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5 bis, avenue Michel Ricard, appartement D14
92270 Bois-Colombes, France

ABSTRACT
In this paper, we revisit the fundamental question of Bitcoins se-
curity against selfish-mine attack introduced by I. Eyal and E.
G. Sirer in [5]. We study the state machine of Bitcoin’s net-
work under the influence of one pool miner adopting the self-
ish mine strategy while the rest of the community following the
standard protocol. We prove that the process following by the
states of Bitcoin’s system is a irreducible, positive-recurrent, ape-
riodic, and discrete Markov chain. We give an invariant (station-
ary) distribution for this Markov chain and deduce easily the
rate of convergence towards the stationary equilibrium situation.
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1. INTRODUCTION
Bitcoin is a peer to peer electronic payment system in which trans-
actions are performed without the need for a central clearing agency
to authorize transactions. Bitcoin users conduct transactions by
transmitting electronic messages which identify who is to be deb-
ited, who is to be credited, and where the change (if any) is to be
deposited. Bitcoin payments use Public Key Encryption. The pay-
ers and payees are identified by the public keys of their Bitcoin
wallet identities. Each Bitcoin transaction is encrypted and broad-
cast over the network. Suppose you receive a transaction from Bob.
If you can decrypt Bobs message using her public key, then you
have confirmed that the message was encrypted using Bobs private
key and therefore the message indisputably came from Bob. But
how can you verify that Bob has sufficient bitcoins to pay you?
The Bitcoin system solves this problem by verifying transactions
in a coded form in a data structure called the blockchain, which is
maintained and secured by a community of participants, known as
miners.
The mining is the process used to confirm and secure transactions
by regrouping a finite number of transaction in a block, crypt (or
hash) this one, send the result to all members of the pear-to-pear

network and get a reward if the block reach consensus in the net-
work. This is a competition between some members of the network
called miners. Practically, this mining process consists in two steps:
First, solving a mathematical problem called also crypto-puzzle
problem. In this paper, we will say with no difference solving a
mathematical problem or simply solving or finding a block or solv-
ing a crypto-puzzle problem. The second step of the mining process
to secure transactions is: spreading the result to the Bitcoin network
for it to reach consensus. The first miner to do the two steps, sees
his block included in the public blockchain and this miner earns a
reward in Bitcoins. As it requires computational resources, the suc-
cessful miner is rewarded in bitcoins or ether for his useful work. In
the current implementation of Bitcoin, this reward comes from both
an ex-nihilo creation of some new bitcoins and some fees Bitcoin
users can add to their transactions. In order to control the monetary
base, mining is made complex than it could be. And since, in the
first approximation, the probability for each miner to solve a min-
ing problem depends on his computational power, the complexity
of mining is made dependent on the total computational power of
all miners. Precisely, the complexity is dynamically adjusted so that
a block solving and hence a creation of bitcoins occurs every ten
minutes (10 mn) in expectation. Faced with this competition where
the hash power is the best weapon to win remunerations in bitcoins
(BTC), pool of miners are formed to add up their computing pow-
ers. Other pools less powerful may adopt fraudulent strategies such
as the selfish-mine introduced by I. Eyal and E. G. Sirer and largely
detailled in [5], which consists in secretly mining a block and de-
laying the diffusion of their blocks in the hope to earn than their
fare share in the mining protocol and by consequence throw other
honest miners to join them for decreasing the variance of their rev-
enues and make their monthly revenues more predictable. A very
dangerous dynamic that could allow it to control the entire net-
work by accumulating powers of news adherents and then growing
towards a majority. By considering that the propagation delay of
information between any two miners in the network (unless they
are linked to the same coordinator) is not negligible and follows a
normal distribution with mean proportional to the physical distance
between the two miners, and a constant variance independently of
others delays as in [6].
In this paper, we tackle the question relative to the states of Bit-
coin’s system when we have a colluding pool adopting the selfish-
mine strategy and when the rest of the community follows the stan-
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dard protocol. We Show the Markov chain resulting the states of
Bitcoin’s system and the invariant measure in function of the at-
tacker’s hash power. We also deduce easily some others properties
as the convergence velocity towards the stationary and equilibrium
situation.

