penalty 
The method of adaptive penalty depends on updating the 

penalty parameter at every generation (iteration) according to 

individual in last generation. In Hadj-Alouane and Bean [16] 

approach the individual are evaluated by following formula:   

                               
  

                 
 
     

(11)                        (11) 

 Where the penalty parameter      is updated at every 

generation by: 

                 

                                                 

                                                  

                                                   

          

   (              

Where case#1 indicates that all the best individual in last 

generation are feasible (i.e. the penalty parameter is 

decreased), case#2 indicates that all the best individual in last 

generation are infeasible (i.e. the penalty parameter is 

increased) and if some of the best individual in last generation 

are feasible and some infeasible the penalty parameter does 

not change. 

3. THE ANT LION OPTIMIZER 

ALGORITHM 

3.1 Main Inspiration 
Ant lion algorithm inspired from intelligent behavior of 

antlion's larvae, where it digs pit in the form of cone using its 

strong jaw [17] as illustrated in fig.1. Antlion hides in cone 

waiting for ant or insects to slip on the sand and fall in [18]. 

The edge of pit is sharp leading to the fall of the prey easily. 

When prey fall in pit ant lion slide it into the bottom of the pit 

as illustrated in fig.2. Finally antlion amend the trap to next 

hunt. 

It has been observed that whenever the antlion hungrier 

whenever the trap bigger and it has the higher chance of 

catching ant [19]. 

3.2 Mathematical Formula For The ALO 
Ant and Antlion are main elements over search space, ant 

move to search food and antlion    await   to hunt it. 

 Firstly, modeled the position of ant in search space in the 

following matrix:    

                       

         

      
         

     

   
     

  

Where      is matrix of position of each ant over search 

space,      is position of i-th ant in j-th dimension(variable), n 

shows the number of ants and m shows number of 

dimensions(variable) in space. 
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The fitness value of all ants can be expressed as: 

             (          

             
   

             

       

  
       

  

Where f(      is the matrix for the fitness value for all ants and f is 

the objective function. 

Besides ant, antlion take position over search space.       

                                     

                           

           

      
           

      
   
      

             

                                               

Where          is the matrix of the position of each antlion 

over search space,        is the position of i-th antlion in j-th 

dimension(variable), n shows the number of antlions and m 

shows the number of dimensions(variables) in space. 

The fitness value of all antlions can be expressed as: 

 

                 

               
   

               

        

  
        

  

Where f (          is the matrix for the fitness value for all 

antlions and f is the objective function  

3.2.1 Ants random walk  
Since the ants moves randomly in nature when searching for 

food, This movement is modeled as follows:  

   [0, cumsum (2r (    -1), cumsum (2r (    -1),., cumsum (2r 

(      -1)]                                                   (12) 

   

Where cumsum indicates the cumulative sum       is the 

maximum number of iteration, t denotes the current iteration, 

and r (t) is defined as: 

       
               
              

                                                             

 Where rand is random number between 0 and 1 

3.2.2 Convergence of Ant towards antlion 
When ant trapped in the pit, it sliding towards antlion, ant 

getting close to antlion, so the boundary of search space 

decreased adaptively. This may be expressed as: 

                       
  

 
                                                                        

           
  

 
                                                                                       

Where    is upper bounded at t-th iteration,    is lower 

bounded at t-th iteration,   denotes ratio defined as   

   
 

    
    , where w is a constant defined as: (w = 2 when t > 

0.1    , w = 3when t > 0.5    , w = 4 when t > 0.75    , w 

= 5 when t > 0.9    , and w=6 when t > 0.95       
 

3.2.3 Ants are affected by antlions’ traps 
Each ant affected by traps of antlion either antlion selected by 

roulette wheel or elite antlion in each iteration. 

This affected may be expressed in simple form as: 

 

                                          
 =         

          (16) 

                                         
 =         

             (17) 

Where   
  indicates upper bounded for i-th ant in iteration t,    

  

indicates lower bounded for i-th ant in t-th iteration,    is 

upper bounded,     is lower bounded,          
  is position of 

j-th antlion in t-th  iteration. 

