International Journal of Computer Applications (0975 - 8887)
Volume 181 - No.34, December 2018

Coupled Kernel Ensemble Regression

Dickson Keddy Wornyo

Sch. Of Comp. Sci. and Telcomm. Eng.
JiangSu University, Xuefu Road 301
Zhenjiang, Jiangsu, 212013, China

ABSTRACT

In this paper, the concept of kernel ensemble regression scheme is
enhanced considering the absorption of multiple kernel regrssors
into a unified ensemble regression framework simultaneously and
coupled by minimizing total loss of ensembles in Reproducing ker-
nel Hilbert Space. By this, one kernel regressor with more accurate
fitting precession on data can automatically obtain bigger weight,
which leads to a better overall ensemble performance. Comparing
several single and ensemble regression methods such as Gradient
Boosting, Support Vector Regression, Ridge Regression, Tree Re-
gression and Random Forest with our proposed method, the ex-
perimental results of the proposed model indicates the highest per-
formances in terms with regression and classification tasks using
several UCI dataset.
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1. INTRODUCTION

Regression is a technique from fundamental statistic useful for pre-
dicting outputs that are continuous. Regression techniques used for
predicting data assimilation models have received a lot of active
research hot spot in recent times, particularly in real-world applica-
tions [6]. Presently, regression is portrayed as one of the most fun-
damental big data statistical techniques utilized in solving issues
of big data [5]. This help in predictions, in which both the sample
size and the number of predictors are large for high-dimensional
regressions. Additionally, it plays an important role in optimizing
operations of complex systems due to its ability to forecast sys-
tems behaviors [14]. As a result, regression techniques have been
adopted in wide application areas, including but not limited to data
mining, computer vision and medical image analysis [18].

Furthermore, a lot of strategies have been adopted in the execution
of regression processes with diverse schemes. These schemes are
mainly divided into two categories: single regression models and
ensemble regression models [[11]. The single regression model can
also be sub grouped into non-linear and linear methods, whilst lin-
ear regression, ridge regression and lasso regression among others
are the representative examples of the non-linear method. For ex-
ample, Santiago et al. [21]] demonstrated the effectiveness of multi-
variate linear regression models towards their application in vir-
tual screening and mechanistic interrogation. Hellton et al. [12]
also proposed the use of ridge regression with cross-validation as
a plug-in estimate. Mangalathu et al. [19] proposed a methodol-
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ogy to identify the relative impact of input variables and level of
treatments needed in the estimation of seismic demand models and
fragility curves using lasso regression.

On the other hand, linear methods, such as, kernel ridge regression
and support vector regression (SVR) are widely known for their
theoretical or experimental results. For example, Li et al. [17] pro-
posed a kernel ridge regression with truncated Gaussian radial basis
function kernel (KRR-TRBF) to train classifiers and further authen-
ticates a current user as a legitimate user or an imposter. Cheng et
al. [4] developed a full polynomial chaos expansion (PCE) meta-
model based on an SVR technique using an orthogonal polynomi-
als kernel function.

Besides, in the second broad category, ensemble regression model
combines several decision trees to produce better predictive per-
formance than utilizing a single decision tree. The main principle
behind the ensemble model is that a group of weak learners come
together to form a strong learner. This has yielded success in many
real-world applications, such as decision tree regression, random
forest regression and gradient boosting regression. For example,
Hariharan et al. [9] explained how a random forest based model
was used to estimate model parameters for modeling of a green-
field terrain by non-deposit samples.

The Introduction of the Reproducing Kernel Hilbert Space
(RKHS)[22] into the structure of the linear regression methods, sig-
nificantly contributes to a higher performance result as compared
with the non-linear regression methods. Thus the discrete relation-
ship among data samples are characterized better. However, the se-
lection of parameters has great influence on the performance of a
single kernel regression method. The selection of a suitable kernel
with their parameters is therefore a key problem for kernel regres-
sion methods that must be greatly considered.