2. MODEL AND STATEMENTS OF RESULTS
2.1 Modeling miners and pools
In this part, we formalize a model that captures the essentials of
Bitcoin mining behavior and introduces notation for relevant sys-
tem parameters. Then we recall the selfish mining algorithm as in
[5].
The system is comprised of a set of miners {M1,M2, ...,Mn}.
Each miner Mi has mining power αi. Since the probability of
mining a block is proportional to the computational resources
used for solving the associated cryptopuzzle, we can assume that∑n

i=1
αi = 1. Each miner chooses a chain head to mine, and

founds a subsequent block for that head after a time interval that is
exponentially distributed with mean (αi)

−1. Due the nature of the
mining process, the interval between mining events exhibits high
variance from the point of view of a single miner. A single home
miner using a dedicated ASIC is unlikely to mine a block for years
[16]. Consequently, miners typically organize themselves into min-
ing pools. All members of a pool work together to mine each block,
and share their revenues when one of them successfully add a block
to the public chain. While joining pool does not change a miner’s
expected revenue, it decreases the variance and makes the monthly
revenues predictable.
We assume that miners are rational; that is, they try to maximize
their revenue, and may deviate from the protocol to do so. A group
of miners can form a pool that behaves as single agent with a cen-
tralized coordinator, following an unlikely strategy well know self-
ish mine strategy. The mining power of a pool is the sum of mining
power of its members, and its revenue is divided among its mem-
bers according to their relative mining power [14]. The expected
relative revenue, or simply the revenue of a pool is the expected
fraction of blocks that were mined by that pool out of the total
number of blocks in the longest branch.

2.2 Description of Selfish-mine attack
In this section, we describe briefly the strategy called Selfish-mine
strategy as introduced in [5]. In the next subsection we detail cir-
cumstances that can occur when the propagation delays in the net-
work is token in account.
Indeed, we can consider principally two groups of miners in the
Bitcoin community : the pool miners called dishonest miners and
the others who follow the Bitcoin protocol called also the honest
miners.
The dishonest minority pool follows the so-called selfish-mine
strategy, and the rest, constituting a majority (in terms of hash
power), follows the honest mining strategy i.e the mining proto-
col described by the Bitcoin protocol. We say majority in term of
hash power.
A miner’s strategy is called a selfish-mine strategy if he finds a
block and hiding it for one moment before publishing it to the net-
work, created a fork and develop a private chain. The consequence
is that this strategy allows a pool of sufficient size to obtain a rev-
enue larger than its ratio of mining power. In others words, it is a
mining strategy that enables pools of miners that adopt it to earn
revenues in excess of their mining power. Higher revenues can lead
new miners to join a selfish miner pool, a dangerous dynamic that

enables the selfish mining pool to grow towards a majority.
The key insight behind the selfish mining strategy is to force the
honest miners into performing wasted computations on the stale
public branch. Specifically, selfish mining forces the honest miners
to spend their cycles on blocks that are destined to not be part of
the blockchain. Selfish miners achieve this goal by selectively re-
vealing their mined blocks to invalidate the honest miners’ work.
Approximately speaking, the selfish mining pool keeps its mined
blocks private, secretly bifurcating the blockchain and creating a
private branch. Meanwhile, the honest miners continue mining on
the shorter, public branch. Because the selfish miners command
a relatively small portion of the total mining power, their private
branch will not remain ahead of the public branch indefinitely. Con-
sequently, selfish mining judiciously reveals blocks from the pri-
vate branch to the public, such that the honest miners will switch to
the recently revealed blocks, abandoning the shorter public branch.
This renders their previous effort spent on the shorter public branch
wasted, and enables the selfish pool to collect higher revenues by
incorporating a higher fraction of its blocks into the blockchain.
With this description, we can fully specify the selfish mining strat-
egy, shown in Algorith 1 in [5] . The strategy is driven by mining
events by the selfish pool or by the others. Its decisions depend only
on the relative lengths of the selfish pool’s private branch versus the
public branch. It is best to illustrate the operation of the selfish min-
ing strategy by going through sample scenarios involving different
public and private chain lengths.
When the public branch is longer than the private branch, the selfish
mining pool is behind the public branch. Because of the power dif-
ferential between the selfish miners and the others, the chances of
the selfish miners mining on their own private branch and overtak-
ing the main branch are small. Consequently, the selfish miner pool
simply adopts the main branch whenever its private branch falls
behind. As others find new blocks and publish them, the pool up-
dates and mines at the current public head. When the selfish miner
pool founds a block, it is in an advantageous position with a single
block lead on the public branch on which the honest miners oper-
ate. Instead of naively publishing this private block and notifying
the rest of the miners of the newly discovered block, selfish miners
keep this block private to the pool. There are two outcomes pos-
sible at this point: either the honest miners discover a new block
on the public branch, nullifying the pool’s lead, or else the pool
mines a second block and extends its lead on the honest miners.
In the first scenario where the honest nodes succeed in founding a
block on the public branch, nullifying the selfish pool’s lead, the
pool immediately publishes its private branch (of length 1). This
yields a toss-up where either branch may win. The selfish miners
unanimously adopt and extend the previously private branch, while
the honest miners will choose to mine on either branch, depending
on the propagation of the notifications. If the selfish pool manages
to mine a subsequent block ahead of the honest miners that did not
adopt the pool’s recently revealed block, it publishes immediately
to enjoy the revenue of both the first and the second blocks of its
branch. If the honest miners mine a block after the pool’s revealed
block, the pool enjoys the revenue of its block, while the others
get the revenue from their block. Finally, if the honest miners mine
a block after their own block, they enjoy the revenue of their two
blocks while the pool gets nothing.
In the second scenario, where the selfish pool succeeds in found-
ing a second block, it develops a comfortable lead of two blocks
that provide it with some cushion against discoveries by the honest
miners. Once the pool reaches this point, it continues to mine at the
head of its private branch. It publishes one block from its private
branch for every block the others find. Since the selfish pool is a
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Fig. 1. the progress of the system as a state machine

