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ABSTRACT 

The concept of different forms on the basis of original, 

minimum, maximum and measures of locations of eigen 

values of XIX  of the design matrix in regression analysis was 

introduced into estimating the biasing or ridge parameter of 

the generalized ridge estimator of linear regression model 

with multicollinearity problem. This resulted into some 

proposed biasing parameters having considered existing seven 

(7) biasing parameters of the Generalized Ridge Regression 

(GRR) estimator. Their performances were examined and 

compared with the Ordinary Least Square (OLS) estimator 

and the existing (parent / original) biasing parameters of GGR 

estimator so as to identify the one(s) that would produce 

efficient estimates of the model parameters. Monte Carlo 

experiments were conducted 5000 times on two linear 

regression models with three and six explanatory (p = 3 and p 

= 6) variables under six (6) levels of multicollinearity (  = 

0.8, 0.9, 0.95, 0.99, 0.999, 0.9999), three (3) levels of standard 

error (σ = 1, 5 and 10) and seven (7) levels of sample sizes (n 

= 10, 20, 30, 50, 100, 150, 250). The estimators were 

compared using Mean Square Error (MSE) criterion. 

Results showed that the proposed different forms biasing 

parameters frequently perform more efficiently than the parent 

form; and that the different form of minimum of eigen values 

of XIX using the generalized ridge parameter of Batach et al. 

(2008) often produces efficient estimates of linear regression 

parameter with multicollinearity problem.  
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1. INTRODUCTION 
Multiple linear regression models assess relationship between 

a dependent variable and a set of independent (explanatory) 

variables. To estimate the parameters of regression model, the 

Ordinary Least Squares (OLS) Estimator has been most 

popularly used and discussed (Bowerman and O’ Connell, 

1990). The estimator has some very attractive statistical 

properties when none of the assumptions of the classical 

linear regression model is violated; the OLS is BLUE (Best 

Linear Unbiased Estimator). This has made the OLS estimator 

to be the most powerful and popular estimator of regression 

model. One of the common violations of the assumptions is 

that of the dependence of the explanatory variables often 

refers to as multicollinearity. OLS estimator in the presence of 

multicollinearity is BLUE (Gujarati, 2003).  

The consequences of multicollinearity are often very serious. 

These include the inability of the OLS estimators to provide 

the unique effects of individual variables in the regression 

model and their large sampling variances. These often lead to 

erroneous conclusion in hypothesis testing and predictions 

(Johnston, 1987; Gujarati, 1995). Furthermore, the OLS 

estimators yield regression coefficients whose absolute values 

are too large and whose signs may actually reverse with 

negligible changes in the data (Buonaccorsi, 1996). The 

problem of multicollinearity in regression analysis can have 

effects on the estimated least square regression coefficients, 

computational accuracy, estimated standard deviation of the 

least squares regression coefficients, t-test, extra sum of 

squares, fitted values and predictions and coefficients of 

determination (Maddala, 2005). 

Maddala (2005) opined that once multicollinearity is detected 

in the data, a natural question is “how to estimate the 

coefficients in its presence?” Several methods of estimating 

regression parameters in the presence of multicollinearity 

include ridge regression, partial least square regression and 

principal component regression (Abdi, 2013). The most 

widely recognized and immensely used technique is the Ridge 

Regression (Vinod and Ullah, 1981) proposed by Hoerl and 

Kennard (1970a).  The authors showed that a ridge estimator 

has smaller Mean Square Error (MSE) than that of the OLS 

estimator making the estimator to be more efficient. The ridge 

estimator is a modification of the least square method that 

allows biased estimator of the regression coefficients. These 

biased estimators are preferred over unbiased ones since they 

have smaller mean square errors.  

However to achieve this, the biasing or ridge parameter, k, 

plays a very significant role to control the bias of the 

regression toward the mean of the dependent variable.  A 

major problem of ridge regression parameter is the choice of 

k. Therefore, Hoerl and Kennard (1970a) proposed the 

Generalized Ridge Regression (GRR) estimator that 

accommodates separate ridge parameters for each explanatory 

variable. Several ridge parameters, ks, have been proposed by 

different authors. These include Nomura (1988), Troskie and 

Chalton (1996), Firinguetti (1999), Batach et. al (2008), 

Dorugade (2016) and Lukman and Ayinde (2017). 

