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ABSTRACT 

The treatment of missing data has become a mandatory step 

for performing valid data analysis in most scientific research 

fields. In fact, researchers have found that dealing with 

missing data avoids misleading data analysis and improves the 

quality and power of the research results [1]. According to the 

authors in [2,3], the missing values in a data set could be 

missing completely at random (MCAR), missing at random 

(MAR), or missing not at random (MNAR), a categorization 

that should be taken into consideration to deal with the 

problem of missing data. The number of observations, the 

types of variables, and the percentage of missing values in a 

data set are also important characteristics that should be 

contemplated before dealing with missing values.  

Understanding the missing data case helps the researchers to 

identify the imputation techniques that best handles the 

missing data problem. However, the development of 

procedures to impute categorical data is not significantly 

available as the procedures focused on continuous data 

imputation [1]. This study compares six different imputation 

methods to find the one that performs the most appropriate 

treatment for categorical data, type ordinal, in a breast cancer 

dataset. 
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1. INTRODUCTION 
The adequate analysis of data in all kinds of research fields is 

often hindered by the presence of missing information, a 

widespread problem that many data analysts face commonly. 

The occurrence of missing values arises from different 

reasons such as measurement errors, accidental deletion of 

recorded values, non-responses, and mistakes in data entry. 

As a result, analysts could end up drawing flawed conclusions 

about the data since the missing values have a detrimental 

effect when the data is analyzed [1]. In fact, some researchers 

argue that the performance of statistics on datasets with large 

amount of incomplete responses is significantly affected by 

the missing values [4]. According to the authors in [5], 

missingness in a dataset weakens the data analysis outcomes 

because the missingness brings ambiguity into the data 

analysis, reduces the statistical power of the data, and yields 

inaccurate statistical estimators such as means, variances, and 

percentages. The authors in [1,4] also support the idea that 

weak statistics, biased parameter estimates, loss of 

information, and inefficient standard errors result from the 

analysis of incomplete data. In brief, the missing values hold 

valuable information that is suppressed from the data analysis 

leading to erroneous findings.  

Missingness can be appropriately handled through a variety of 

methods for imputing missing values. However, picking the 

right imputation method to treat the missing values depends 

on the information known by the analyst such as the causes of 

missingness, the type of missingness in the dataset, and the 

type of data. 

1.1 Types of Missing Values 
The presence of missing observations is common in all kind 

of data collection, and this missingness could show different 

missing data patterns. Therefore, understanding the causes 

and patterns of missing data is crucial to perform a valid 

statistical analysis and select the best data treatment method. 

Rubin [2] considers that randomness behavior is the primary 

concern when the analyst deals with missing values. In fact, 

the author in [2] provides a basic classification of the types of 

missing data based on the randomness patterns that could 

emerge in a data due to problems in the data collection 

process. 

The first type of missing data occurs when the data is missing 

completely at random (MCAR). This type of missing data 

happens when the cause of missingness in a variable has no 

relation with neither the missing values in that variable or the 

responses in other variables. Data missing completely at 

random usually results when a random subset of the study 

sample overlooks a question unintentionally leading to 

missingness in the data without a systematic cause. When data 

is MCAR, the missingness is under the control of the 

researcher, and the cause of missingness is some random 

event [6]. A good example of data MCAR occurs when some 

subjects of study neglected to answer a question in a survey 

because they did not see the question in the back of the survey 

form that they were filling out. Data MCAR could weaken the 

statistical power in the data, but this type of missingness does 

not cause significant bias in the data analysis outcomes 

because the respondents and nonrespondents do not share 

systematic differences [4]. 

Data missing at random (MAR) is the second type of 

missingness described by Rubin [2]. When data MAR 

happens, there is a probability that the missing data depends 

on measurable characteristics of the respondents but the 

missingness is unrelated to the missing responses themselves. 