minority, its lead will, with high probability, eventually reduce to
a single block. At this point, the pool publishes its private branch.
Since the private branch is longer than the public branch by one
block, it is adopted by all miners as the main branch, and the pool
enjoys the revenue of all its blocks. This brings the system back
to a initial state, where there is only a single branch until the pool
bifurcates it again.

3. PROBALISTIC ANALYSIS FOR STATES OF
BITCOIN’S SYSTEM AND RESULTS

We can now analyze the behavior of Bitcoin system where the
selfish pool has mining power of α and the others of 1 − α for
α ∈]0; 1

2
[.

DEFINITION 1. We define a state of Bitcoin’s system as the
lead of the selfish pool; that is, the difference between the number
of unpublished blocks in the pool’s private branch and the length
of the public branch.

Zero lead is separated to states 0 and 0′. State 0 is the state where
there are no branches; that is, there is only a single, global, public
longest chain. State 0′ is the state where there are two branches of
length one: the main branch, and the branch that was private to the
selfish miners, and published to match the main branch.
The figure 1 illustrates the progress of the system as a state ma-

chine. The transitions in the figure correspond to mining events,
either by the selfish pool or by the others. Recall that these events
occur at exponential intervals with an average frequency of α and
1− α, respectively.
If the pool has a private branch of length 1 and the others mine one
block, the pool publishes its branch immediately, which results in
two public branches of length 1. Miners in the selfish pool all mine
on the pool’s branch, because a subsequent block discovery on this
branch will yield a reward for the pool. The honest miners, fol-
lowing the standard Bitcoin protocol implementation, mine on the
branch they heard of first. We denote by γ the ratio (hash power)
of honest miners that choose to mine on the pool’s block, and the
other 1 − γ of the non-pool miners mine on the other branch. For
state s = 0; 1; 2; ...; with frequency α, the pool mines a block and
the lead increases by one to s+ 1. In the state s = 3; 4; 5; ...; with
frequency 1 − α, the honest miners mine a block and the lead de-
creases by one to s− 1.
If the others mine a block when the lead is 2, the pool publishes
its private branch, and the system drops to a lead of 0. If the others
mine a block when the lead is one, we arrive at the aforementioned
state 0′ because the pool publishes immediately its private block.
From 0′, there are three possible transitions, all leading to state 0
with total frequency 1: (1) the pool mines a block on its previously
private branch (frequency α), (2) the others mine a block on the
previously private branch (frequency (1− α)γ), and (3) the others
mine a block on the public branch (frequency (1− α)(1− γ)).
If the pool has a lead that is greater than or equal to three (a rare