From the above discussions, we propose a novel coupled kernel
ensemble regression(CokER) that takes advantages of both the en-
semble method and linear learning method. In the proposed kernel
ensemble regression method, base kernel regressors are obtained
by varying kernel types and their parameters. Ensemble regressor
is therefore obtained by combining base kernel regressors. The cou-
pled kernel ensemble loss is then minimized in multiple Reproduc-
ing Kernel Hilbert Spaces (RKHSs). The proposed method opti-
mizes each base kernel regressor in separate RKHSs and then cou-
ples them into one regression model in multiple RKHSs. This there-
fore overcomes the difficulty in the selection of kernel function and
parameters which exist in single kernel methods. Similar but dif-
ferent from the previously proposed methods of coupled regression
methods in the field of facial recognition [16], artificial neural net-
work [15] and partial least square [8], the proposed method opti-



mizes each base kernel regressor in separate RKHS and then cou-
ples them into one regression model in multiple RKHSs whiles the
existing coupling methods try to combine multiple RKHSs into one
unified space.

The main contributions of this paper are as follows:

1. In the proposed method, base kernel regressors are coupled and
co-optimized in a coupled ensemble framework by minimizing
loss in multiple RKHSs. This is done without multiple RKHSs
being combined into one unified space.

2. The coupled ensemble idea can find appropriate kernel types
and their parameters in a base kernel regressor through a pool
of ensemble regression framework, which is different from the
state-art-of-work.

3. Additional experiments on artificial data sets, UCI regression
and classification data sets indicate that compared to other re-
gression methods, for example, random forest and SVR, the pro-
posed method has the advantages of effective performances in
keeping lowest regression loss and highest classification accu-
racy

The rest of the paper is organized as follows: Section [2]introduces
some related works with respect to the topic under discussion. Sec-
tion 3| presents the proposed method. Experimental results are pre-
sented in section ] Finally, section[5]concludes the paper.

2. RELATED WORK

Regression learning has been addressed in a lot of prior studies.
In this section, two main categories of regression have been in-
troduced. Thus, single regression model and ensemble regression
model. The single regression model is also classified into two sub
categories: linear and non-linear methods

2.1 Non-linear methods

Lasso is a non-linear regression method that involves correcting the
total size of the regression coefficients. Lasso regression is a regu-
larization technique that’s useful for feature selection and to prevent
over-fitting training data. It works by penalizing the sum of abso-
lute value (L1 norm) of weights found by the regression. Wang et
al. [24] proposed a lasso regression algorithm that employs variable
selection for feature variables and further guide the trained predic-
tor towards a generalization solution, thereby improving the accu-
racy and interpretability of the model. Experimental results showed
superiority prediction of fuel consumption compared to existing
methods. Zhang et al. [27] recently proposed a locally weighted
ridge regression method to overcome the problem of online sen-
sitivity identification using ordinary regression methods that are
prone to large errors.

Linear regression which is also an example of the non-linear meth-
ods, attempts to model the relationship between two variables by
fitting a linear equation to observed data. One variable is consid-
ered to be an explanatory variable, and the other is considered to
be a dependent variable. Hirukawa et al.[13] demonstrated how
the ordinary least square estimator of the linear regression model
used matched samples of inconsistent and non-standard conver-
gence rate to deal with earning data of missing observations to be
imputed. Experimental results showed that the estimators had an
indirect-inference interpretation and attained a parametric conver-
gence rate when the number of matching variables is no greater
than four.
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2.2 Linear methods

The Introduction of the Reproducing Kernel Hilbert Space (RKHS)
into the structure of the linear regression methods, significantly
contributes to a higher performance result as compared with
the non-linear regression methods. Thus the discrete relationship
among data samples are characterized better. The nonlinear prob-
lem is transformed into a linear problem through the application
of different mathematical kernel functions. Representative kernel
methods are kernel ridge regression and SVR methods.

Kernel ridge regression (KRR) is an instance of a natural exten-
sion of ridge regression and combines ridge regression with ker-
nel tricks. It thus learns a linear function in the space induced by
the respective kernel and the data. For non-linear kernels, this cor-
responds to a non-linear function in the original space. Chang et
al. [2]] proposed a kernel ridge regression (DSKRR) method based
on divide-and-conquer strategy that provides error analysis for dis-
tributed semi-supervised learning. Their results showed that the un-
labeled data played an important role in reducing the distributed
error and enlarging the number of data subsets in DSKRR.
Support Vector Regression methods are the natural extension of
SVM, proposed by Drucker [7]. SVR method is identical to ker-
nel ridge regression base on their model forms. Chen et al. [3] pro-
posed a three-layer weighted fuzzy support vector regression (TL-
WEFSVR) model for understanding human intention, and it is based
on the emotion-identification information in human-robot interac-
tion. Experimental results showed that the proposed TLWFSVR
model obtained higher intention understanding accuracy and less
computational time than that of the comparative methods.