In other words, the observed data has conditions that 

randomly affect the missing process. The authors in [7] state 

that in data MAR “the subjects with missing data are a 

selective rather than a completely at random subset of the total 

study population”. In similar words, the respondents that 

caused data MAR correspond to a group of respondents 

whose characteristics enhance the probability of missingness 

in certain variables. For instance, an elderly patient with 

memory deficiency has difficulties remembering a certain 

event, so this patient leaves unanswered questions in a clinical 

form. The resulting missing values are related to the age of the 

patient, but it is not related to the event itself [4].  The author 

in [4] affirms that using the proper statistical model for 

imputing data missing at random could consider that the 

missingness as ignorable in a particular type of inference, so 
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the condition related to the missing values can be measured 

and used during the data analysis process.  

Finally, data missing not at random (MNAR) is the third type 

of missingness that could emerge after the data collection 

process. This type of missingness occurs when the causes for 

missing values are unknown, and there is no way to get 

information about what is producing incomplete data. 

According to Finch [1], there is a high probability of getting 

data missing not at random in a variable when the responses 

are directly related to the value of the variable itself. For 

example, students who consume large amounts of cigarettes 

frequently are more likely to leave a question unanswered if 

they are asked to indicate the number of cigarettes they have 

consumed in the last week.  This behavior results from the 

respondent’s need of hiding their real behavior leading to 

serious bias in the statistical analysis. In data MNAR, the 

missingness cannot be ignored as in data MAR, and the 

treatment of missing values become more difficult [4]. 

Unfortunately, when the data is missing systematically 

because of another variable (MAR or MNAR), the analyst 

could have a hard time trying to figure out the type of missing 

values, and making assumptions is the only way to determine 

these types of missingness and their influence on the data 

analysis [2,8]. In the case of MCAR, there is no correlation 

between the variable with missing values and another 

variable, so the information about the cause of missingness is 

not relevant in the data analysis to control the biases [6].  

Classifying the types of missing values from the data is not an 

intuitively task, so Myers [9] presents a schema that simplifies 

the differences between the types of missing values and gives 

an approach to classify the missingness based on the 

probability of missingness on a given variable “Y” (see 

Figure 1). 

 

Fig 1: Classification of the type of missing values based on 

the probability of missingness on a given variable “Y” [9] 

1.2. Types of Data 
The treatment of missing data requires methods that make 

appropriate assumptions for the type of data used in the study. 

So, identifying the type of data becomes a relevant step before 

conducting any action or analysis on the studied data. 

Quantitative data and qualitative data are the two basic types 

of data that could be found in all kinds of research fields (see 

Figure 2).  

 

Fig 2: Classification of the types of data 

Quantitative data, also known as numerical data, results from 

numerical measurements that have meaningful values 

represented as a set of numbers. There are two different types 

of numerical data based on the scale of measurement for this 

type of data: discrete data and continuous data [10].  

The first type of numerical data is discrete data, a type of data 

whose scale is made up of a list of possible numbers with gaps 

between them. The discrete data are only integer values 

(whole numbers) that can go to infinity or be part of a fixed 

list of numbers. According to the authors in [11], the discrete 

numbers can be counted, but they cannot be subdivided 

meaningfully because the data cannot be broken down into 

meaningful smaller units. Examples of discrete data are the 

number of defective parts in a production batch and the 

number of patients waiting for examination. Neither the 

defective parts nor the patients can be subdivided in 

significant smaller units. There is no such thing as “half of a 

defective part” or “one third of a patient”.  

Continuous data is the second type of numerical data. 

Continuous data can take any numeric value in an interval 

because the measurement scale does not consider gaps 

between values measured. When the data is continuous, the 

numbers can be meaningfully subdivided into smaller parts 

(fractions and decimals), but the outcome values cannot be 

counted since there are infinite possible values that can result 

from the subdivision of a measured value. For instance, 

measurements of money, time, and temperature can be 

recorded and broken down into smaller parts, and the resulted 

numbers still have meaning. The time it takes an athlete to 

complete a race can be any value between a minimum and a 

maximum value of time, and this measure can be expressed in 

hours to fractions of a second.  

Qualitative data, or categorical data, is the second basic type 

of data that could be found in research. The authors in [11] 

define categorical data as “data that can take on only a 

specific set of values representing a set of possible 

categories”. In similar words, categorical data are recorded 

observations placed into categories according to certain 

qualitative traits.  This type of data cannot be numerically 
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measured like the numerical data type. The categorical data 

can be nominal, ordinal, or binary.  