Fig. 2. The Markov chain describing the states of Bitcoin’s system under
selfish-mine attack of a pool miner with hash power α

occurrence), it does nothing until it is notified of the discovery of a
block by the community. It then publishes its first block. However,
since the pool and the community will still keep working on the
blocks at the ends of their respective branches, the probability to
return to state 0 is null.
The simple analyse we have done above does not take in account
the bloc propagation delay in the network.
The propagation delay of information between two miners in Bit-
coin network is the time needed for an announced information from
a miner Mi to be received by miner Mj . This is avalaible for both
honest miner and pool miners. To compare the behavior of the Bit-
coin network when all miners are observing the standard proto-
col with its behavior and there is a pool adopting the selfish-mine
strategy, the authors of [6] analyze the phenomena with more real-
istic assumptions. They consider that the communication between
to miners Mi and Mj , either pool or honest, are not null because
It can happen that different miners have different versions of the
blockchain, something which occurs because of propagation de-
lays, see Decker and Wattenhofer [3]. They assume then the prop-
agation delay between Mi and Mj is distributed as a random vari-
able following the Gaussian distribution with mean proportional to
distance betweenMi andMj denoted by k.dij and a constant vari-
ance σ2 independently of other transmission delays. This assump-
tion does not contradict Decker and Wattenhofer who showed that
an exponential distribution provides a reasonable fit to the propa-
gation delay distribution. Authors of [6] show that when there is
no variability in the propagation delay, it follows from the Poisson
network model that the value of γ (the proportion of honest miners
that choose to mine on the private block released by the pool selfish
miner) is zero. This is a last result of [6]. The longer the propaga-
tion delay (and thus the lead of the honest block before the secret
pool is able to react), the smaller gamma becomes Our analyze start
from here by considering the Figure 1 with parameter γ = 0 (the
last result in [6]). By rewriting Figure 1 with γ = 0, we obtain
Figure 2.
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Let (Xn)n≥0, the process describing the states of Bitcoin’s sys-
tem under the influence of one selfish-mine attack. We consider
state 0 as the initial state or the starting state of our model. This
assumption is realistic since we assume that all nodes follow the
Bitcoin’s protocole imposed by the Satoshi’s algorithm, all nodes
are honest and then we have only one public branch. The miners
choose a number of transaction to mine in one block and after
mining, they publish automatically the result over the network
to reach consensus. For understanding of this phenomena, we
suggest readers to learn [12]. To resume: state 0 is the state where
there is one public branch of the blockchain. This protocol is
following until one colluding pool join the network and decide
to use the so-called selfish-mine strategy as defined above, by
keeping secretly their mined blocks. In this case, we observe
one dishonest pool (selfish-mine pool) with fraction hash power
relative in the total network α (0 < α ≤ 1

2
) and the rest of the

community following the standard Bitcoin protocol with fraction
hash power 1 − α. The pool finds a block at rate α moving the
state of Bitcoin’s system from 0 to 1, and the honest community
finds a block at rate 1 − α keeping the system to state 0 . From
state 1, there is a probability α that the selfish pool find a second
block moving the system to state 2, and with probability 1− α the
honest miner succeed in founding a block on the public branch.
Since they publish their block in the network by following the
protocol, the selfish pool in response to the honest community,
publishes automatically its secrete block. Then the system live
from state 1 to state 0′ where we have two branches of length 1,
with probability 1 − α. The situation resolves itself when the next
block is discovered, and either the pool mine a second block or the
honest community mine a second block, with high probability, the
state will revert to 0 once communication has taken place. If the
pool has a lead of exactly two (state 2)and the honest mine a block,
it publishes automatically its private branch dropping the system
to the lead of 0. Then with probability 1 − α the system reaches
the state 0 from the state 2. If the pool has a lead that is greater
than or equal to three (a rare occurrence), it does nothing until it
is notified of the discovery of a block by the community. It then
publishes its first block. However, the pool and the community
will still keep working on the blocks at the ends of their respective
branches and the lead decreases by one. Since the selfish pool is a
minority, its lead will, with high probability, eventually reduce to
a single block. At this point, the pool publishes its private branch
and the system back to 0 again. So, we can assume that there exists
a fixed integer N such that Ξ = {0; 1; 0′; 2; ...;N}. We recall that
the state Bitcoin’s system represent the lead of selfish-mine pool;
the difference between the number of unpublished blocks in the
pool’s private branch and the length of the public branch.
In view of our analyses above, we can remark that the state’s
system changes from state i to state j with a probability which
may be very low or very high, and this is possible for all i and
j in Ξ. Since this change of states depends only on the last state
by considering all preceding states contrasted by the system.
This random dynamic represent a homogeneous Markov chain.
It is easy to see that, there is no absorbing state. In other words,
∀i ∈ Ξ, P (Xn+1 = i|Xn = i) 6= 1 (because α 6= 0). The only
state in which the Markov chain can stay longtime is the state 0
with probability 1 − α any time. An other remark is: from the
state 0′ (the state we are two brnch of lenght one), there is one
and unique outcome which is state 0 (see Figure ??). Finally,
starting from any state, the system can reach any other state with
probability strictly positive: ∀i, j ∈ Ξ, there exists one k > 0 such
that: P (Xn+k = j|Xn = i) > 0. As soon as the pool publishes
the last block they are keeping secrete, the system return to the

