
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 48, April 2019

42

Software Defined Networks – OpenFlow Channel

Security and Efficiency

Matthew West
Illinois State University

School* of IT
Normal, IL 61790-5150

Jihad Qaddour
Illinois State University

School of IT
Normal, IL 61790-5150

ABSTRACT

This paper assesses the resource costs of TLS in OpenFlow

and puts forth a header format for channel communication

that is more efficient and partially backwards-compatible.

Resource usage is shown to be reduced by up to 19.36% with

a TLS flag added to the OpenFlow header.

General Terms

Software Defined Networking, Control Plane, Protocols,

Transport Layer Security, Encryption

Keywords

SDN, OpenFlow, channel, security, efficiency, TLS, header,

southbound, SSL, PKI, DS, xid, Mininet, encryption

1. INTRODUCTION
In software-defined networking (SDN), communication

between the controller and hardware devices forwarding

network traffic is described as southbound traffic. While there

are more options for this medium besides OpenFlow, this

paper will deal only with the OpenFlow channel (southbound)

and switch specification (run on each forwarding device), as

well as resource usage of the controller. As with the selection

of OpenFlow above, many controllers exist, but Ryu was used

for this study due to using a low-overhead Python

environment.SDN and network function virtualization (NFV)

are a natural match. A quick test of an SDN virtualized

environment finds line speeds upwards of 18 gigabits per

second. Once switches running OpenFlow are run within an

NFV framework, concerns about bandwidth between virtual

devices on the same physical server are reduced greatly. The

limiting factor of switched network functionality (the data link

layer of SDN) in these environments then becomes processing

and memory. Memory usage is outside the scope of this paper

but is worth examining. As the code driving new networking

technologies goes through consecutive version releases, it is

possible that some of the code becomes memory inefficient

due simply to the number of people and the span of time on

which it has been worked.The OpenFlow Switch Specification

version 1.5.1 documentation from the Open Networking

Foundation (ONF) defines the southbound interface of SDN

when it pertains to OpenFlow communications as the

OpenFlow channel [1]. In Section 6 of the documentation,

channel messages are specified to be sent either directly via

TCP (in the clear) or encrypted using Transport Layer

Security (TLS). This version of OpenFlow details TLS

encryption under subsection 6.3.6: connection Uniform

Resource Identifiers (URI) may specify TLS as the protocol to

be used for communication when a switch first connects to the

controller, but there are mechanisms to opt for TLS

encryption which may be initiated by either the switch or

controller. Optional to TLS is the use of one or more

Certificate Authorities (CA) and Certificate Revocation Lists

(CRL), an approach which is recommended to minimize some

of the common attack surfaces of SDN southbound traffic.

Among the configurations not recommended by the ONF are

self-signed certificates and pre-shared keys, which are

generally accepted to be less secure than using a CA [2].

While some of the OpenFlow channel traffic necessitates

encryption, such as table updates or flow requests (either, if

sent in the clear, can provide critical information about the

operation of the network), other messages such as hellos and

metadata may simply require a digital signature, reducing

processing overhead on both controllers and network devices,

as well as utilizing a system already implemented in the

public-key infrastructure (PKI) framework suggested by the

ONF.Research regarding Secure Sockets Layer (SSL) and

TLS are discussed in the Related Work section. SSL was

officially deprecated by the IETF in 2015 in RFC 7568, and

all secure network communication should use TLS version 1.1

or higher (1.0 was designed to be backwards-compatible with

SSL, opening it up to some of the same vulnerabilities).