Nominal data is a type of qualitative data that falls into 

categories without any order or inherent ranking sequence. If 

the data is nominal, the values are represented with labels, 

words, letters or alphanumeric symbols that have no 

numerical significance. Gender and race categories are good 

examples of nominal data. When nominal data has two 

possible categories such as “Yes/No answers” or 

“female/male gender options”, the data is nominal and binary, 

and it is called dichotomous.  

Categorical values can have a significant order or ranking. If 

the order of the data matters, the data is classified as ordinal 

data. Ordinal data can be counted and ordered, but it is not 

possible to measure it. In other words, the ordinal values are 

values assigned to hierarchical categories; the occurrences of 

observations per category can be counted, so there is 

mathematical meaning, but the value of the category is not 

meaningful mathematically if it is measured. For example, if 

100 patients are asked to provide their level of satisfaction 

with their health insurance company by using a numerical 

scale from 1 (lowest) to 5 (highest), the outcome data will be 

the ordinal type, and the average of the 100 answers will have 

meaning. Ordinal data can have multiple categories, as shown 

in the example above, but binary ordinal data can happen if 

there are just two categories in a hierarchy.  

The treatment of both numerical and categorical missing data 

has been studied for years in order to find the best imputation 

methods for different types of data. Since more approaches 

have been developed to deal with continuous data missingness 

[1], this study is focused on performing and comparing 

different imputation methods to find the one that best deals 

with ordinal data, a type of categorical data. 

2. DATA AND METHODOLOGY 

2.1 Data Characteristics 
In the present study, a breast cancer dataset is used to perform 

and compare six different imputation methods. The dataset is 

a large multivariate dataset composed by 11 different 

variables and 699 observations whose values are integers 

resulted from an ordinal classification (see Table 1).  

The breast cancer dataset was obtained from the University of 

Wisconsin Hospitals, and it was created by Dr. William H. 

Wolberg. This dataset can be found in the UCI Machine 

Learning Repository where there is available information 

about the data collection process and characteristics of the 

breast cancer database [12]. 

Table 1. Dataset information 

Wisconsin Breast Cancer Dataset 

Data 

Characteristics 
Multivariate 

Variable 

Characteristics 
Integer 

Type of Data Classification (Ordinal) 

Number of 

Observations 
699 

Number of 

Variables 
11 (10 predictors and 1 response variable) 

Missing Values Yes. One predictor has 16 missing values. 

Variables 

 

Predictors 

1. Sample code number: id number  

2. Clump Thickness: 1 - 10  

3. Uniformity of Cell Size: 1 - 10  

4. Uniformity of Cell Shape: 1 - 10  

5. Marginal Adhesion: 1 - 10  

6. Single Epithelial Cell Size: 1 - 10  

7. Bare Nuclei: 1 - 10 (16 missing 

values) 

8. Bland Chromatin: 1 - 10  

9. Normal Nucleoli: 1 - 10  

10. Mitoses: 1 - 10  

Response Variable 

11. Class: (2 for benign, 4 for malignant)  

 

2.2 Methodology 
The breast cancer dataset includes ten (10) predictor variables 

of which just one has missing values. However, the variable 

with missing values was not included in this study in order to 

compare statistical measures in a complete dataset with the 

dataset imputed with different approaches. Then one variable 

with complete data, Uniformity of Cell Size, was selected to 

simulate different missing values levels. The variable 

Uniformity of Cell Size has a high correlation with other 

variables in the dataset, which is convenient for performing 

better inferences in methods such as Multiple Imputation by 

Chained Equations that uses all the variables in a dataset to 

predict the missing values in the variable with missingness 

problems.  

The missing values were introduced completely at random 

into the variable Uniformity of Cell Size leaving this variable 

with a percentage of missing values. One level of sample size 

(699 observed values) and seven levels of missing data were 

included in the variable of interest to analyze the performance 

of different imputation methods with varied percentage of 

missingness in the data.  

The first step to simulate the missing values was to get a 

completely-at-random sample of observations from the total 

observations recorded in the variable Uniformity of Cell Size. 