state 0. Since the objective of pool selfish-mine is that the private
chain becomes the longest chain, they, in one moment, absolutely
publish their secrete blocks to avoid wasting their resources. And
once communication is occurred we have: either the public chain
stay the public chain or the pool’s chain becomes the public chain.
In both outcome, the state 0 is reached, because pool and honest
community will agree about the new state of the blockchain. The
state 0 is a recurrent state. The set Ξ is a countable and finite
set. By consequence, the irreducible Markov chain (Xn)n≥0
is recurrent because at last the state 0 is recurrent. The state 0
is also aperiodic because at the beginning, there is a positive
probability (1 − α 6= 1) that the system stay in the same state and
by consequence the irreducible Markov chain is aperiodic. The
matrix of transition probability: Pi,j = P (X1 = j|X0 = i) is the
following table:

P =

states 0 1 0′ 2 3 . . . N
0 1− α α 0 0 0 . . . 0
1 0 0 1− α α 0 . . . 0
0′ 1 0 0 0 0 . . . 0
2 1− α 0 0 0 α . . . 0
3 0 0 0 1− α 0 . . . 0
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . α
N 0 0 0 0 0 . . 1− α 0

(1)

The following theorem based on the perfect analysis above, allows
us to study clearly the behavior of states of Bitcoin’s system under
selfish-mining attack.

THEOREM 2. The process representing the states of Bitcoin’s
system under one selfish-attack described above, means the dif-
ference between the number of unpublished blocks in the private
branch and the number of published blocks, is a homogeneous, ir-
reducible, aperiodic and recurrent Markov chain with states space
Ξ = {0; 1; 0′; 2; 3; 4; 5; 6; ...;N}, and no absorbing state.

Then, there exists an unique stationary (invariant) distribution. The
following theorem gives us this invariant probability.

THEOREM 3. The stationary distribution of the Markov chain
defined above is:
π = (π(0), π(1), π(0′), π(2), ..., π(N)) where:



π(0) = 1
α

(
α−2α2

2α3−4α2+1−α(1−α)( α
1−α )N

)
π(0′) = (1− α)

(
α−2α2

2α3−4α2+1−α(1−α)( α
1−α )N

)
π(1) = α−2α2

2α3−4α2+1−α(1−α)( α
1−α )N

π(k) =
(

α
1−α

)k−1
(

α−2α2

2α3−4α2+1−α(1−α)( α
1−α )N

)
∀k ∈ [2, N ].

PROOF. Let us call by π the stationary (invariant) distribution
that we are looking for. In other words, we are looking for a mea-
sure on Ξ satisfying the following system:

{
π = πP∑

i∈Ξ π(i) = 1.
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where P is the matrix of transition probability defined in (1). By
rewriting the above system we obtain:

π(0) = π(0)(1− α) + π(0) + π(2)(1− α) (L1)
π(1) = π(0)α (L2)
π(0′) = (1− α)π(1) (L3)
π(2) = π(1)α+ π(3)(1− α) (L4)
π(3) = π(2)α+ π(4)(1− α) (L5)
π(4) = π(3)α+ π(5)(1− α) (L6)

.

.

.
π(N − 1) = π(N − 2)α+ π(N)(1− α) (Ln+1)∑

i∈Ξ π(i) = 1.