 

3.2.4 Random walks around elite and selected 

antlion 

As explained above the better anlion the higher chance of 

catching ant, roulette wheel used to select the fittest antlion. 

On the other hand, in each iteration produce the best antlion 

.so the movement of ant affected by elite antlion and a 

selected antlion by roulette wheel. Ant walks randomly 

around                 and                   as: 

                     
  

         
        

 

 
                           (19) 

Where       
   shows position of i-th ant at t-th iteration, 

         
  shows the random walk around selected antlion 

using roulette wheel at t-th iteration,        
  shows the random 

walk around the elite at t-th iteration. 

3.2.5 Catching ants 
After antlion catch ant and pulls it inside the sand, antlion 

update their position with corresponding ant. This occurs 

when fitness of ant is more than fitness of antlion, this 

expressed as: 

           
        

               
               

              

Where           
  indicates the position of j-th antlion at t-th 

iteration, Where       
  indicates the position of i-th ant at t-th 

iteration.   

4. NUMERICAL EXPERIMENTS 
To evaluate the performance of the ALO algorithm with the 

different penalty methods mentioned above in solving 

constraint optimization problems, we conducted experimental 

study in which six classical engineering problems. 

Each of the test problems is solved by ALO, with each of 

penalty-based methods (static penalty, dynamic penalty, and 

adaptive penalty) 30 runs over 1000 iterations and the result 

are reported in tables 1-12. Best indicates to the best solution, 

Ave indicates to the average solution and S.D indicates to 

standard deviation. The specific parameters of each penalty 

method are used as following:  

 In static penalty (d=     ). 

 In dynamic penalty (c=0.5,  = 2,  = 1).  

 In adaptive penalty (                            .  
 

Test problem 1:  Pressure Vessel Design Problem  

 

The objective is to minimize the total cost, including the cost 

of material, forming, and welding. A cylindrical vessel is 

capped at both ends by hemispherical heads as shown in 

Figure 1. They are four design variables in this problem: Ts 

(thickness of the shell), Th (thickness of the head), R (inner 

radius), and L (length of the cylindrical section of the vessel). 

Among the four design variables, Ts and Th are expected to be 

integer multiplies of 0.0625 inch, and R and L are continuous 

variables [20]. 

The problem formulation is as follows: 
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Minimize f (x) = 0.6224x1x3x4 + 1.7781x2x3
2 + 3.1661x1

2x4 + 

19.84x1
2x3 

   Subject to:   g1(x) = −x1 + 0.0193x3 ≤ 0, 

                       g2(x) = −x2 + 0.00954x3 ≤ 0, 

                       g3(x) = −πx3
2x4 − (4/3) πx3

3 + 1, 296, 000 ≤ 0,  

                       g4(x) = x4 − 240 ≤ 0. 

 Variable rang:       0 ≤ xi ≤ 100, i = 1, 2, 

                              10 ≤ xi ≤ 200, i = 3, 4. 

 

 

 

 

Fig 1: Pressure Vessel Design Problem 

This test problem has been solved by ALO algorithm with 

three penalty-based methods (static penalty, dynamic penalty, 

and adaptive penalty) and the results represented in tables 1 

and 2. The comparison results for this problem show that the 

adaptive penalty method outperforms on static and dynamic 

methods in terms of best solution, but dynamic penalty 

method is outperform in term of Ave and S.D. 