Consider the standard regression model: 

UXY   (1) 

Where X is an n x p matrix with full rank, Y is a n x 1 

vector of dependent variable,   is a p x 1 vector of 

unknown parameters, and U  is the error term that 

0)( UE  and 
2)( UUE In. 

The Ordinary Least Square estimator is defined as:  
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YXXX II

OLS

1)(ˆ              (2) 

The Generalized Ridge Regression Estimator (GRRE) is 

defined as: 

YXKIXX II

Ridge

1)(ˆ                                  (3) 

Where 
1X X is a p x p product matrix of explanatory 

variables, 
1X Y is a p x 1 vector of the product of dependent 

and explanatory variables, K = diagonal ( 1k , 2k ,…, k p
),. ki 

≥ 0. i = 1, 2---, p. K is a non-negative constant. It is called 

biasing or ridge parameter. It is observed that when k = 0, (3) 

returns to OLS estimator (John, 1998). 

Suppose the response variable y is centered and the regressors 

X’s are standardized. Let   and T be the matrices of eigen 

values and eigen vectors of     respectively such that 

       =    = diagonal ( λ1, λ2, …λp), where λ1 represents 

the ith eigenvalue of     and     =     =Ip. The equivalent 

model for equation (1) becomes: 

y = Zα + u                                                                              (4)             (4) 

where Z = XT such that     =   and α =T′β. 

Consequently, the OLS estimator of α becomes: 

  OLS = (    )-1     =  -1                                              (5)              (5) 

The relationship between the OLS estimator of β and α is 

given as:  

  OLS= T  OLS.                                                                        (6)            (6) 

The MSE of the ridge estimator is: 

MSE( )ˆ
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while the MSE of the OLS estimator is: 

MSE 



p
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OLS

1
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ˆ)ˆ(


 (8) 

where p ,,, 21  are the eigen values of XX 1
. 

k̂  is the estimator of the ridge parameter k, i̂ is the ith 

element of the vector ̂ defined in (5). 

2. LITERATURE REVIEW  

2.1 Biasing or Ridge Parameter 
Ridge regression focalizes on the use of the biased parameter 

K which produces estimation with a smaller Mean Square 

Error. Hoerl and Kennard (1970a,b) suggested the optimum 

ridge parameter whose estimator is defined as: 

2

2

ˆ

ˆ
)(ˆ

i

i HKkKGRHK
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 , i = 1, 2, 3, p.              (9) 

where 
2̂  = 

pn

e
n

i

i




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2

 and it is the Mean Square Error from 

the OLS regression, i  is the ith element of the vector ̂  

from OLS regression defined in (5), p is the number of 

regressors and n is the sample size. 

Nomura (1988) proposed another ridge parameter whose 

estimator is defined as:  
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where i is the ith eigen value of 
1X X .  

 Troskie and Chalton (1996) proposed another ridge 

parameter whose estimator is defined as: 

)ˆˆ(

ˆ
)(ˆ
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Firinguetti (1999) also proposed another ridge parameter 

whose estimator is defined as: 

22
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where p is the number of regressors and n is the sample size. 

Batach et. al (2008) proposed another ridge parameter 

whose estimator is defined as: 
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Dorugade (2016) proposed another ridge parameter whose 

estimator is defined as: 
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


 (14) 

Lukman and Ayinde (2017) proposed another ridge parameter 

in line with Lawless and Wang (1976) and its estimator is 

defined as: 

2

2

ˆ

ˆ
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ii

i LAkKGRLA



 (15) 

Thus, the seven (7) parent (original) biasing parameters for 

the Generalized Ridge Regression estimator were considered 

in this research study. 

