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ABSTRACT 
In this paper we consider certain cubic pp functions which 

satisfy a less stringent discrete extrapolating condition 

si(xi+jh) = si+1(xi+jh), i = 1,2,…,n-1 for j = -1,0,1 and are 

therefore less restrictive than the discrete cubic splines. The 

existence and uniqueness of periodic extrapolated cubic 

splines with multiple knots which interpolate to a given 

functions at more general points interior to each given mesh 

interval had been investigated. 
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1. INTRODUCTION 
Interpolation is technically defined only for inputs that are 

within the range of the data set mini xi   ≤  x  ≤  maxi xi. If an 

input is outside of this range the modal is said to be 

extrapolating. Extrapolation is much a harder problem. An 

important  problem that arises in many scientific and 

Engineering applications is that of approximating limits of 

infinite sequence which converges very slowly. Thus, to 

approximate limits with reasonable accuracy, it is necessary to 

compute a large number of terms and this is in general costly. 

These limits can be approximated economically and with high 

accuracy by applying suitable extrapolation methods to a 

small number of terms. 

We know that spline functions (1) are essentially those pp 

functions which satisfy the maximum nontrivial smoothness 

requirement. However, it has been observed  (Boor(2), p.125) 

that  pp function which satisfy a less stringent smoothness 

requirement than the maximum non-trivial smoothness have 

also some interesting and useful properties. And at that time 

important development in this direction was the introduction 

of discrete splines by Mangasarian and Schumaker (4) then 

such splines merged in connection with certain minimization 

problems involving differences(3). Also the limiting case of 

discrete cubic splines leads to the cubic splines and study of 

cubic pp functions which are more general than the discrete 

cubic splines been studied in the thesis Chatterjee(3). 

2. DEFINITION AND NOTATION 
Let, P : 0 = x0 < x1 < …<xn = 1 be a partition of [0,1] with xi – 

xi-1 = hi ; i = 1,2,…,n. Suppose that s is a cubic pp function 

over [0,1] with breaks points xi such that its restriction si on 

(xi-1, xi) is a polynomial of degree 3 or less for i = 1,2,…,n. 

Since, s is a discrete cubic spline of the class s(3,p,h) if 

si(xi+jh) = si+1(xi+jh), i = 1,2,…,n-1 for j = -1,0,1…....(1.1) 

From this form of the definition of discrete cubic splines it is 

apparent that the condition (1.1) involves a certain process of 

extrapolation. 

3. EXISTENCE AND UNIQUENESS 

In the present paper we study certain cubic pp functions which 

satisfy a less stringent discrete extrapolating  condition  than 

(1.1) and are therefore less restrictive than the discrete cubic 

splines. We shall call such functions as extrapolated cubic 

splines with multiple knots. The main object of this paper is to 

investigate the existence and uniqueness of periodic 

extrapolated cubic splines with multiple knots which 

interpolate to a given function at more general points interior 

to each given mesh interval. 

The set of all functions s which satisfy the requirements that 

for h > 0  

(si – si+1)(xi – jh) = 0, i = 1, 2,…, n                         (1.2) 

For j = 0,1 defines the class S2
*(3, P, h) of extrapolated cubic 

splines with multiple knots. To be more specific we denote 

elements of S2
*(3, P, h) by sh. 

Considering the two intermediate points ci and di between the 

knots xi-1 ,  xi such that 

 ci = xi-1 + ahi, i = 1,2,…,n and di = xi-1 + bhi , i = 1,2,…,n and 

for given functional values f(c1), f(c2),…,f(cn); and f(d1), 

f(d2),…,f(dn)                                                                      (1.3) 

We introduce the following interpolatory condition for sh, the 

extrapolated cubic splines with multiple knots. 

(f – sh)(ci) =0, i = 1,2,…,nand (f – sh)(di) =0, i = 1,2,…,n  (1.4) 

Problem: Given under what restrictions does the interpolation 

problem (1.4) admit a unique solution in the class S2
*(3, P, h) 

of extrapolated cubic splines with multiple knots. 