Table 1. Compression the best solution for pressure vessel design problem by three penalty-based methods 

penalty methods                      

Static penalty 
7.7920E-01 3.8516E-01 4.0373E+01 1.9926E+02 5.8871E+03 

Dynamic penalty 
7.8064E-01 3.8587E-01 4.0448E+01 1.9823E+02 5.8897E+03 

Adaptive penalty 
7.7825E-01 3.8469E-01 4.0324E+01 1.9997E+02 5.8859E+03 

 

Table 2. Statistical performance of three penalty-based methods for pressure vessel design problem          

      Results Static penalty Dynamic penalty Adaptive penalty 

           Best  5.8871E+03 5.8897E+03 5.8859E+03 

            Ave 6.7932E+03 6.2888E+03 6.5141E+03 

            S.D. 2.1554E+03 3.4791E+02 7.4712E+02 

 

Test problem 2: Cantilever Beam Design Problem  

The cantilever beam design is made of five elements, each 

having a hollow cross-section with constant thickness as 

shown in figure 2. There is a total of 5 structure parameters 

and also a vertical load applied to the free end of the beam 

(node 5) and the right side of the beam (node1) is rigidly 

supported. The aim is to minimize the Weight of the beam. In 

the final optimal design there is one vertical displacement 

constraint that should not be violated [21].The mathematical 

formulation of this problem is as follows: 

 

    Minimize               f (x) =0.6224(  +            ), 

   Subject to:              g(x) = 
   

  
  

  

  
  

  

  
  

 

  
  

 

  
   ≤ 1,                                 

  Variable rang:            0.01 ≤                ≤ 100, 
 

Fig 2: cantilever beam Design Problem 

The optimal value of the objective function, average and 

standard deviation for this problem which solved by ALO 

algorithm with their penalty methods reported in tables 3 and 

4. The results show that the static penalty method is better 

than dynamic and adaptive in terms of best, but in terms of 

Ave and S.D the adaptive penalty method outperforms on 

static and dynamic. 
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Table 3. Compression the best solution for cantilever beam design problem by three penalty-based methods

      

penalty methods                         

Static penalty 6.016998 5.309663 4.492589 3.501620 2.152792 13.365207 

Dynamic penalty 6.020794 5.301333 4.499755 3.499036 2.152790 13.365235 

Adaptive penalty 6.008809 5.315777 4.493109 3.502588 2.153413 13.365228 

  

Table 4. Statistical performance of three penalty-based methods for cantilever beam design problem 
      Results Static penalty Dynamic penalty Adaptive penalty 

           Best 13.365207 13.365235 13.365399 

            Ave 13.365437 13.365421 13.365399 

            S.D. 0.000205 0.000173 0.000140 

 

Test problem 3: Gear Train Design Problem  

 

 In gear train problem the objective is to minimize the cost of 

the gear ratio of the gear train as shown in figure 3. The 

constraints are only limits on design variables (side 

constraints). Design variables to be optimized are in discrete 

form since each gear has to have an integral number of teeth. 

Constrained problems with discrete variables may increase 

the complexity of the problem [3]. The decision variables of 

the problem are   ,   ,   , and    which are denoted as   , 

  ,   , and   , respectively. This problem is given by: 

 

                     Minimize         f (x) = 
 

     
 

    

    
  , 

                     Subject to:       12 ≤              ≤ 60, 

 
                  

                  Fig 3:  Gear train Design Problem                                    

Tables 5 and 6 represent the result of solving this problem by 

ALO using three penalty-based methods. The adaptive penalty 

method in obtained the best results from the static and 

dynamic penalties in best, Ave, S.D. 

Table 5. Compression the best solution for Gear train design problem by three penalty-based methods

penalty methods                          

Static penalty 43.4493 14.9087 12.0095 28.5615 4.0653E-23 

Dynamic penalty 43.4493 14.9087 12.0095 28.5615 4.0653E-23 

Adaptive penalty 55.1986 38.6950 38.6950 58.3125 3.4239E-25 

 

Table 6. Statistical performance of three penalty-based methods for Gear train design problem 
 

      Results Static penalty Dynamic penalty Adaptive penalty 

           Best 4.0653E-23 4.0653E-23 3.4239E-25 

            Ave 6.8853E-20 6.8853E-20 5.2360E-20 

            S.D. 1.1554E-19 1.1554E-19 8.6603E-20 

 

Test problem 4: Welded Beam Design Problem  

 

A welded beam is designed for minimum cost subject to 

constraint on share stress ( ), buckling load on the bare (   , 
bending stress in the beam (    end deflection of the beam 