Combining (L1) and (L3), we get: απ(0) = π(1)(1 − α) +
π(2)(1 − α). Adding the ligne (L2) we deduce that απ(1) =
(1 − α)π(2). And then by replacing απ(1) in (L4), we obtain
απ(2) = (1 − α)π(3). We use this equality in (L5) and so on.
We obtain απ(N − 1) = (1− α)π(N) in (Ln+1). The result fol-
lows the following system:

π(0) = 1
α
π(1)

π(0′) = (1− α)π(1)
π(k + 1) = ( α

1−α )π(k) ∀k ∈ [1;N − 1]∑
k=1,2,...,N

π(k) + π(0) + π(0′) = 1.

The solution of the system is unique. The existence of invariant
measure implies that the irreducible and recurrent Markov chain is
a positive recurrent Markov chain also.

REMARK 1. If α ∈]0; 0.38[, we have π(0) > π(1) > π(0′) >
π(2) > π(3) > ... > π(N).

PROOF. For all α ∈]0, 1
2
[, we have: π(0) > π(1) > π(2) >

... > π(N). Note that π(1) > π(0′) obviously. it suffices to remark
that under hypothesis of Remark below, π(0′) > π(2).

This remark shows that the fraction of time spent in state 0 during
the first n passages, when n goes to infinity, is stronger than the
fraction of time spent in state 1, and so on. In others words, in the
stationary situation, the network spends time in on public branch
than in the others states. This is correct and is in line with the de-
scription of Selfish mining attack. Indeed, when the pool publishes
one secrete block in response to the competing block released by
the honest miners, the system returns quickly to state 0 because Bit-
coin protocole requires that all miners mine on the longest chain.
In state 2 also, the pool publishes automatically theirs two secrete
blocks and since the honest miners following the protocol mine
with the hash they hear of first, either the private branch becomes
the public branch or the public branch stays the public branch. Any-
way the system drops to the lead of 0. This confirms the theoretical
assumption that states stronger than 3 has very low probability to
occur (see [5] and [6]).
That’s why, later in this paper; the study is limited in only the space
Σ̄ = {0, 1, 0′ , 2, 3}. This reduction of state values will allow us
to get best estimation on the recurrence times. By using the well-
known notations in Probability theory, we denote by Pi the law of
the Markov chain (Xn)n≥0 starting from the state i and the associ-
ated expectation is denoted by Ei.
The first interesting quantities we define, is the random variables

T i = inf{n ≥ 1 : Xn = i},

the first time that the dynamic system reaches the state i, and

N i
j =

T i∑
n≥1

1Xn=j ,

the number of visits of the dynamic to the state j between two pas-
sages of i.
For a better study of this dynamic and for reader’s convenience, we
consider the dynamic starting from the only global public branch
i.e the Markov chain (Xn)n≥0 defined above and starting from the
state 0 (X0 = 0). We denote by P0 the law of (Xn)n≥0 and by E0

the expectation associated to P0. The following proposition gives
the average time of recurrence of the normal situation (state 0),
the situation when there is only one public and globally branch,
and also the average number of visits to the dangereous situa-
tion between two passages to the initial situation. The so-called
dangereous situation is those in which the system has two public
branches of length one. More clearly we give in the next proposi-
tion, in function of the attacker’s power, the average number that
the system will visit the state 0

′
between two passages to the nor-

mal situation. For a colluding pool miner with a hash power α;
these quantities are given in the following proposition :

COROLLARY 1.

E0(T 0) =
1

π(0)
=

1

1− 2α

[
2α3 − 4α2 + 1− α(1− α)(

α

1− α
)N
]

where N is the constant defined in Part 3.

E0

(∑T0

n=1
1{Xn=0′}

)
= π(0′)

π(0)
= α(1− α),

PROOF. The proof of the first formula is a direct consequence
of Proposition 2 and Proposition 3.
For the second quantity, we define the Markovian kernel irre-
ducible, recurrent :

P̃ (j, i) =
π(i)

π(j)
P (i, j).