After obtaining a sub sample of values from the variable of 

interest, these values were replaced with empty responses to 

produce missingness in that variable. Seven levels of 

incomplete data Missing Completely at Random (MCAR) 

were simulated: 2%, 4%, 5%, 10%, 12%, 15%, and 20%. 

Then the simulated missing values were treated with six 

different imputation methods for each level of missing data 

included in the study. Finally, an evaluation criterion was 

used to measure the performance of all the imputation 

methods applied to the missing values for each level of 

missingness. The methodology used in this study is illustrated 

in the Figure 3. 

All the variables in the breast cancer dataset included in this 

study have numerical ordinal data in a range from 1 to 10. 

Therefore, all the imputation methods used in this study 

attempted to produce integer values within the given range. 
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Fig 3: Methodology used to compare different imputation 

methods in this study 

The present study considers just those variables with complete 

data, so the measures performed on the imputed data can be 

compared with the measures made on the original complete 

data.  

2.3 Evaluation criteria 
Measures of spread and measures of central tendency were the 

parameters used as evaluation criteria in this study. The 

measures of spread are useful to analyze the similarity 

between the instances in the variable where missing values are 

imputed. Also, the measures of spread explain how scattered 

the observed values are in a dataset and how much these 

values differ from the mean value. On the other hand, the 

measures of central tendency produce a single value that 

describes all the values in the dataset and the central position 

within that set of data, which is useful to understand the data 

and its tendencies.  

The variance and the standard deviation are the two measures 

of spread used for evaluating the different imputation methods 

in this study. Similarly, the mean value served as evaluation 

criteria to compare the central tendency between the imputed 

data and the original data (known values in the breast cancer 

database). These measures were calculated for both the 

original data and the imputed data for each imputation method 

and for each level of MCAR data involved in this study.  

The percentage of error is a statistical tool that simplifies the 

comparison between experimental values and true values. 

Since the results of each imputation method aim for the 

original values in the data in this study, the calculation of the 

percentage of error was useful to determine the precision of 

each imputation method to predict the missing values in the 

variable of interest. The percentages of error closer to zero 

indicate that the imputation method produced values that were 

very close to the measures in the original dataset. The 

Equation 1 is used to calculate the percentage of error in this 

study. 

        
                             

          
                  (1) 

Where: 

%Error = the percentage of error 

Experimental value = the value obtained from the 

imputation method. 

True value = the known data values. 

The absolute difference between the experimental values and 

the true values is known as the absolute error, and it can be 

used as a simplified way to compare measures between the 

results of an experiment and the true values. 

3. IMPUTATION METHODS 
Six different methods were used to treat the simulated 

missingness in the breast cancer dataset. A brief description of 

the assumptions for each imputation method is provided 

below. 

3.1 The Most frequent value method 
This method replaces the missing instances with the most 

common value within a set of values in a given variable. In 

other words, the method imputes the missing data with the 

number that is most likely to occur in a set of numbers in a 

variable. 

3.2 Mean substitution method 
The Mean Substitution method consists of replacing the 

missing data in a variable by the mean of all known values of 

that variable [5,13]. The mean is usually denoted by the 

symbol “  ”, and its value is equal to the sum of all the values 

in the variable divided by the total of observations in the 

variable. The mean calculation is represented in the Equation 

2. 

   
 

 
    

 
     

          

 
                                              (2) 

Where: 

   = the mean value 

   = the observations in the variable 

  = total number of observations 

3.3 Random selection imputation 
The Random Selection approach is a method based on 

randomly assigning a value to the missing data. The values 

randomly selected are framed in a specific range of values, 

which should have the same characteristics as the values in 

the variable with the missingness (numerical or categorical 

data). Each number in between the range has the same 

probability of being assigned to the missing data [14]. 

3.4 K-Nearest Neighbors classification 

using Euclidean distance 
The k-Nearest Neighbor method (KNN) is a conventional 

non-parametric classifier that uses the distances between the 

value treated and its k-nearest neighbors to find the final 

output for the value treated [5,15]. The KNN method defines a 

set of K nearest cases from the values treated and then 

estimates the replacement value from these neighbor cases 

selected [5]. The K-NN method uses the mean value to 

estimate the value for continuous data and the mode value to 

replace the missing values when the data is categorical [16]. 