Establishing a TLS/SSL connection involves a set of hellos,

followed by a session key exchange using PKI which can be

implemented in a variety of ways [3]. Ongoing

communication is done using the more efficient symmetric

key exchanged during session setup. TLS session packets sent

over a network connection are encrypted, meaning an

eavesdropper should be unable to distinguish any data

contained within.With the move from HTTP (uses TCP) to

HTTPS (uses SSL/TLS) to reduce some common browser-

based attacks on users, some research was done on the

increase in network overhead created by the increased size of

SSL packets [4][5][6]. While the increase in bandwidth was

negligible from the user’s end (and for the server’s end for

most websites), the increase in processor usage on webservers

depended heavily on how the website was used. As more web

traffic was determined to necessitate secure connections,

Session Initiation Protocol (SIP) IP phone provider hardware

was studied to determine the resource usage impact of

TLS/SSL [7][8]. This type of study can be used for a baseline

in SDN implementations because they involve consistent

streams of packets, with a session handshake at the beginning

utilizing PKI.Whereas in the past, the overhead of TLS/SSL

encryption on an individual device would not be of concern

unless it was a large portion of that device’s total resource

usage (the argument being “what else is it going to do with

those cycles?”), with SDN moving increasingly towards NFV

environments, the amount of hardware that can be virtualized

on a server is limited by the shared resource usage of that

hardware plus anything else running on the device such as the

hypervisor.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 48, April 2019

43

2. PREDICTIONS

2.1 Research Questions
So, if controllers and hardware are sharing the same server

resources and bandwidth has become less of a concern due to

the gains in performance from SDN and NFV, then a main

concern of traffic between them becomes how can network

engineers reduce resource usage while maintaining secure

connections? This paper seeks to answer the following

questions:

1. What is the approximate processing overhead of TLS in

SDN?

2. What traffic needs to be secured in the OpenFlow

channel?

3. If TLS has a noticeable processing overhead and not all

traffic needs to be encrypted, the research question

becomes

4. What is a possible solution to improve OpenFlow

channel efficiency without sacrificing security?

2.2 Hypotheses
H0: There will be a negligible difference between using TLS

encryption on all OpenFlow channel traffic versus encryption

only on necessary traffic (less than 5% processing

overhead).H1: There will be a difference between using TLS

encryption on traffic as in H0 (5% overhead or more).

3. RELATED WORK
Previous work has been done on encryption overhead in

network traffic, most of it focused on network overhead

(additional bandwidth usage). A portion of this work relates to

SSL, and a large portion of that relates to HTTPS traffic and

servers, as mentioned in the introduction. Cornett et al. [9]

identified increases in processor (CPU) efficiency for larger

buffer sizes when network security functions were offloaded

to another device. This implies some sort of performance cost

when using security functions. Unfortunately, if the purpose

of SDN is to have network hardware forward traffic and little

else, it cannot expect to offload cryptographic functions to

those devices (which is not to mention the security issues

involved in such an approach).Researchers Lal and Garg [6]

also delved into the possibility of offloading SSL in a

different manner. Citing slowdowns of HTTPS servers due to

TLS processing, they identified one of the large resource

usage sources in encryption to be the passing of data between

the software (user space) and operating system (kernel),

described as system call overhead. Their proposed solution

gave the cryptographic software engine direct access to the

security engine (SEC) driver, bypassing the kernel. Until

companies start equipping servers with SEC hardware to

offload cryptographic processing to, their findings are useful

to SDN insofar that they pinpoint one of the larger consumers

of system resources: the kernel.

Callegari et al. [7] studied the block cipher and hash functions

used in TLS and DS. Of the block ciphers, only AES is worth

considering, as 3DES requires twice as many cycles per byte

as AES-128, which is still considered to be a secure

algorithm. AES-256 took roughly 33% more processing effort

(747 versus 562) for double the key length (the numbers in

AES designations telling the length of the key). Hash

functions perform a different role than block ciphers and are

more efficient because they do not need to be reversible.

SHA-1 was found to use about 16 cycles per byte. SHA-3 is

the newest version of the hash and is known to use more

processing power per security bit. Even with conservative

estimates for SHA-3, it requires ten times fewer cycles than

AES-128.Finally, Shen et al. [8] studied the impact of

implementing TLS on a SIP server. Their tests started with

UDP and ended with TLS using 3DES with proxy

authentication. Since OpenFlow operates using TCP only, the

TCP NoAuth, TCP Auth, and TLS 3DES Auth are the most

interesting points of the article. Each was broken down into

the total number of CPU events caused by each part of the SIP

forwarding process. The proportions of these and analysis of

the data are discussed in Findings.