Let {Y }, the Markov chain associated to the Kernel
P̃ . It is easy to see that π(0)P [(X0,X1, ...,Xk) =
(0, x1, ..., xk)] = π(xk)P [(Y0, Y1, ..., Yk) = (xk, xk−1, ..., 0)].
More general, for all bounded function F (0, x1, x2, ..., xk)
π(0)E0[1X0=0F (0, x1, x2, ..., xk)1Xk=xk ] =

π(xk)Ẽxk [1Y0=xkF (Yk, ..., Y0)1Yk=0]. We denote by Ṫ 0,
the first time that the Markov chain Y reaches the state 0 and by
Ẽ0′ the expectation associated to the Kernel P̃ starting from 0′. By
remarking that

1X0=01T0≥n1Xn=0′ = 1X0=01X1 6=0...1Xn−1 6=01Xn=0′

and by using the last equality, we have :
E0[1Xn=0′1T0≥n] = π(0′)

π(0)
Ẽ0′ [1Ṫ0≥n1Yk=0]

= π(0′)
π(0)

Ẽ0′ [1Ṫ0=n]. It suffices now to sum n from 1 to ∞ to get
the result.

We remark here that the recurrence time in the normal situation
is decreasing with respect to the hash power of the selfish-mine
pool, says α. In others words, more the pool miners is power, more
the state where there is only a public global branch is reached
quickly. This result makes sense. Indeed, the more mining power
(resources) a pool miner applies, the better are its chances to solve
the puzzle first. When the pool miners find a bloc, it keeps it secrete
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waiting the information from the honest miners before publishing
the result. Since the honest miners follow the standard protocol,
it arrives on moment that they find a block and then immediately
published it in all the network. At this time ever the pool miners
has two blocks and then already published, and the pool branch re-
mains the longest branch and then becomes the public branch; or
we are in the situation of two public branches of length one. We are
to the situation 0′ and then the next bloc will determine the public
branch and by consequent brings the system back to the normal sit-
uation, the state 0. The question is how many power does it dispose
to reach the situation 0′ before the normal situation. It suffices to
compare the two first quantities in Proposition 1.
In the following proposition, we give the convergence toward the
stationary equilibrium situation.
We recall that the state of Bitcoin’s system under the influence
of one colluding pool adopting the so-called selfish-mine strategy
([5]), called (Xn)n≥0 such that X0 = 0 is the state of Bitcoin’s
system starting from the situation where there are one unique pub-
lic branch. It is the situation where all validated transactions will
be incorpored in one bloc by miners and will be destined to the the
public blockchain. This process (Xn)n≥0 describing the states of
Bitcoin’s system is a homogeneous, irreducible, recurrent-positive
and aperiodic Markov chain with stationary distribution explicitly
known and given in Proposition 3. We are in conditions to use the
Ergodic Theorem and also the Central Limit Theorem, as known
in Markov Chain theory (see [4]), to estimate the speed of conver-
gence towards the stationary situation.

DEFINITION 4. Let (Xn)n≥0 the state of Bitcoin’s system de-
scribed above and let π the invariant measure associated to this
Markov chain. Let us recall Ξ = {0; 1; 0′; 2; ...;N} the countable
and finite set of states defined above. For all probability measures
ν in Ξ, we defined the distance in total variation between ν and π
by:

‖ν − π‖V T = sup
A⊆Ξ

|ν(A)− π(A)| = 1

2

∑
i∈Ξ

|ν(i)− π(i)|

where ν(A)(resp. π(A))=
∑

i∈A ν(i) := ν[1A]. We define also
by: < f, g >π=

∑
i∈Ξ f(i)g(i)π(i) and varπ(f) := π[(f −

π[f ])2].

For readers convenience, we announce the very known convergence
velocity theorem of Markov chain. This result is gotten by the irre-
ducibility and the aperiodicity of P and does not give any precision
on convergence velocity toward the invariant probability measure.
We recall the following notations : Pn(0, .) = P0(Xn = .) =
P (Xn = .|X0=0 and Pnf(x) =

∑
y∈Ξ P

n(x, y)f(y). The fol-
lowing theorem can be found in all book relating the probability
theory.

THEOREM 5 :WELL KNOW CONVERGENCE VELOCITY.
There exists a ρ ∈]0, 1[ such for all f defined in Ξ,

varπ(Pnf) ≤ ρnvarπ(f). (2)

In next Proposition, we provide a geometric upper bound for the
speed of convergence towards the equilibrium measure. This allows
us to control the convergence error and give the needed time to get
the stationary situation of the dynamic.