Original Dataset 

(Complete data) 
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Simulation of missing values in the 
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One of the most common functions used for calculating the 

distance metrics in KNN is the Euclidean distance function. 

This function helps to measure the distances between two data 

points of interest in a feature space. The authors in [15] argue 

that, to calculate the distance between A and B, the 

normalized Euclidean metric can be determined by using the 

following equation: 

            
        

  
   

 
               (3) 

Let represent A and B by feature vectors A = (x1, x2,…, xm) 

and B = (y1, y2,…, ym), where m is the dimensionality of the 

feature space. 

3.5 Multiple imputation by chained 

equations 
The authors in [5] define Multiple Imputation by Chained 

Equations (MICE) as “an iterative algorithm based on chained 

equations that uses an imputation model specified separately 

for each variable and involving the other variables as 

predictors” (p.1). In other words, MICE is a method that 

produces multiple predictions for the missing values by 

considering all the variables in the dataset as predictors. This 

method takes into consideration the statistical uncertainty 

when data is imputed by addressing the missingness problem 

with multiple imputations and a flexible approach to handle 

variables of different types of data [17]. The authors in [17] 

mention that when the MICE method is used, each variable 

with missing values is conditionally modeled based on the 

other variables in the data and uses its own distribution when 

repeated interactions between variables are performed. The 

iterations through all the variables are repeated until the 

process converges and a final complete dataset results from 

the imputed values. 

3.6 Soft-Impute: Matrix completion by 

iterative soft-thresholding of SVD 

decompositions 
Soft-Impute is an algorithm that iteratively replaces the 

missing values with values generated from a soft-thresholded 

SVD (Singular Value Decomposition). The Soft-Impute 

method facilitates the efficient regularization of solutions by 

computing a low-rank SVD of a dense matrix [18]. The Soft-

Impute method uses parameters that consider low 

dimensionality, and when this method is performed, the 

values of the objective function decrease with each iteration 

producing minimum values in the function. This method 

repeatedly replaces the missing values with the current 

estimate, and then updates the estimate by solving an 

algorithm. 

4. RESULTS 
Three main steps were performed to compare the six different 

imputation methods involved in this study: the calculation of 

evaluation metrics, the calculation of absolute errors, and the 

ranking of best imputation methods. 

The calculation of evaluation metrics is the first step to 

compare the imputation methods included in this study. The 

mean value, the standard deviation, and the variance are the 

metrics defined as the evaluation criteria in this research, and 

they were calculated after performing each imputation method 

for different levels of missing values. The results from the 

calculation of the evaluation metrics for each imputation 

approach are provided in the Table 2. These same metrics 

were calculated for the original data before simulating missing 

values and applying any imputation approach. A mean equal 

to 3.134, a standard deviation equal to 3.051, and a variance 

equal to 9.0 are the values for the measures calculated in the 

original dataset. These measures are required to determine the 

following steps in this section.  

The estimation of the absolute errors for each imputation 

method is the second step for the comparison of the 

imputation approaches included in this study. The calculation 

of the absolute errors was necessary to determine how well 

each imputation method performed in comparison to the 

original dataset characteristics. As it was mentioned in the 

section 3.3, the absolute errors result from the absolute 

difference between experimental values and true values. In 

this study, the absolute difference between the metrics of each 

imputation method and the metrics of the original data 

determines the absolute errors required in this research. For 

instance, if the evaluation metric is the standard deviation, the 

standard deviation of each imputation method is compared 

with the standard deviation of the original data. The absolute 

difference between those standard deviations estimates the 

absolute error for the studied case (see Equation 3). 

An example of the absolute error calculation for the Multiple 

Imputation method (MICE) when the data has 2% of missing 

values and the evaluation metric is the standard deviation is as 

follow:  

                                                   (3) 

                   

                                

The absolute error for the MICE method when there is 2% of 

missing data and the evaluation metric is the standard 

deviation resulted equal to 0.047. This value shows how 

similar is the standard deviation of the MICE method to the 

standard deviation calculated for the original data under the 

given conditions. The same calculation was performed for 

each imputation method and for each evaluation metric under 

different missing data levels, which is summarized in the 

Table 3. In brief, the absolute error technique helped to 

identify how close were the imputed values from the original 

values in the breast cancer dataset. 