2.3 Ensemble regression model

Ensemble regression (ER) can combine individual regressors to-
gether and keep their performance better as compared to the sin-
gle regression model. Tree regression method is used to predict the
numerical outcomes of the dependent variables. Rathore et al. [20]
presented a decision tree regression-based approach for the number
of faults prediction in a given software module.

Furthermore, Gradient Boosting Decision Trees (GBDT) is an ad-
dictive ensemble regression model in decision trees. Wang et al.
[25] proposed a new fusion method based on the LR algorithm
and GBDT algorithm for mobile recommendation system. Their
method is observed to achieve a good F1 score in a mobile recom-
mendation scenario.

Among ensemble regression methods, random forest (RF) method
is a useful machine learning technique which can be applied in both
regression and classification problems. Hasan et al. [10] applied
random forest for intrusion detection problems. The research indi-
cated that random forest takes less time to train its classifier than
SVM and also achieves more accurate results than SVM classifier.
Wau et al. [26] used random forest regression approach to analyze
the weekly analysis of influenza-like illness rate using one year pe-
riod of factors. Experimental results showed that regression errors
decreased from 5.04% to 4.35% in mean absolute percentage error
(MAPE) and 2.85E-04 to 1.97E-04 in mean square error (MSE) for
prediction of weekly ILI rate.

3. THE PROPOSED METHOD

This section introduces a new coupled kernel ensemble regression
method, which can help to find suitable kernel types and param-
eters in base kernel regressors. Base kernel regressors are cou-
pled and weighted to form the final ensemble regressor, by min-
imizing total loss in multiple Reproducing Kernel Hilbert Spaces
(RKHSS). In the following subsection introduces the Reproducing



Kernel Hilbert Space (RKHS) and then the proposed coupled ker-
nel ensemble regression method is proposed in the next subsection.

3.1 Reproducing Kernel Hilbert Space

Reproducing Kernel Hilbert Space is a special Hilbert space asso-
ciated with a kernel such that it reproduces (via an inner product)
each function in the space. It has a wide range of applications in
machine learning, such as SVR and Radial Basis Functions [23].
Given data {{(z;,y;)}"., € RP x RP}, where RP is a p-
dimensional real space. A kernel k provides a similarity measure
between pairs of datapoints

k:RP x R? — R: (zi,4:) ¢ k(ws,y:) (D

The set of these mappings can be extended by including all possible
finite combinations, adjoining the limits and constructing an inner
product base on the chosen kernel

p(x)(2') = (k(z, ), k(z', 0)) = k(z,2) @)

where k has a symmetric property that means k(x;, z) = k(z, x;).
Some suitable functions can be regarded as kernels:
-The Polynomial kernel

k(xi,x;) = (ax] z; + b)° 3)
- The RBF kernel(Radial Basis Function)

[l — ]|

k(zi, ;) = exp(— " ) C)]
- The Gaussian kernel
(e
k(x;, ;) = e:cp(—TQJ) ©)

where a,b,c,u,0 € R. Meanwhile, K denotes a Gram matrix
which is obtained according to samples. It is a symmetric and semi-
positive definite matrix, which can be shown as follows:

k‘(ml,xl) k‘(.%’l,.%‘Q) k:(a:l,a:N)
k(z2,21) k(w2,22) k(za,zN)

K= : : - : ©)
k(mj\;,xl) k(w]\;,asg) k(a:N',xN)

The resulting RKHS has then the property that every evaluation
operator and norm of any element in Hy, is bounded. For a Mercer
Kernel K : x x x — R, there is an associated RKHS H, of the
function x — R with the corresponding norm || ||;.The standard
framework estimates an unknown function by minimizing

N
f‘:aT’ngnZV(ﬂfuyuf)+L||f|‘z (7)

i=1

Where v is a kind of loss function, such as squared loss (y; —
f(x;))? for RLS or hinge loss function max [0,1 — y; f(x;] for
SVM. || f]|? is regarded as a smoothness conditions on possible
solutions in the RKHS. In this case,it is proven that the optimal
representer of f in Eq[7]can be defined as a finite sum around the
observations:

N
f= Zaik(:ri,x) ®)
i—1

Therefore, the problem is reduced to optimizing over the finite di-
mensional space or coefficients «;, which is the algorithmic basis
for SVM and other kernel methods.
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3.2 Coupled kernel ensemble regression

The proposed method can combine multiple kernel regressors into
a unified ensemble regression framework and the weight of each
kernel regressor in this ensemble method is coupled by minimizing
total loss of ensembles in Reproducing Kernel Hilbert Spaces. This
gives an advantage of one kernel regressor having more accurate
fitting precession on data and can, therefore, obtain bigger weight
which leads to a better overall ensemble performance

Firstly, different kernels are obtained according to samples. Sup-
pose a regression problem has a training set X with regression re-
sult (X = {(z1,y1), s

(zn,yn)}) and a testing set X, without regression result
(Xe={(z1,...,xn,)}) where z,(x, € R4n = 1,..,N) ex-
presses a training sample, y,, is the true regression result of x,,
and x,, (2, € RY, m = 1,..., N;) expresses a testing sample. N
is the number of training samples and N; is the number of testing
samples. The base kernel regression model is

[Ka+b—y|*+ o' Ka ©9)

where K denotes a kernel matrix which can be obtained according
to samples, « is a column vector related to the weight of every sam-
ple, b expresses bias term for the specific K.The proposed method
aims to obtain the optimal co-regularized weight vector of base re-
gressors. The term || K + b — || is the square loss for determin-
ing the performance of the base kernel regression model.
Unfortunately, since regression performance varies dramatically
with the selection of both kernel functions and their parameters,
it is also hard to obtain suitable Kernel functions and parameters
which are commonly selected manually in practice. To overcome
this problem, the proposed method can combine multiple kernel
regressors into a unified ensemble regression framework without
considering the selection of both kernel functions and their param-
eters in individual kernel regressors. L different kernels are used
in the proposed framework and a new coupled kernel ensemble re-
gression model is proposed:

L
1 2 T
argmln§ E Wi([[ Ko + b —y||” + A ™ Kioy)

wyai i=1

(10)
st 1TwW =1

Where L is the number of kernels. Assuming that the number of
training samples is IV, and the number of testing samples is N
and W = [Wy, ..., W ]T denotes a weight vector of individual ker-
nel regression model. K; represents the different kernel matrix. K;
is the i-th base Gram matrix and the dimension of K; is N x N
for training dataset, Ny x N for testing dataset. «; denotes a col-
umn vector related to the weight of every sample for each K;. The
dimension of a; is N x 1 for training dataset, N; x 1 for testing
dataset. b; is the bias item for a specific K;. b; is a column vec-
tor that has the same dimension as samples, and each value in the
vector is equal to a specific K;. y denotes the true output and its
dimension is the same as samples. A is the constriction parameter
that smoothens the model.

We take the derivative of formula E] with respect to a; and obtain
the following formula.

a; = (K; + X))ty (11)

where I is an identity matrix which has the same dimension as
training K;.



According to Formula[TT] we can get

N N
1
b; = N(E Yt — E Ki(zj, )0 ;) (12)
t=1 j=1

We considered W; to be W;" (r represents the control parameter
for the weights of multiple features) because linear programming
attains its optimum solution at the extreme ends, i.e either W; = 0
or W; = 1. That means there will only be one kernel selected con-
trary to the proposed objective of exploring the rich complementa-
tion of multiple kernels. When r = 1, it is only one kernel that will
be selected in the optimal result, which is undesirable, but if r > 1
the outcome is based on multi-kernel balancing. r is a man-made
value to obtain appropriate w. It can further be deduced as:

13)

Where ¢; = || Ko + b; — y||> + Aa;T Ko, denotes the loss of
each kernel. According to Eq, the optimal weight of the ensemble
method can be obtained, where r is a parameter to obtain appro-
priate w. An ensemble regresion model is obtain by combining the
various base kernel models linearly. The proposed kernel ensemble
regressor is built using the following formula[I4]

L N
fle) => WD Ki(wj, m)ai j + bi) (14)
i—1 =1

4. EXPERIMENTAL RESULTS

In this section, all the experimental results under different settings
are presented. For a fair comparison, each dataset is randomly split
into 2/3 (training data) and 1/3 (testing data) and the regularization
parameter is obtained by cross-validation method. In our experi-
ments, five comparative methods (Gradient boosting, Tree Regres-
sion, Support Vector Regression, Ridge Regression and Random
Forest) are selected as base models. Mean Square Error (MSE) and
Mean Absolute Error (MAE) are selected as the criteria [[1]].