PROPOSITION 1. Let {Xn, P0, P, π} the irreducible, aperi-
odic, and positive recurrent Markov chain starting from 0 in values
in Ξ = {0, 1, 0′, 2, ...,N}, with matrix of transition probabilities

P defined in (1). Let π the unique invariant measure. Then, there
exists ρ ∈]0, 1[ such that:

d(n) := ‖Pn(0, .)− π‖V T ≤
ρ
n
2

2

1

mini∈Ξπ(i)
≤ ρ

n
2

2π(N)
, (3)

where π(N) =
(

α
1−α

)N−1
(

α−2α2

2α3−4α2+1−α(1−α)( α
1−α )N

)
.

PROOF. We set:

P ∗(i, j) =
π(j)

π(i)
P (j, i). (4)

Remark that for all i ∈ Ξ, P ∗(i, .) is a probability measure on Ξ
and P ∗ is the matrix adjoin of P in the sens of (4). Since πP = P ,
then πPn = π and π(i)P ∗n(i, j) = π(j)P ∗n(j, i) also.
By recalling δ0 the mass of Dirac in 0, we set (δ0P

n)(.) :=
Pn(0, .). Let us recall Ξ defined above and let A a subset of Ξ.
We have:
(δ0P

n)(A)− π(A) = (δ0P
n)[1A]− π[1A]

= δ0(Pn1A)− π[1A] =< δ0
π
, Pn1A >π − < 1Ξ, 1A >π .

We remark also that for all i ∈ Ξ, 1 = 1Ξ(i) = Pn1Ξ(i) =
1
π(i)

.πP ∗n(i). So we obtain by using (4):

(δ0P
n)(A)− π(A) =< P ∗n

δ0
π
− 1

π
.πP ∗n, 1A >π .

Otherwise, for all constant c : < P ∗n δ0
π
− 1

π
.πP ∗n, c >π= 0. By

taking c = π(A) = π[1A], we get:
(δ0P

n)(A)− π(A) =< P ∗n δ0
π
− 1

π
.πP ∗n, 1A − π[1A] >π

=< P ∗n δ0
π
− 1, 1A − π[1A] >π .

Applying Cauchy-Schwartz, and remarking that π[P ∗n δ0
π

] = 1,
we obtain:
|(δ0Pn)(A)− π(A)| ≤

√
varπ(P ∗n δ0

π
)
√
varπ(1A). In view of

definition (4) and the fact that π(i) > 0 for all i ∈ Ξ, P ∗ is also
irreducible. Then, applying (2) above, we obtain:

|(δ0Pn)(A)− π(A)| ≤ ρn2
√
varπ( δ0

π
)
√
varπ(1A)

≤ 1
2
ρ
n
2

√
varπ( δ0

π
) ≤ ρ

n
2

2
1

mini∈Ξ π(i)

≤ ρ
n
2

2
1

π(N)
, where π(N) =(

α
1−α

)N−1
(

α−2α2

2α3−4α2+1−α(1−α)( α
1−α )N

)
.

We give in following Remark, the best speed of convergence for
N = 3. Recall that the probability to get the state 3, says, the
probability that pool miners gets three blocs ahead, by having only
a hash power α is very lower. That’s why the study of this model
for N = 3 is enough to get a high level control on the system.

REMARK 2. If N = 3, the best constant is reached at α = 1
2
.

PROOF. π(N) = π(N,α) is an increasing function on ]0; 1
2
[

for all fixed N . Minimizing 1
π(N)

as a function of α, we get the
result.

4. CONCLUSION
We have shown in this model that the process resulting the states
of the Bitcoin system under the influence of the attack is an irre-
ducible Markov Chain, positive-recurrent and aperiodic. We have
also given its invariant measure and the speed of convergence to
the stationary equilibrium situation. The ergodic theorem and the

6



International Journal of Computer Applications (0975 - 8887)
Volume 181 - No.4, July 2018

Central limit Theorem can be deduced easily.
We emphasize that our model is purely analytic and is based on an
analysis of an algorithm of article [5]. These results nevertheless
remain a big step for a more thorough study of the selfish attack.
Combined with tomographic techniques to obtain the exact topol-
ogy of the Bitcoin network, our analyzes will make it possible to
characterize this attack under the effect of the propagation delay of
the information.
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