The ranking of the best imputation methods to treat missing 

data was the last step to study the performance of the 

imputation methods in this study. The ranking of the 

imputation methods was made by using the absolute errors to 

give positions and weights to each imputation approach. 
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Table 2. Evaluation criteria results after performing different imputation methods for different percentages of missingness 

 

Table 3. Absolute errors between the evaluation criteria values of the original data and the imputed data for different 

percentages of missingness 

 

Table 4. Ranking of best imputation methods per overall performance and evaluation criteria for different percentages of 

missingness 

 

 

The imputation method with a value equal to one (1) in an 

evaluation metric is the method with the best approach based 

on that criteria in a specific missingness level. The method 

with a criteria value equal to two (2) have the second place as 

a good method to approach the respective missingness case, 

and the methods with a criteria value equal to three (3) 

represent the ones that were least precise to predict the 

missing values. A ranking of the best imputation methods is 

shown in the Table 4, in which the best imputation methods 

are the ones with an overall performance closest to one 

(perfect performance level).  

The Random Selection method (RS) was the imputation 

method with the best performance in this study. This method 

obtained the lowest percentage of errors for the standard 

deviations and variances in the majority of the missing levels 

cases except for 10% level of missingness, in which the 

method performed less precise than other methods. The Most 

Frequent Value method (MFV) got the second place in the 

ranking of the best imputation methods because it generated 

the second most precise values in the evaluation criteria for all 

the missing values levels. The Multiple Imputation by 

Chained Equation method (MICE) and the K-Nearest 

Neighbor method (KNN) performed similarly in this study 

and achieved the following third and fourth places in the 

ranking of best imputation methods. The Mean Substitution 

method (MS) and the Soft-Impute method (SI) were the 

imputation techniques with the poorest performances in this 

study (see Table 4). 

5. CONCLUSION 
In the present study, six imputation methods were performed 

to treat different missing values levels in a categorical dataset. 

These levels of missing values were simulated and introduced 

in a breast cancer dataset by following a completely at random 

M StD V M StD V M StD V M StD V M StD V M StD V M StD V

MFV 3.087 3.018 9.111 3.052 3.011 9.069 3.031 3.004 9.022 2.914 2.950 8.700 2.877 2.931 8.592 2.798 2.911 8.474 2.715 2.855 8.152

MS 3.127 3.004 9.022 3.132 2.982 8.894 3.132 2.967 8.805 3.114 2.880 8.293 3.117 2.848 8.112 3.099 2.811 7.903 3.116 2.724 7.418

RS 3.170 3.054 9.000 3.237 3.070 9.000 3.282 3.085 9.000 3.454 3.177 10.000 3.461 3.166 10.000 3.489 3.158 9.000 3.578 3.121 9.000

KNN 3.127 3.017 9.100 3.130 3.010 9.059 3.127 2.997 8.979 3.133 2.937 8.626 3.134 2.916 8.501 3.136 2.884 8.318 3.206 2.801 7.846

MICE 3.130 3.004 9.025 3.133 2.983 8.898 3.136 2.968 8.808 3.132 2.883 8.312 3.127 2.850 8.123 3.117 2.816 7.929 3.139 2.728 7.441

SI 3.112 3.008 9.048 3.099 2.991 8.946 3.094 2.977 8.862 3.039 2.901 8.415 3.013 2.877 8.279 2.963 2.846 8.102 2.937 2.770 7.672

KNN = K-Nearest Neighbors

MICE = Multiple Imputation by Chained 

Equations

SI = SoftImpute

Imputation Methods:

MFV = The Most Frequent Value 

MS = Mean Substitution

RS = Random Selection

Evaluation Criteria:

M = Mean

StD = Standard Deviation

V = Variance

Evaluation criteria values for the 

original data (before imputation) 