2.2 Different forms Biasing or Generalized 

Ridge Parameters  
For the ridge parameter whose estimators are defined in (10), 

(11), (12), (13), (14) and (15), the concept of different forms 

by Lukman and Ayinde (2017) was introduced based on 

minimum (MI), maximum (MA) and measures of location 

which are Mid-Range (MD), Arithmetric Mean (AM), Median 

(MD), Geometric Mean (GM) and Harmonic Mean (HM) of 

eigen values ( i ) of XIX of the design matrix of the 

regression model .  For example, from the parent ridge 

parameter k by Nomura (1988) in equation (7); the following 
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seven (7) biasing parameters for GRR are proposed. Their 

estimators are defined as follows: 
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where Min = Min( i ), i=1, 2, 3,…,p 
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where Max = Max( i ), i=1, 2, 3,…,p 
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where MR  = 
2

Max MinMR
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where Median = Median( i ), i=1, 2, 3,…,p 
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In the same way, using the parent ridge parameter, k, by 

Troskie and Chalton (1996) in equation (11);  the parent ridge 

parameter, k, by Firinguetti (1999) in equation (12);  the 

parent ridge parameter, k, by Batach et. al (2008) in equation 

(13);  the parent ridge parameter, k, by Dorugade (2016) in 

equation (14);  and the parent ridge parameter, k, by Lukman 

and Ayinde (2017) in equation (15), other different forms of 

biasing parameters were also proposed. 

3. SIMULATION STUDY 

3.1 Model and Data Generation  
Consider a multiple linear regression model of the form: 

                                     

(23)  

t = 1,2,…,n ; p = 3, 6. 

where           .    ,  t=1,2,…,n; i =1,2,...,p are 

fixed regressors.  

The error terms    were generated to be normally distributed 

with mean zero and variance              . In this 

study, 2 values were 1, 25 and 100. The model was studied 

with fixed regressors, Xit, i = 1, 2, ..., p; t = 1, 2, ..., n such that 

there exist different levels of multicollinearity among the 

regressors. Following McDonald and Galarneau (1975), 

Wichern and Churchill (1978), Gibbons (1981), Kibria 

(2003), Dorugade and Kashid (2010),  Dorugade (2016), and 

Lukeman and Ayinde (2017); the equation to generate the 

explanatory variables in given as: 

           
 

         (24) 

t=1, 2, 3,…, n. i=1, 2,…p. 

where     is independent standard normal distribution with 

mean zero and unit variance,   is the correlation between any 

two explanatory variables and p is the number of explanatory 

variables. The values of  were taken as 0.8, 0.9, 0.95, 0.99, 

0.999 and 0.9999 respectively. In this study, the number of 

explanatory variables (p) were three (3) and six (6). 

When p = 3; the true model parameters were set as    = 10, 

   = 4,    = 1,    = 8 and when p = 6;  the parameters were 

set as    = 10,    = 4,    = 1,    = 8,    = 1.8,    = 2.5, 

   = 3.2. The  sample sizes were varied as n= 10, 20, 30, 50, 
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100, 150 and 250. At a specified value of n, p and σ, the fixed 

Xs are first generated; followed by the U, and the values of Y 

are then obtained using the regression model. This Us were 

generated 5000 times and the Ys were determined. The Ys and 

the Xs were then treated as real life dataset while the 

estimators were applied.  

3.2 Criterion for Comparison and oChoice 

of most efficient stimator(s)  
The performances of   both the existing and the proposed 

biasing parameters of GRR estimators were done by 

computing the Mean Square Error (MSE) of the model 

parameters. This has been commonly used by Hoerl and 

Kennard (1970b), Hoerl et al. (1975), Lawless and Wang 

(1976), Saleh and Kibria (1993), Kibria (2003), Khalaf and 

Shukur (2005), Alkhamisi and Shukur (2008), Mansson et al. 

(2010), Kibria and Banik (2016), Dorugade (2016) and 

Lukman and Ayinde (2017) for this kind of study. The Mean 

Square Error for each estimator over the 5000 replications 

was computed as: 

 
 


p

i j

iijMSE
1

5000

1

2
ˆ

5000

1
)ˆ(   (25) 

where ij̂  is ith  element of the estimator  in the jth 

replication which gives the estimate of i  for the estimator 

being considered. i  are the true value of the parameter 

previously mentioned.  