4. METHODOLOGY & RESOURCES
Research was performed using Mininet to create a virtual

SDN. Within the virtual environment, a Ryu controller was

deployed using a traffic monitor that gathered data from each

virtual switch every 10 seconds and collated the data in a

simple table. Data on TCP and TLS efficiency were taken

from work by [8], described in Related Work. Data were

gathered in 3 parts. First, a simple analytics monitor tied to

the controller to simulate nonessential traffic. Next, the

proportion of traffic that could be sent via TCP was analyzed

for both a case with the monitor and without. Finally, CPU

load differences between TCP and TLS transmissions were

compared for both test cases.Mininet was installed in a Linux

environment with default settings, and a small-scale network

was created using a tree topology with a depth of 3 and a fan-

out of 3, totaling 27 switches. The example traffic monitor

explained in Ryu Documentation 1.0 was implemented with

minimal alterations and made to run on top of the normal Ryu

SDN controller.After the controller and switches were

configured, Wireshark was used to capture packets during

events (such as populating flows) and over periods of time (to

measure traffic generated by the monitor). The two main tests

both captured packets for 10 minutes, with switches

populating flows 30 seconds after the start of the test. One test

was done with a basic Ryu controller, while the other was

done with a Ryu controller that prompted for metadata

updates every 10 seconds. These data are analyzed in

Findings.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 48, April 2019

44

Figure 1: Packets captured by message type

5. FINDINGS
The total number of packets of each type was tallied after each

10-minute test and can be found in Figure 1. PMP messages

involve flow hit messages and port usage messages, and

therefore only appeared in the test with a simple OpenFlow

switch monitor. FLOW_MOD and PACKET_OUT messages

were identical in both tests, and ECHO and HELLO messages

differed by 0.0083%, which can be considered statistically

insignificant. Message types with fewer than 100 occurrences

were not included in the data. These types were

FEATURES_REPLY (13 and 21), SET_CONFIG (13 each),

PMP_PORT_DESC (13 and 52) and PORT_STATUS (7 and

11).

Figure 2: Packet proportions captured across tests by

message type

The test with monitor generated 14.6% more PACKET_IN

messages than the test without a monitor, as well as 69.65%

additional ACK messages. With all message types combined,

the controller with monitor caused 35.43% additional

OpenFlow channel traffic compared to the controller without

over the same period. There were 3874 additional messages of

PMP_PORT_STATS and PMP_FLOW types combined,

comprising slightly more than half of the extra southbound

traffic.Figure 2 compares message types by percentage. One

can use this and Figure 1 to conclude PACKET_OUT,

ECHO/HELLO, and FLOW_MOD messages are not affected

by additional controller monitoring features where metadata is

involved. PACKET_IN messages are a way for a switch to

request forwarding instructions from the controller, and

simply contain the packet necessitating a flow update. These

messages do not need to be encrypted, as the encapsulated

packet will already have been encrypted if it needs to be.

Notably, the reply message (FLOW_MOD) from the

controller will require TLS, as it can contain forwarding table

rules or other information relevant to the operation of the

network and requires the requesting switch have a trusted

certificate. Additionally, one can assume that the additional

ACK messages generated were due to the PMP messages sent

to the controller when using the monitor. If PMP messages

can be sent in the clear, these ACKs can be sent in the same

manner, but this is not the case for all ACK messages.

Therefore, the focus of the following discussion on TLS

efficiency in the OpenFlow channel will focus on

PACKET_IN, PACKET_OUT, and PMP messages.

HELLO/ECHO messages in OpenFlow currently only have a

header, so cannot be encrypted in a meaningful way.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

P
ac

ke
ts

 C
ap

tu
re

d

No Monitor With Monitor

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

No Monitor With Monitor

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 48, April 2019

45

Figure 3: Reference [8] outbound proxy CPU events with SIP filtered

Setting aside the above tests, Figure 3 uses data from [8],

which were introduced in the Related Work section. These

data support the findings of Lal and Garg involving increased

usage of the kernel in operating systems performing

encryption functions. Application core and modules were

combined from [8]’s data, with cryptographic functions left as

separate entities on the Figure. Proxy, database, and other

system-specific processes were also removed. The difference

between TCP and TLS in this instance is 67%. Although SIP

shares some attributes with the OpenFlow channel, the

specific differences in both application performance and

traffic behavior require caution. Therefore, it is assumed the

difference in performance is two thirds that of the SIP system,

or 43%.At this point, concise answers to the first two research

questions are available. The approximate CPU usage increase

of TLS over TCP in SDN is 43%, and FLOW_MOD,

PACKET_OUT, and ACK messages need to be encrypted.