In order to set the above problem we set  

Ri(x) = (x – xi-1)(x-ci)(x-di) 

Ri(x,c) = (x – xi-1)(x-ci)
2 and 

Qi(x,d) = (x – xi)( x-di)
2 

Qi(x) is Ri(x) with the factor (x-xi-1) replaced by (x-xi). 

Thus, Ri(xi-h) = (hi –h)[(1-c)hi –h ][(1-d)hi – h] 

Qi(xi-h) = –h[(1-c)hi –h ][(1-d)hi – h] 

Ri(xi-h, c) = (hi –h)[(1-c)hi –h ]2  

Qi(xi-h, d) = –h[(1-d)hi – h]2 

Suppose, f is 1-periodic and P is such that for h>0,  

h≤             (1.5) 

Or  pi+1/pi ≤ 1,  i = 1,2,…,n                                    (1.6) 

Holds then there exists a unique 1 periodic spline sh   

S2
*(3,P,h) which satisfies the interpolatory conditions (1.4). 

Proof: It is clear that if sh   S2
*(3,P,h) then we may write  
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Si
h(x) = AQi(x) – BRi(x) + CRi(x,c) – DQi(x,d)                 (1.7) 

Where A, B, C and D are constants 

Qi(x) = (x – xi)(x-ci)(x-di) 

Ri(x) = (x – xi-1)(x-ci)(x-di) 

Ri(x,c) = (x – xi-1)(x-ci)
2 and 

Qi(x,d) = (x – xi)( x-di)
2 

Where ci = xi-1 + ahi and di = xi-1 + bhi 

Si
h(ci) = AQi(ci) – BRi(ci) + CRi(ci,c) – DQi(ci,d)              (1.8) 

Using  interopolatory   conditions       (f – sh)(ci) =0, i = 

1,2,…,n and (f – sh)(di) =0, i = 1,2,…,n                                   

Qi(ci) = (ci – xi)(ci-ci)(ci-di) = 0 

Ri(ci) = (ci – xi-1)(ci-ci)(ci-di) = 0 

Ri(ci,c) = (ci – xi-1)(ci-ci)
2 = 0 

Qi(ci,d) = (ci – xi)( ci-di)
2 = b(a-b)2hi

3 

From equation (1.8) we get 

Db(a-b)2hi
3 = f(ci)                                              (1.9) 

Similarly,  

Si
h(di) = AQi(di) – BRi(di) + CRi(di,c) – DQi(di,d)           (1.10) 

  Qi(di) = (di – xi)(di-ci)(di-di) = 0 

Ri(di) = (di – xi-1)(di-ci)(di-di) = 0 

Ri(di,c) = (di – xi-1)(di-ci)
2 = b(b-a)2hi

3 

Qi(di,d) = (di – xi)( di-di)
2 = 0 

From equation (1.10) we get Cb(b-a)2hi
3 = f(di)              (1.11) 

Set sh(xi) = Ni, i = 1,2,3,…,n and using  equations (1.9)  and 

(1.11) from (1.7) Ni = sh(xi)  

i.e, Ni = AQi (xi )-BRi (xi )+CRi (xi , c)-DQi (xi ,d)       (1.12) 

Qi (xi )=0 

 Ri (xi ) = (1-a)(1-b)hi 
3 = abhi

3           

 Ri (xi , c)= (1-a)2hi
3 = b2hi

3 

Qi(xi,d) = 0 

From equation (1.12) Ni = -B[abhi
3+b/(b-a)2f(di)         (1.13) 

Similarly, Ni-1= AQ(xi-1) – BRi(xi-1) + CRi(xi-1,c) – DQi(xi-1,d)            

(1.14) 

Where Qi(xi-1) = -abhi
3 

Ri(xi-1) = Ri(xi-1,c) = 0 

Qi(xi-1,d) = -bi
2hi

3 

Equation (1.14) becomes Ni-1= -abhi
3A + b/(a-b)2f(ci)                                        

(1.15)  