A statistical package, Time Series Processor (TSP, 5.0), was 

used to write the program to compute the Mean Square Error 

(MSE) of all these estimators. At a particular level of error 

variance, multicollinearity, and sample size, the MSE of each 

estimator was ranked using computer Statistical Package for 

the Social Sciences (SPSS 17.0) on the basis of their MSE 

values for each parent ridge biasing parameter and later for 

the overall with the OLS estimator and GRR with ridge 

parameter of Hoerl and Kennard (1970b). The number of 

times each form of biasing parameter has minimum MSE 

(rank 1) was counted over the levels of multicollinearity and 

error variance at each parent biasing parameter and later 

overall. The most frequent efficient estimator is expectedly to 

have the highest number of counts, the mode. 

4.  RESULTS AND DISCUSSION 
The results from original biasing parameter and that of their 

different forms are presented for each parent ridge parameter 

and also the overall having counted the number of times the 

MSE is minimum over the levels of multicollinearity and 

standard error are presented as follows: 

4.1 Results with Nomura (1988) GRR 

Estimator 
The number of times the different forms of Nomura (1988) 

produced minimum MSE when p = 3 and p = 6 is presented in 

Table 1. 

Table 1:  Number of times the different forms of Nomura 

(1988) produced minimum MSE 

 

p 

 

Estimators 

Sample Sizes 

10 20 30 50 100 150 250 Total 

 KGRN 0 0 0 0 0 0 0 0 

 

 

3 

KGRNMI 3 7 7 9 10 10 12 58 

KGRNMA 0 0 0 0 0 0 0 0 

KGRNMR 0 0 0 0 0 0 0 0 

KGRNAM 2 0 0 0 0 0 0 2 

KGRNMD 7 6 6 5 3 2 2 31 

KGRNGM 4 3 3 3 3 4 3 23 

KGRNHM 2 2 2 1 2 2 1 12 

 

 

 

6 

KGRN 0 0 0 0 0 0 0 0 

KGRNMI 1 4 4 7 9 10 10 45 

KGRNMA 0 0 0 0 0 0 0 0 

KGRNMR 2 0 0 0 0 0 0 2 

KGRNAM 12 8 8 6 6 5 3 48 

KGRNMD 2 2 2 0 1 2 1 10 

KGRNGM 0 4 2 3 2 1 3 15 

KGRNHM 1 0 2 2 0 0 1 6 

Note:  The most frequent efficient estimator is bolded over 

the levels of sample size. 

From Table 1, it can be observed the GRR estimator of 

Nomura (1988) with minimum eigen values of XX 1

produced the highest number of times MSE is minimum when 

p = 3. This is followed by the median and the geometric 

mean versions of eigen values of XX 1
 of Nomura (1988). 

Thus when p=3, the GRR estimator of Nomura (1988) with 

minimum of eigen value is the most frequent efficient 

estimator except when the sample size is very small, n=10. At 

this instance, the most frequent efficient GRR estimator of 

Nomura (1988) is the one that uses the median of eigen 

values of XX 1
. The performances of that of Harmonic 

mean is fair in all the sample sizes.  Figure 1 illustrates these. 

When p = 6, the GRR estimator of Nomura (1988) with 

arithmetic mean eigen values of XX 1
produced the highest 

number of times MSE is minimum. This is followed by the 

minimum and the geometric mean versions of eigen values 

of XX 1
 of Nomura (1988). Thus, the GRR estimator of 

Nomura (1988) with minimum of eigen value is still the most 

frequent efficient estimator except when the sample size is 

small, n<=30. At thse instances, the most frequent efficient 

GRR estimator of Nomura (1988) is the one that uses the 

arithmetic mean of eigen values of XX 1
. Moreover, the 

performances of that of geometric and median are fair over 

the levels of the sample sizes. All these are illustrated in 

Figure 1. 

