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ABSTRACT 

Identifying clusters for huge datasets are useful for finding out 

attributes of a particular dataset and thereby providing insights 

for making effective decision making. In our previous work, 

we have proved the concept of clustering algorithms for huge 

datasets theoretically by applying small computations on the 

available datasets. In this paper, we extend the same work by 

applying Mathematical calculations for the datasets so as to 

prove the correctness of our previous work carried out. Our 

proposed method is applied to various datasets and proved K-

Means algorithm mathematically and the experimental 

calculations performed on various clustering algorithms 

shows that our approach provides the new idea of clustering 

techniques that can be applied for any number of huge and 

complex datasets.   
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1. INTRODUCTION 
Classifying dataset into groups can be effectively done by 

Clustering where data points in a particular group share similar 

features. [1] Some of the applications where Clustering is 

widely used are: pattern recognition, Customer segmentation, 

stock market clustering , reduced dimensionality for effective 

data mining etc.Cluster analysis is done in many ways like K-

means, fuzzy means etc.[2][3]  

Majority of clustering algorithms fail because of the total 

number of iterations performed over datasets grows 

exponentially in size. Big data refers to datasets of huge size. 

Batch processing or parallel programming technique 

(MapReduce) provides effective processing of huge datasets. 

MapReduce is easily scalable that runs on any hardware. The 

concept of MapReduce is already discussed in our previous 

works and papers.[4] Parallel programming using MapReduce 

reduces the time complexity for processing cluster analysis.[5].  

2. BASICS OF DISTANCE AND 

SIMILIARITY CALCULATION  
For effective clustering, distance (dissimilarity) and similarity 

measures form the basic idea.[6]. For quantitative datasets, 

distance is used to find the relationship among data and even 

similarity features are used for qualitative data. 

2.1 Distance Functions 
Minkowski distance 

For a normal vector space , the Minkowski distance is used 

between two points. 
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Special cases: 

 When p=1, It is known as the Manhattan distance. 

 When p=2, It is known as the Euclidean distance. 

 In the limit that p --> +infinity, the distance is 

known as the Chebyshev distance. 

Euclidean distance 

For a Euclidean space, distance between two is known as 

Euclidean distance . 
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Manhattan distance 

d(x,y)=        
   
    

where x and y represent two vectors of length n. 

Chebyshev distance 

In any vector space, the greatest difference between any 

coordinate direction is the distance between two vectors. 

                      
    

         =  

                          

Pearson correlation distance 

The correlation distance between two sample vectors in a 

Pearson's product-momentum is called Pearson correlation 

distance. The value of correlation coefficient is between [-1, 1], 

the Pearson distance lies in [0, 2] and measures the linear 

relationship between the two vectors. 

dPearson:(x,y)↦1−Corr(x,y) 

Spearman correlation distance 

The spearman correlation method is used to compute the 

correlation between the rank of x and the rank of y variables 

where x and y sequences are ranked separately. At each 

position i, the differences in rank are calculated. The distance 

between sequences X = (X1, X2,……) and Y = (Y1, Y2, ….) 

is computed using the following formula: 

    
                   

       

  

   
 

Xi and Yi represent the ith values of X and Y. 

In general the value of Spearman Correlation in the range of -

1 to 1.  

Kendall correlation distance 

K(  ,    ) =                     

http://en.wikipedia.org/wiki/Minkowski_distance
https://github.com/compute-io/manhattan-distance
https://github.com/compute-io/euclidean-distance
https://github.com/compute-io/chebyshev-distance
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Chebyshev_distance


International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 49, April 2019 

59 

Where P is the set of unordered pairs of distinct elements 

in            

                                                             

           

                                                      

3. STANDARD K-MEANS 
The standard K-means algorithm is an iterative process that 

guarantees a decrease in total error (value of the objective 

function f(M)) on each step [7][8].The algorithm is as follows: 

1. Choose k initial means s1,s2,----------sn , uniformly at 

random from the set X. 

2. For each point xϵX, find the closest mean si and add x to a 

set Ai. 

3. For i = 1,2,----k , set si to be the centroid of the points in 

Ai. 

4. Repeat steps 2 and 3. 

5. Step 4 is reached when the optimal solution is obtained. 

The algorithm takes O(nkd) time for execution.  

4. COMPUTING K-MEANS IN R 
Computing K-means in R is done by calculating K-means. 

This is done by grouping datasets into clusters viz, centers =2, 

and thereby clusters of 2.We can set the K-means function to 

start and stop. 

Example: 

We take two objects A and B with the values tabulated as 

follows: 

Table I : Objects A and B with their coordinate points 

 values 

at  1 

Values 

at  2 

Values 

at  3 

Values 

at  4 

Values 

at  5 

values 

at  6 

Object 

A 

18 20 30 21 34 32 

Object 

B 

100 200 150 300 350 450 

 

Minkowski distance 

For input value φ=4, 

Minkowski distance = 467.7 

Euclidean distance 

Object A={18,20,30,21,34,32} 

Object B = {100,200,150,300,350,450} 

(x,y)={(18,100),(20,200),(30,150),(21,300),(34,350),(32,450)} 

Euclidean distance between (18,100) and (32,450) : 

d=350.279888 

 

 

 

 

Table II : K-Means Calculation 

age                                         spend 

 

Min.   :18.00                         Min.   :100.0   

1st Qu.:20.25                        1st Qu.:162.5   

Median :25.50                      Median :250.0   

Mean   :25.83                       Mean   :258.3   

3rd Qu.:31.50                      3rd Qu.:337.5   

Max.   :34.00                        Max.   :450.0   

 

 

Chebyshev distance 

Table III : Chebyshev distance Calculation 

 values 

at  1 

Values 

at 2 

values 

at  3 

values 

at  4 

values 

at  5 

values 

at  6 

Object 

A 

18 20 30 21 34 32 

Object 

B 

100 200 150 300 350 450 

 

The Chebyshev distance is 418. 