1 X

MAE = E;mxi)—m 15)
1

MSE = 3= % (f(w:) =)’ (16)

=1

In the proposed method, a demonstration of how to combine the
base kernel model of the ensemble is shown. A single polynomial
kernel model in Eq[3]is applied as the basic model of the ensemble
for different datasets.

There are three parameters (a, b and c) in this type of model and
the different values of the parameters show different effects on
the experimental results. Generally, we set a € {1 x le — 6,1 %
le —5,---,1000}, b € {1 x1le — 6,1« le — 5,---,1000} and
c € {1,2,3,4,5}. For each dataset, we select the optimal parame-
ters (a, b and c¢) and base kernels are obtained by 10-fold cross vali-
dation in experiments. The parameter L in Eq[I0]denotes the num-
ber of base polynomial kernel models. The generalization ability of
an ensemble regressor will be good if there are enough base mod-
els. However, excessive base models may consist of many worse
base models and result in low classification accuracy. Therefore,
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Table 1. : Descriptions of UCI dataset

Datasets Samples  Attributes
Abalone 4177 8
RedWine 1599 11
WhiteWine 1030 8
Mg 1385 6
Space 3107 6

we take L € {10, 20, 50, 100, 150}. In our experiments, we select
20 combinations among three parameters (a, b and c).

And the parameter in Eq[I0]is the parameter that smoothens the
base regressor. The parameter r in Eq[T3]is the control parameter
for the weights of multiple base models. In our experiments, we
select values for A and r as 0.1 and 2, respectively.

4.1 Dataset description

The selection of nine benchmark publicly available datasets for the
evaluation of the performance of the proposed model is made.These
datasets are from the UCI database repository, a detailed summary
is presented in Table

4.2 Experimental settings

We compared the effectiveness and robustness of the proposed
novel Kernel Ensemble Regression with the conventional multi-
kernel features. The performances of some single and ensemble
regression preserving methods such as Ridge Regression, Random
Forest and Support Vector Regression among others are conducted
but with careful tuning of the parameters. All the datasets selected
are applied to these methods.

4.3 Performance Evaluations and comparisons

This section discusses the general performance of the proposed co-
regularized kernel ensemble regression algorithm and all the com-
parative methods.

Table 2] shows the comparisons of the MSE mean of the CoKer,
linear models and ensemble models. As shown in Table 2, the re-
sult of CoKER on Abalone dataset is very small as compared to the
other comparative methods. This indicates that, COKER produces
a smaller Mean Square Error (MSE) of 3.599 with respect to the
abalone datasets. The tree regression model performs poorly with
the highest MSE of 4.491. Considering the Red Wine dataset, all
the comparative methods and CoKER yielded a positive result with
respect to MSE. Nevertheless, COKER performs best with an MSE
of about 0.15% compared to the comparative methods. CoKER
leads with a value of 56.0335 which is 3.42% better. It is then fol-
lowed by ridge regression, while tree regression comes in with the
least performance. Tree regression method has the worst perfor-
mance of 6.4709 for this dataset. CoOKER yields better results than
the other methods in all the datasets except the Bodyfat dataset. Fi-
nally, with a value of 0.022,CoKER leads the others on the Space
dataset. From the MSE values presented in table 2] it demonstrates
that for MSE values, CoKER proves beyond doubt to be the best
method considering the comparative methods

Fig|l| shows another dissimilar view of MSE comparisons among
the propose CoKER, single models and ensemble methods on UCI
regression datasets. Fig[T(a)]demonstrates MSE comparisons on the
application of abalone dataset with CoKER having the lowest me-
dian of 3.599. The model with the next best median is the ran-
dom forest. In Fig[I(b)] the box plot indicates that for the RedWine



Table 2. : The average of MSE comparison of CoKER, single models and
ensemble models