While PACKET_IN messages can be sent in the clear, the

PACKET_OUT response should have some form of

authentication, lest an attacker use it to insert packets into a

pipeline to which they should not have access (packets from

PACKET_OUT use the input port ID, rather than the port

receiving the message from the controller). A possible

alternative to full encryption for PACKET_OUT will be

discussed later. This solution is unlikely to be helpful for

sending ACK messages without opening the OpenFlow

channel up to man-in-the-middle and replay attacks.Assuming

the above, the 10-minute test without monitor in Figure 1

would need 23.11% of its messages to be encrypted with TLS,

while the test with a monitor would need 26.43% encryption.

This shows that as metadata sent to the controller for

administrator use increases, proportion of traffic that requires

TLS increases due to a higher volume of ACK packets. This is

true even if the packets being generated due to the monitoring

function do not need to be encrypted.Using the 10-minute test

without monitor, the reduction in CPU usage between

encrypting all traffic and only the necessary packets is 13.75%

(or 86.25% of the full encryption usage). This test reflects

only the most fundamental operation of the OpenFlow

channel and offers a good baseline to build upon. Considering

digital signatures as an alternative to TLS where

authentication but not confidentiality is necessary,

PACKET_OUT messages could be sent via TCP with DS.

This improves CPU usage reduction to 23.12%. Using data

from [7], the best-case scenario for using hashes for

authentication over TLS is a reduction of 90% CPU usage.

Assuming hashing takes twice as many resources due to the

new SHA-2 and SHA-3 algorithms, hashing will take 20% of

the resources of TLS. This yields a 19.36% resource usage

reduction over always-on TLS, assuming no digital signing of

HELLO/ECHO messages. Thus, H1 is supported due to a

meaningful difference in resource usage. This approach has

the added benefit of adding authentication and integrity to

messages (PACKET_IN, PMP_FLOW,

PMP_PORT_STATS) that could otherwise be sent without.

Version

8 bits

Type

8 bits

Length

16 bits

TLS

1 bit

xid

31 bits

Figure 4: Proposed OpenFlow header with TLS flag

Figure 4 contains a proposed header format for OpenFlow

messages to indicate whether the message is sent via TLS and

requires decryption, or via TCP with DS and requires hashing.

This header borrows 1 bit from the xid (transaction identifier)

field and uses it as a TLS flag. This reduces the number of

possible xid values by half, to 2,147,483,648. Older versions

of OpenFlow would still be able to process these headers

while also allowing devices using the new header format to

operate in the same environment. Combined with the version

field, anything at the current OpenFlow version of 1.5.1

(0x06) or below would see the TLS flag field as simply an xid

of 2,147,483,648 or higher, while newer versions (0x07 and

onward) would treat it properly as a flag, ensuring full

backwards-compatibility for TLS. DS would not operate for

versions 1.5.1 or earlier, however. The best approach due to

the above attributes would be for newer versions of OpenFlow

to default to always-on TLS when operating on networks with

older versions.

0 200 400 600 800 1000 1200 1400

TCP

TLS

CPU events (in thousands)

Kernel Application Database SSL RSA AES

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 48, April 2019

46

6. CONCLUSION
The OpenFlow channel mandates security to prevent attackers

from gaining an understanding of or altering the function of

the network. Which message types need to be encrypted by

the current method of TLS is up for discussion. Current

OpenFlow specifications allow for either always-on TCP or

always-on TLS, with no middle ground between the two

options. Some type of flag (Figure 4) that specifies whether

TLS is used could improve southbound efficiency by 19.36%

and be partially backwards compatible. The way to

authenticate and ensure integrity of packets sent via TCP

would be to use a DS.