 

Figure 1:  Number of Counts at which MSE is Minimum 

for the different forms of GRR estimator of Nomura 

(1988) 

0 20 40 60 80 

KGRN/KGRNMR/KGRN… 

KGRNGM 

KGRN/KGRNMA 

KGRNMD 

KGRNAM 

p
=3

 
p

=6
 

Number Of Counts 

Es
ti

m
at

o
rs

 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 37, January 2019 

25 

4.2 Results with Troskie and Chalton 

(1996)GRR Estimator 
Table 2 presents the number of times the different forms of 

Troskie and Chalton (1996) produced minimum MSE when 

counted over the levels of multicollinearity and standard error 

levels when p = 3 and p = 6. From Table 2, it can be observed 

the GRR estimator of Troskie and Chalton (1996) with 

maximum eigen values of XX 1
produced the highest 

number of times MSE is minimum when p = 3. This is 

followed by the minimum and the original versions of eigen 

values of XX 1
 of Troskie and Chalton (1996). Furthermore 

when p = 6, the GRR estimator of Troskie and Chalton (1996) 

with originl eigen values of XX 1
produced the highest 

number of times MSE is minimum. This is followed by the 

harmonic mean, the minimum and maximum versions of 

eigen values of XX 1
 of Troskie and Chalton (1996). 

Table 2:  Number of times the different forms of Troskie 

andChalton (1996) produced minimum MSE 
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Note: The most frequent efficient estimator is bolded over the 

levels of sample size. 

Thus when p=3, the GRR estimator of Troskie and Chalton 

(1996) with maximun of eigen value is  the most frequent 

efficient estimator except when the sample size is large, 

n>100. At these instances, the most frequent efficient GRR 

estimator of Troskie and Chalton (1996) is the one that uses 

the minimum of eigen values of XX 1
. Moreover when 

p=6, the original biasing parameter of Troskie and Chalton 

(1996) estimator is the most frequent efficient estimator. All 

these are illustrated in Figure 2. 

 

Figure 2:  Number of Counts at which MSE is Minimum 

for the different forms of GRR estimator of Troskie and 

Chalton (1996). 

 

4.3 Results with Firinguetti (1999) 

GRREstimator 
The number of times the different forms of Firinguetti (1999) 

produced minimum MSE when counted over the levels of 

multicollinearity and standard error levels when p = 3 and p = 

6 is presented in Table 3. 
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Note: The most frequent efficient estimator is bolded over the 

levels of sample size. 

From Table 3, it can be observed the GRR estimator of 

Firinguetti (1999) with maximum eigen values of XX 1

produced the highest number of times MSE is minimum when 

p = 3 and p=6.  

Thus, Moreover when p=6, the GRR estimator of Firinguetti 
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(1999) with maximum eigen value is the most frequent 

efficient estimator. This is further illustrated in Figure 3. 

 

 

Figure 3:  Number of Counts at which MSE is Minimum 

for the different forms of GRR estimator of Firinguetti 

(1999). 

4.4 Results with Batach et al (2008) 

 GRR Estimator 
The number of times the different forms of Batach et al 

(2008) produced minimum MSE when counted over the levels 

of multicollinearity and standard error levels when p = 3 and p 

= 6 is presented in Table 4. 

Table 4:  Number of times the different forms of Batach et 

al (2008) produced minimum MSE 
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Note: The most frequent efficient estimator is bolded over the 

levels of sample size. 

 

From Table 4, it can be observed the GRR estimator of Batach 

et al (2008) with minimum eigen values of XX 1
produced 

the highest number of times MSE is minimum when p = 3 and 

p=6; and so it the most frequent efficient estimator of Batach 

et al (2008). This is illustrated pictorially in Figure 4. 

 

 

Figure 4:  Number of Counts at which MSE is Minimum 

for the different forms of GRR estimator of Batach et al 

(2008). 

4.5 Results with Dorugade (2016) GRR 

Estimator 
In Table 5, the number of times the different forms of 

Dorugade (2016) produced minimum MSE when counted 

over the levels of multicollinearity and standard error levels 

when p = 3 and p = 6 is presented. 