Datasets CoKER GB TR SVR RR RF
Abalone 3.59 391 4.49 431 4.18 4.00
RedWine 0.41 0.42 0.50 0.61 0.44 043
WhiteWine 0.49 0.51 0.53 0.68 0.51 0.49
Mg 0.013 0.016 0.022 0.0175 0.020 0.014
Space 0.022 0.024  0.032 0.039 0.024  0.023

Table 3. : The average of The MAE comparison of CoKER, single model
and ensemble models

Datasets CoKER GB TR SVR RR RF

Abalone 0.124 0.134  1.026 1.170  0.174  4.002
RedWine 0.051 0.061  0.397 0.517 0.100 0.070
WhiteWine  0.101 0.104 0.108 0.121 0.152 0.107
Mg 0.0007 0.001 0.011 0.035 0.002 0.001
Space 0.021 0.028 0.038 0.054 0.035 0.046

Table 4. : Descriptions of UCI classification dataset

Dataset Samples  Attribute
Diabetes 768 8
German 1000 20

LD 345 7
Abalone 4177 8
Dexter 2600 20000

dataset, CoKER again performs better than the other methods with
a value of 0.410. Gradient boosting is the second best performer
while SVR has the worst lower bound performance. Fig @ and
[I(c)|shows a lot of flat shaped plot. This implies that, when the re-
gression variance becomes smaller, the more stable the method, and
the lower the median, the better the regression result of the method.
This because most of the variance is very small,i.e., 10~* and could
not be shown in the tables.. Here, COKER again performed better
than the rest of the methods.

From the above discussion, it can conclude that the propose
CoKER outperforms the comparative methods.

Table [3] presents the mean MAE comparisons among the propose
CoKER, linear models and ensemble models. From the results, it
can be seen that, when applied to the Abalone dataset, the CoKER
attains the optimal result of 0.1245. Gradient boosting lags slightly
behind by 0.01% with a value of 0.134. Random forest yields the
worst result with a value of 4.002. When applied to WhiteWine,
CoKER performs better than other methods by 1.17%. CoKER pro-
vides the best result with a value of 0.134 which is 35% better than
the others. CoKER, when applied to Mg turns out to be the best
performer with a value of 7.0000e-04 and gradient boosting being
the worst performer with a value of 0.001. The Space dataset had
the proposed method performing better than the others by 1.3%.

It could be seen from the results in table[3]that the propose CoKER
has better MAE values compared with the prior studies on the var-
ious datasets. From the experimental results, it could be realized
that, the propose CoKER outperforms the prior approaches in all
experiments.

Figure [2] also gives a different view of MAE comparisons among
the propose CoKER, single models and ensemble methods. From
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0.035
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Fig. 1: Box Plot of the respective datasets for MSE: (a) Abalone (b) Red-
wine (c) Mg (d) space

Fig[2(a)] we can see that, has a better MAE value for the Abalone
dataset, with the upper bound value of 0.1245. For the WhiteWine
dataset, Fig 2(b)] shows that CoKER retains the best result with
an upper bound value of 0.102. Gradient boosting follows closely
behind with a value of 0.1042. A difference of 0.003. From Figure
mmost of the plots have flat shape, which means the smaller the
regression variance, the more stable the method. And the lower the



Table 5. : The comparison of classification mean accuracies of CoKer com-

parative methods, (cls = classification)

Dataset CoKER RF Ridge LibSvm GB Tree
cls cls
Diabetes 81.85 80.46 81.64 67.57 7856 80.34
German 80.18 75.67 79.81 71.17 69.89 73.98
LD 61.73 31.30 61.73 61.73 60.78 61.34
Abalone 80.78 79.94 80.56 79.89 75.86 79.98
Dexter 68.83 67.98 68.56 65.78 63.89 68.67
Abalone Dataset
127
1 L]
0.8
w
go.s
0.4+
0.2 _ —_
CoKER  GB TR SVR RR RF
(@)
WhiteWine Dataset
S
0.15
0.14
Yoas
= _
012} =
0.1 = i
. =
=
0.1t
CoKER  GB TR SVR RR RF

(d)

Fig. 2: Box Plot of the respective datasets for MAE: (a) Abalone (b)
WhiteWine

median of the method in the figure, the better the regression result
of the method. This because most of the variance is very smalli.e.,
10~* and did not show them in the tables.