Pearson correlation distance 

Table IV : Pearson correlation distance 

 Values 

at  1 

Values 

at  2 

Values 

at  3 

Values 

at  4 

Values 

at  5 

Values 

at  6 

Object 

A 

18 20 30 21 34 32 

Object 

B 

100 200 150 300 350 450 

 

r=0.6241 

Spearman correlation distance 

R=0.7714 

Table V : Kendall correlation distance 

Kendall tau Rank Correlation 

Kendall tau 0.599999964237213 

2-sided p-value 0.13285493850708 

Score 9 

Var(Score) 28.3333339691162 

Denominator 15.0000009536743 

 

http://en.wikipedia.org/wiki/Chebyshev_distance
http://en.wikipedia.org/wiki/Chebyshev_distance
http://en.wikipedia.org/wiki/Chebyshev_distance
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5. K-MEANS MAPREDUCE 

ALGORITHM (KM-MR) 
Input  

O :{o1,o2,o3,…..on}; //number  of objects to be clustered 

X : X number of clusters 

Mi : Maximum number of iterations 

Table VI: Algorithm – Notations used 

Notation 

 

Description 

i Number of iterations 

IC Starting  centroid 

D dataset 

PC previous centroid values 

NC New cluster centroid values 

SELECT() Select data based on k value  

INPUT() Function used for data file uploading 

job.mapper() Map Function 

job.reducer() Reduce Funtion 

WRITE() Write centroid values to a file 

READ() Read centroid values to a file 

UPDATE() Testing the updated centroid values 

InC Inter cluster 

ItC Intra Cluster 

ECD Euclidean Distance 

 

Output : 

Desired output with number of clusters 

K- Means – MR(values or data) 

i← 0 

For each datapoint d   D do 

IC← SELECT(X,d) 

INPUT(d) 

WRITE(IC) 

PC←IC 

while (true) 

call to job.mapper() 

call to job.reducer() 

NC = READ () 

If update ((NC,PC)>0) 

PC=NC 

else 

update NC to result 

i++ 

result=READ() 

6.  MODIFIED K-MEANS CLUSTERING 

ALGORITHM (M - KM) 
Map Phase Algorithm : 

Input : 

M dimensional data objects(m1,m2,m3,……mn) for each 

mapper 

X : number of clusters 

Read starting cluster centroids as  i1,i2,i3,…..ik 

Output: 

output list<a,b> 

list_new : new centroid list 

set k=0 

list_new=0 

for all d  D  

for all ij  T do 

bi←Ø where bi represents centroid closest to the data object 

InC←∞ 

ItC←∞ 

For all oi  O do  

i←0 

l(oi) ← Euclidean Distance(oi,oj) , j {1,2,3,…..k} 

i←0 

b←0 

repeat 

for each ei   E do 

minDist← Euclidean Distance (oi,cj) , j {1,2,3,…..k} 

if(curr_centroid=0 or l(oi)<minDist) then 

update InC 

else 

update ItC 

bi←bi+1 

i←i+1 

create an output list<a,b> with each object and the cluster 

centroid that it belongs to 

repeat until convergence 

Reduce Phase Algorithm: 

Input : 

Let (a,b) →key ,value where a=l(oi) 

value= objects assigned centroids by mappers 

Oi    represents mapper outputs  

Output: 
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list_new : new centroid list(NC) 

list_new=0 

NC ← Ø 

for all x   O1 

centroid ← x.key 

data object ← x.value 

NC← dataobject 

for all ci  M do  

NC ← Ø 

sum_objects ← Ø 

num_objects ← Ø 

for all oi  O do  

sum_objects + = object 

num_object++ 

NC ← (sum_objects/num_objects) 

outputlist ← NC list 

return NC 

Formula to calculate inter and intra clusters 

InC = 
 

 
 
            

   
  
   

     
   

ItC = 
 

 
 
              

     
                 

   

Where InC is inter cluster distance and O1, O2,.are data 

points in clusters 1 , 2 and so on. 

Ai  is ith data point in cluster 1 and jth data point in clusters A 

and B. 

7. DATASETS 
The customer datasets that are freely available online. Apart 

from customer datasets, Iris datasets and US arrest datasets 

are taken for further processing. All the datasets can be 

downloaded for free from online that is mentioned in the 

references. 

8.  RESULTS AND COMPARISON OF 

DATASETS FROM VARIOUS 

CALCULATIONS 
As mentioned in section III, K-Means algorithm is calculated 

in different Mathematical formats and the results are shown in 

the below figures. 

K-Means algorithm works for all datasets, the graph is shown 

in figure 1. Comparison for the same is shown by taking 

various other Mathematical formulae that are applied to the 

same datasets. The graphs shown in figure 2, 3 and 4 are 

similar to the one showed in figure 1. 

Therefore our assumption for the above datasets is correct in 

other datasets that is proved mathematically. 

 

Figure 1: K-Means for Customer Datasets Overview 

 

Figure 2: Pearson correlation distance 

 

Figure 3 : Kendall correlation distance 
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Figure 4 : Kendall correlation distance 

9. CONCLUSION 
Our approach for K-Means is applied for Customer datasets 

and proved to be correct. The same calculations can be 

applied for other datasets to verify the correctness of the 

approach. We are trying to apply the same for more complex 

and huge datasets and apply mathematical logic to prove our 

concept. 
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