(  , and side constraints [22], as shown in figure 4 there are 

four design variable (     (                 , the 

mathematical formulation of this problem is as follows: 

           Minimize       f (x) = 

1.10471  
    0.04811    (14.0+  ) 

          Subject to:      g1(x) =                  

                                 g2(x) =                
                                 g3(x) =          

                                 g4(x) =0.10471  
   

0.04811    (14.0+  )   5.0      
                                g5(x) =0.125        
                               g6(x) =                
                               g7(x) = p             

Where 

                   
  

  
       , 
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  ,     

  

 
  ,M      

  

 
  , 

R     
 

 
  

     

 
   ,   

J            
  
 

  
  

     

 
     , 

      
   

    
           

   

   
   
     

               
       

  
   

 

  

  
(1 

  

  
 

  

  
 ) 

         Variable rang:      0 .1≤ xi ≤ 2, i = 1, 4,              

                                     0.1 ≤ xi ≤ 10, i = 2, 3. 

P 6000 lb, L 4 in,       0.25, E  30      psi, G  

12     psi,               
                
 

 
Fig 4: Welded Beam Design Problem 

In Tables 7 and 8 the results of this problem are represented, 

it shows that the adaptive penalty methods have better 

solution in term of best but not better in the terms of Ave, 

S.D.  

 

 

Table 7. Compression the best solution for welded beam design problem by three penalty-based methods 

penalty methods                          

Static penalty 0.2054 7.1076 9.0367 0.2057 2.2192 

Dynamic penalty 0.2054 7.0702 9.0749 0.2055 2.2203 

Adaptive penalty 0.2056 7.1006 9.0367 0.2057 2.2187 

 

Table 8. Statistical performance of three penalty-based methods for welded beam design problem 
      Results Static penalty Dynamic penalty Adaptive penalty 

           Best 2.2192 2.2203 2.2187 

            Ave 2.3010 2.3231 2.3251 

            S.D. 0.0748 0.0925 0.0910 

 

 

Test problem 5: Three-Bar Truss Design Problem  

In a three-bar truss problem the objective is to minimize its 

weight [3]. The structural design problem has a large number 

of constraints and the objective function is very simple. The 

constraints here are stress, deflection, and buckling constraints 

as shown in figure 5. 

The mathematical formulation of this problem is as follows: 

               Minimize                      )   , 

                 Subject to:      g1(x)  
        

     
       

                                       

                           g2(x)  
  

     
       

             

   g3(x)  
 

       
            

Variable rang:    0            , 

        Where                 kN/c   ,       kN/c   

 
Fig 5: Three-Bar Truss Design Problem 

The results of the best solution and Statistical performance for 

this problem are reported in tables 9 and10; the static and 

dynamic methods are better than adaptive penalty in terms of 

best but the adaptive penalty method outperforms on Ave, 

S.D. 
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Table 9. Compression the best solution for three-bar truss design problem by three penalty-based methods 
 

 

 

 

 

 

 

 

 

 

Table 10. Statistical performance of three penalty-based methods for three-bar truss design problem 
 

Results Static penalty Dynamic penalty Adaptive penalty 

Best 263.89584 263.89584 263.89585 

Ave 263.89629 263.89629 263.89617 

S.D. 0.0006397 0.0007456 0.0003781 

 

 

Test problem 6: Tension/compression spring Design Problem 

 

This problem minimize The weight of a tension/compression 

spring as shown in Figure 6, subject to constraints on 

minimum deflection, shear stress, surge frequency, limits on 

outside diameter, and design variables. The design variables 

are wire diameter (x1), mean coil diameter (x2), and number 

of active coils (x3) [23].  

 

The formal statement is: 

 

           Minimize                         
  

                  Subject to:              
  
   

        
     

                                           
   

      

           
     

   
 

      
                          

                                                
        

  
   

   

                                              
     

   
     

   Variable rang:                             
                     

 

 

 

 

 Fig 6: Tension/compression spring Design Problem 

Tension/compression spring Design problem is solved by 

ALO with each of penalty-based methods; the results of the 

best solution and Statistical performance which represented in 

tables 11and 12 indicates that the adaptive penalty method is 

obtained the best result from static and dynamic in best term 

and dynamic penalty have better solutions in Ave and S.D.    