Thus in view of equations (1.9)-(1.15)  we see that for the 

interval [xi-1,xi] 

 Ni = -B[abhi
3]+b/(b-a)2f(di)           and               Ni-1= -abhi

3A 

+ b/(a-b)2f(ci) 

We get A = 1/a(a-b)2hi
-3f(ci)-1/abhi

-3Ni-1 and B =1/a(b-a)2hi
-

3f(di)-1/abhi
-3Ni 

therefore      

si
h(x) = 1/ab hi

-3(Ri(x)Ni –Qi(x)Ni-1) 

           +1/b(b-a)2hi
-3(Ri(x,c) –b/aRi(x)f(di) 

          -  1/b(a-b)2hi
-3(Qi(x,d)-b/aQi(x))f(ci)                      (1.16) 

For convenience we write L(x) =       
 

 
  

     and    

Lr (x) =   L(x)    
 

 
    

Thus it follows from equation (1.2) that 

L3(ai+1)Ni+1- L3(-ai)Ni-1-[-L3(-ai)+L3(ai+1)+ai+1(1+ai+1)+ai(1-ai)] 

= a-1[-L1(ai+1)f(bi+1)-L2(-ai)f(bi)+L2(ai+1)f(ci+1)+L1(-ai)f(ci)    

(1.17) 

Where ai = h/hi, i = 1,2,…,n             (1.18) 

Now writing, 

-Ti(a) = ai+1(1+ai+1)+ai(1-ai)-L3(-ai)+L3(ai+1) 

Equation (1.17) can be written as EN = H                                                    

            (1.19) 

where E is the coefficient matrix. 

                 
                                   

                    

 

  

And N, H are single column matrices given by 

N = 

 
 
 
 
 
 

  

   
  

    

   
 
 
 
 
 

;                        H = 

 
 
 
 
 
  

   
 

   
 
 
 
 

 

With Hi = -L1(ai+1)f(bi+1)-L2(-ai)f(bi) +L2(ai+1)f(ci+1)+L1(-ai)(ci) 

Setting Xi = ai(ab – ai +ai
2) 

            Yi = ai(ab + ai +ai
2) 

The coefficient of –Ni in equation (1.17) is given by 

Yi+1+ai+1(1+ai+1) + Xi+ai(1-ai)  (1.20) 

Since h>0, Yi+1+ai+1(1+ai+1) = ai+1(ab + ai+1 +ai+1
2) > 0 is 

positive also Xi + ai(1-ai) > 0 is positive. 

Thus, we see that the leading diagonal element in the matrix E 

is strictly negative. Also the difference of the positive value of 

the leading diagonal element of E in the ith row over the sum 

of the positive values of the  other  elements in that row is not 

less than  

Ui(a)  =    ai+1(1+ai+1) + ai(1-ai) – L3(-ai)-|L3(-di)| 

Since L(-ai) =         
 

 
  

    therefore L3(-ai) = -ai
3+ai

2-
 

 
ai 

and |L3(-ai)| = ai
3-ai

2 
 

 
ai 

Therefore Ui(a)>0, i = 1,2,3…,n under equations (1.5) and 

(1.6) the coefficient matrix becomes diagonally dominant and 

is invertible. 

Now the cases arises when L3(-ai)    then Ui(a) = 

ai+1(1+ai+1) + ai(1-ai) which is seen to be positive under the 

assumption hi+1/hi ≤ 1, i = 1,2,3…,n and L3(-ai)    from 

equation (1.5) h≤           is positive  

0 < 
 

          
≤ ai ≤ 

 

          
≤ 1       (1.21)             



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 39, January 2019 

18 

Thus Ui(a)> ai(1-ai) – a/bL3(-ai) becomes  

ai(1+b2) – (1+ab-1)ai+ab-1ai
2               (1.22)     

which is positive since the multiple of ai in equation (1.22) is 

not less than a2/b2. In this case also Ui(a) is positive. 

Therefore the coefficient matrix E is invertible and the system 

of equation (1.17) has a unique solution.  

This completes the proof of equation (1.1). 
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