Table 1: Resource usage of OpenFlow TLS options

Packet Encryption

Type
Security

Percent TLS

encryption

CPU

usage

TCP Only Poor 0% 100%

TLS Only Good 100% 143%

TLS flag (Figure 4) Good 23.11% 115.3%

Findings are noted in Table 1. An overall reduction in block

cipher usage leads to a decrease in CPU usage, even when a

DS is added to messages sent via TCP to allow for

authentication and integrity verification. Security with ACK

and TABLE_MOD messages encrypted is considered to be

good, as all other messages aside from HELLO/ECHO have a

DS built from the shared session key established during TLS

handshaking.

7. LIMITATIONS
Some assumptions were made in this study, most of which

were noted in the Findings section. Data on TLS efficiency

over TCP were gathered from a SIP implementation rather

than an SDN environment. These data were also from 2010,

and CPU efficiency regarding block cipher encryption may

have improved compared to unencrypted data over the past 8

years more than the 33% performance increase controlled for

(this is different than overall available CPU resource, which

have certainly increased).The worse of the two 10-minute

tests was used as the baseline for the findings on efficiency,

but this is only for traffic on a particular network size and

structure. Other SDN constructions and implementations may

yield different proportions of packets when compared to this

data. Additionally, as FLOW_MOD traffic increases (more

than 1 table update every 10 minutes) efficiency of the

proposed solution decreases. This is unlikely in most

networks; newer controllers may have dynamic table updating

features, however, which create additional OpenFlow channel

overhead (again reducing overall efficiency). Table 2 contains

an analysis of the data without the assumptions listed in

Findings. The differences on this table are mainly that TLS

takes 66% additional resources over TCP and hashing is

expected to use 10% of the resources of block cipher

encryption (6.6% more than TCP in this case.

Table 2: Resource usage of OpenFlow TLS options best

case

Packet Encryption

Type
Security

Percent TLS

encryption

CPU

usage

TCP Only Poor 0% 100%

TLS Only Good 100% 166%

TLS flag (Figure 4) Good 23.11% 119.39%

8. REFERENCES
[1] A. Nygren et al., “OpenFlow switch specification version

1.5.1 (protocol version 0x06),” Open Networking

Foundation, March 2015.

[2] S. Gowda, “Public certificates vs private certificates vs

self-signed certificates, in MSDN Blogs, August 2017,

https://blogs.msdn.microsoft.com/shreyasgowda/2017/08

/18/public-certificates-vs-private-certificates-vs-self-

signed-certificates/

[3] B. Laurie, “Certificate Transparency,” in

Communications of the ACM, vol. 57, iss. 10, pp. 40-46,

October 2014.

[4] A. Boldberg, “A comparison of HTTP and HTTPS

performance,” Computer Measurement Group, CMG98

8, 1998.

[5] B. Jackson, “Analyzing HTTPS performance overhead,”

keycdn, January 2017,

https://www.keycdn.com/blog/https-performance-

overhead/

[6] N. Lal and V. Garg, “Accelerating OpenSSL operations

offloaded to hardware crypto accelerator,” in

International Journal of Knowledge Based Computer

Systems, vol. 4, iss. 1, pp. 30-33 Publishing India Group,

2016.

[7] C. Callegari, R. G. Garroppo, S. Giordano, and M.

Pagano, “Security and delay issues in SIP systems,” in

International Journal of Communications Systems, vol.

22, pp. 1023-1044, May 2009.

[8] C. Shen, E. Nahum, H. Schulzrinne, and C. Wright, “The

impact of TLS on SIP server performance,” in

IEEE/ACM Transactions on Networking, vol. 20, no. 4,

pp. 1217-1230, August 2012.

[9] L. Cornett, K. Grewal, M. Long, M. Miller, and S.

Williams, “Network security: challenges and solutions,”

Intel Technology Journal, vol. 13, iss. 2, pp. 112-129,

Intel Corporation, June 2009.

IJCATM : www.ijcaonline.org