From the above discussion, it can conclude that, the proposed
CoKER demonstrates more effectiveness and superiority than the
prior studies in regression accuracy.

4.4 Classification

Although all the models discussed in the previous section are in-
tended for regression tasks, classification task is also experimented
to further verify the stability of the proposed model.

4.5 Data description

The selection of nine benchmark publicly available datasets for
the evaluation of the performance of the proposed model is made,
which are Diabetes, German, Liver-disorders (LD), Abalone, and
Dexter. A summary is presented in Table[d]

TableE]did not present the variance of the experiment because they
were very small, of about 10~%. which means the smaller the vari-
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Fig. 3: Comparison of the mean classification accuracies of the various
datasets across the five comparative methods

ance, the more stable the method and the lower the median of the
method in the table, the better the classification result of the method
Fig. 3] presents a comparison of the mean classification accuracies
of all the methods across the five datasets. From the figure it can see
that, the propose CoKER obtains the highest accuracy of 81.86%
on the diabetes dataset, followed closely by Ridge Classification
method with an accuracy of 81.66%. Random Forest, Tree Classi-
fication and Gradient boosting methods followed suit in that order
with the LibSvm method being the worst in classification perfor-
mance of about 67.58%.

On the German dataset, all the methods show similar performance
maintaining their positions as in the Diabetes dataset. Also COKER
and Ridge classification method obtain a slight reduction in classifi-
cation performance of less than 2%. Whilst Random Forest, Gradi-
ent boosting and Tree Classification methods all experience a great
reduction of at least 5%.

Dexter dataset got all the methods performing below 70% accuracy,
with CoKER leading with an accuracy of 68.83% which is a reduc-
tion of about 13% from the diabetes dataset. Random Forest, Ridge
Classification and Tree Classification all experience a reduction of
close to 13%. Gradient boosting obtains the greatest reduction of
about 14% with LibSvm being the least reduced of about 2%.
Finally, on the LD dataset, CoOKER obtains the highest accuracy
together with two other methods: Ridge Classification and LibSvm.
Interestingly, LibSvm which has been the worst performing in all
the datasets became one of the best in LD dataset. Also Random
Forest which has been performing well in classification in other
datasets got the worst classification performance of 31.30%. Tree
Classification on the other hand obtains 61.35% of classification
accuracy being the second followed by Gradient Boosting with an
accuracy of 60.78%.

Generally, CoKER obtains the highest classification accuracy
across all the datasets, with the best coming from Diabetes,
Abalone and German datasets in that order, followed by Dexter and
lastly LD dataset which did not perform so well. It demonstrates a
clear distinction between CoKER and the comparative methods on
classification datasets as shown in fig[3] Hence, it can concluded
that our propose CoKER obtains a better classification performance
according to all the experimental results of classification perfor-
mance.

4.6 Digits Recognition

This section we discusses the classification performance of the pro-
pose CoKER in recognition of handwritten digits using MNIST
dataset. It contains 10,000 handwritten digit images for classifier
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Fig. 4: Box plot of the mean classification accuracies of MNIST dataset
across the five comparative methods

testing. Comparing CokER with five different methods namely
Weighted Classifier Ensemble method based on Quadratic Forms
(QFWEC), Ridge regression (RR), Random Forest (RF), Simple
Vote Rule (SVRule) and Adaboost (AB) .

Fig. [] shows the classification accuracy of the propose CoKER
and the comparative methods on the MNIST dataset. The proposed
method outperforms the rest of the comparative methods. More sig-
nificantly, AB achieves the lowest classification accuracy perfor-
mance than the rest of the comparative methods which also perform
a poorly as compared to the propose CoKER.

5. CONCLUSION

In this paper, we investigated the problem of how to combine a set
of kernel regressors into a unified ensemble regression framework.
The framework can simultaneously couple multiple kernel regres-
sors by minimizing total loss of ensembles in Reproducing Kernel
Hilbert Space. In this way, one kernel regressor with more accurate
fitting precession on data, can obtain bigger weight, which leads
to a better overall ensemble performance. Experimental results on
several UCI datasets for regression and classification, compared
with several single models and ensemble models such as Gradient
Boosting (GB), Tree Regression (TR), Support Vector Regression
(SVR), Ridge Regression (RR) and Random Forest (RF), illustrate
that, the proposed method achieves best performances among the
comparative methods.
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