 

Table 11. Compression the best solution for Tension/compression spring design problem by three penalty-based methods 
 

penalty methods                       

Static penalty 0.0514103 0.3500494 11.690909 0.012666 

Dynamic penalty 0.0520775 0.3661357 10.757475 0.012668 

Adaptive penalty 0.0518434 0.3604415 11.073951 0.012665 

 

Table 12. Statistical performance of three penalty-based methods for Tension/compression spring design problem 

      Results Static penalty Dynamic penalty Adaptive penalty 

           Best 0.012667 0.012668 0.012666 

            Ave 0.013669 0.013450 0.013600 

            S.D. 0.001613 0.001341 0.001726 
 

 

penalty methods                

Static penalty 0.788646 0.408330 263.895844 

Dynamic penalty 0.788652 0.408314 263.895844 

Adaptive penalty 0.788737 0.408072 263.895846 
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The convergence curves of ALO with static, dynamic and 

adaptive penalties on engineering problems are illustrated in 

Fig 7. 

5. ANALYSIS OF PARAMETER 

VALUES FOR PENALTY METHODS 
In this section, we have provided sensitively analysis for the 

parameter of penalty methods and its effects the performance 

of results of test problems. The static and adaptive penalties 

are implemented but in dynamic penalty parameter t dependent 

on current generation number (iteration). 

5.1 Static Penalty 
In Static penalty we study the effects of parameter d on the 

average value of test problems, the comparative results of the 

average value of 10 runs are illustrated in table 13 and figure 

8.  

Table13 and Figure 8 shows that the average values sometimes 

improves and sometimes worsen with the increase of parameter 

d. 

5.2 Adaptive Penalty 
In the adaptive penalty, we study k (1) the initial value of 

parameter      and its effects on the average value, result of the 

average value of 10 runs are presented in table 14 and figure 9 

indicates that also the average value sometimes improve and 

sometimes worsen with the increase of parameter k (1), so in 

each penalty method, some appropriate values of penalty 

parameters should be selected. 
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Fig.7: Convergence curves of ALO with static, dynamic and adaptive penalties on the test problems
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Fig 8: effects of change value of parameter d on the average best value for test problems 

Table 13. Results of test problems with different values of parameter d in static penalty 
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Fig 9: effects of change value of parameter k (1) on the average best value for test problems 

Table 14. Results of test problems with different values of parameter k(1) in adaptive penalty 
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6. CONCLUSION 
In order to solve the constrained optimization problems, the 

constraints should be handled. There are most of constraints 

handling techniques have been suggested. The most popular 

constraint handling technique among user is penalty function. 

In this paper, results are discussed in two ways. Firstly, we 

have studied the performance of the Ant Lion Optimizer 

(ALO) with a number of penalty-based methods (static, 

dynamic and adaptive penalty). A small comparative study is 

conducted using six real engineering problems as benchmark. 

Experimental results show that the methods of adaptive penalty 

is outperform on the static and dynamic methods in most of 

engineering problems, this due to that the penalty parameter 

doesn't remain constant but updates itself at every generation 

(iteration) during evolutionary process, but in general it is 

impossible to say one of the methods is the best for every 

problem. 

Secondly, sensitivity analysis of choosing parameters of static 

and adaptive penalty methods is performed to check the 

performance of ALO. The obtained results show that the best 

value obtained with 30 runs sometimes improve and sometimes 

worsen with fine-tuning of the parameters and the main 

problem is to set appropriate values of the penalty parameters 

so the users have to experiment with different values of penalty 

parameters. 

There is several research directions can be recommended for 

future work such as investigated the performance of ALO in 

other benchmark and real-life problems. Another research 

direction is to use other different constraints handling 

techniques. 
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