From Table 5, it can be observed the biasing parameter of the 

GRR estimator of Dorugade (2016) with minimum eigen 

value of XX 1
 is the most frequent efficient estimator when 

the sample size is large and that it is either the one with 

minimum eigen value or the parent ridge parameter when the 

sample size is small. Figure 5 illustrates these. 

Note: The most frequent efficient estimator is bolded over the 

levels of sample size. 

 

Figure 5:  Number of Counts at which MSE is Minimum 

for the different forms of GRR estimator of Dorugade 

(2016). 

4.6 Results with Lukman and Ayinde  

(2017) GRR Estimator 
The number of times the different forms of Lukman and 

Ayinde (2017) produced minimum MSE when counted over 

the levels of multicollinearity and standard error levels when 

p = 3 and p = 6 is presented in Table 6. 

Table 6:  Number of times the different forms of Lukman 

and Ayinde (2017) produced minimum MSE 
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Note: The most frequent efficient estimator is bolded over the 

levels of sample size 
From Table 6, it can be observed the GRR estimator of 

Lukman and Ayinde (2017) with minimum eigen values of 

XX 1
is generally the most frequent efficient estimator. 

However at small sample sizes, the original biasing parameter 

occasionally becomes the most frequent efficient estimator. 

This is further presented pictorially in Figure 6. 

Table 5:  Number of times the different forms of Dorugade 

(2016) produced minimum MSE 
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Figure 6:  Number of Counts at which MSE is Minimum 

for the different forms of GRR estimator of Lukman and 

Ayinde (2017) 

4.7 Overall Results with OLS, Hoerl and 

Kennard and All Existing and Proposed 

GRR Estimators 
The number of times the OLS, Hoerl and Kennard and all the 

existing and proposed estimators produced minimum MSE 

when counted over the levels of multicollinearity and standard 

error levels when p = 3 and p = 6 is presented in Table 7. 

From Table 7 when p=3, it can be observed that the different 

form of biasing parameter of Batach et al (2008) with 

minimum and harmonic mean of eigen values produced the 

GRR estimator that is frequently efficient; that of the 

minimum being the most. These are followed by different 

form of biasing parameter of Nomura (1988) with harmonic 

mean of eigen values. In addition to this, GRR with minimum 

of the eigen values is more frequently efficient at small and 

moderate sample sizes than that of the harmonic. However at 

large sample sizes, they perform almost equivalently. 

Furthermore when p=6, the most frequently efficient estimator 

is still GRR with minimum of eigen values of of XX 1

using  Batach et al (2008) ridge parameter. However when the 

sample size is large the GRR estimator with the ridge 

parameter proposed by Troskie and Chalton (1996) is the 

most frequent efficient estimator, KGRTC. Figure 7 further 

illustrates the performances of the estimators at different 

number of regressors, p=3 and p=6. 

5. CONCLUSION  
In this study, exiting biasing or ridge parameters for 

Generalized Ridge Regression estimator have been examined 

in the light of different forms of original (parent form), 

minimum, maximum and measures of locations of eigen 

values of XIX  of the design matrix in regression analysis. 

This inevitably resulted into some proposed Generalized 

Ridge Parameters which were examined and compared with 

the Ordinary Least Square (OLS) estimator and the existing 

GGR estimators through Monte Carlo study of a linear 

regression model exhibiting multicollinearity problem with 

three (3) and six (6) independent variables. The study 

concludes that the proposed different forms biasing 

parameters frequently perform more efficiently than the parent 

(original) form; and recommends the different form of 

minimum of eigen values of XIX  using the generalized ridge  

0 20 40 60 80 

KGRLAMR/KGRLAAM/K… 

KGRLA 

KGRLAMI 

KGRLAMD 

KGRLA 

p
=3

 
p

=6
 

Number Of Counts 

Es
ti

m
at

o
rs

 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 37, January 2019 

28 

parameter of Batach et al (2008) to produce efficient  

estimates of linear regression parameter with multicollinearity 

problem. 

Table 7: Overall Comparison of the estimators in term of 

frequency of most Efficiency at p = 3 and p = 6 
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Figure 4.8: Component Bar Chart showing the overall 

frequency of counts of Estimators with minimum MSE. 
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