M = 3.134

StD = 3.051

V = 9.000

2% 4% 5% 10% 12% 15% 20%Method

Evaluation criteria results per percentage of missingness

M StD V M StD V M StD V M StD V M StD V M StD V M StD V

MFV 0.047 0.033 0.111 0.083 0.040 0.069 0.103 0.048 0.022 0.220 0.102 0.300 0.258 0.120 0.408 0.336 0.141 0.526 0.419 0.196 0.848

MS 0.007 0.048 0.022 0.003 0.069 0.106 0.003 0.084 0.195 0.020 0.172 0.707 0.017 0.203 0.888 0.036 0.240 1.097 0.019 0.328 1.582

RS 0.036 0.003 0.000 0.103 0.019 0.000 0.147 0.034 0.000 0.319 0.126 1.000 0.326 0.114 1.000 0.355 0.107 0.000 0.443 0.070 0.000

KNN 0.007 0.035 0.100 0.004 0.042 0.059 0.007 0.055 0.021 0.001 0.115 0.374 0.000 0.136 0.499 0.001 0.167 0.682 0.072 0.250 1.154

MICE 0.004 0.047 0.025 0.001 0.069 0.102 0.001 0.084 0.192 0.003 0.168 0.688 0.007 0.201 0.877 0.017 0.236 1.071 0.004 0.324 1.559

SI 0.023 0.044 0.048 0.036 0.061 0.054 0.040 0.075 0.138 0.096 0.151 0.585 0.122 0.174 0.721 0.172 0.205 0.898 0.197 0.282 1.328

Method

Absolute error per evaluation criteria and percentage of missingness

2% 4% 5% 10% 12% 15% 20%

M StD V M StD V M StD V M StD V M StD V M StD V M StD V

MFV 3 2 3 3 2 3 3 2 3 3 1 1 3 2 1 3 2 2 3 2 2 2.33 (2)

MS 2 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2.76 (5)

RS 3 1 1 3 1 1 3 1 1 3 3 3 3 1 3 3 1 1 3 1 1 1.95 (1)

KNN 2 3 3 3 3 3 3 3 2 1 2 2 1 3 2 1 3 3 3 3 3 2.48 (4)

MICE 1 3 3 1 3 3 1 3 3 2 3 3 2 3 3 2 3 3 1 3 3 2.48 (3)

SI 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2.95 (6)

20%

Overall Performance: The lowest value represents the imputation method with a better approach to treat the missingness in the breast cancer dataset. 

Method

Ranking per evaluation criteria for each percentage of missingness Overall

Performance 

(Ranking)

2% 4% 5% 10% 12% 15%
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assumption. Then the performances of the six imputation 

methods were compared based on three evaluation criteria 

(Mean Value, Standard Deviation, and Variance).  

The results show that the Random Selection method is the 

method with the best performance to treat the type of 

categorical data in this study (see Table 4). This method 

provided a small percentage of error when comparing the 

metrics for the imputed data with the metrics calculated for 

the original data. Other methods such as the Most Frequent 

Value, Multiple Imputation by Chained Equations, and the K-

Nearest Neighbor Method offer secondary approaches to treat 

the data in this study.  

In addition, the results in the current study demonstrate that 

the most commonly used imputation methods such as Mean 

and Multiple Imputation are not necessarily the most 

appropriate methods to treat categorical data, type ordinal. In 

fact, these methods achieved low positions in the ranking of 

the best methods for imputing the missing data case studied.  

Performing the imputation methods used in this study to treat 

other types of categorical data, such as nominal data and 

binary categorical data, could serve as a supplementary 

research to evaluate the performance of these imputation 

methods under different scenarios. Moreover, further research 

can be performed to find appropriate approaches to treat 

categorical data that has other types of missingness patterns, 

such as MAR and MNAR.  

The presence of missing data is a common problem that 

affects the data analysis process in all kinds of research 

projects. Although some researchers have studied and 

provided approaches for the treatment of missing values, there 

are still few procedures to impute the missingness in 

categorical data in comparison to the methods available for 

imputing continuous data. There is no universal method to 

impute data, but the results of this study suggest that the 

Random Selection method provides a good approach to 

handle the missingness problem in ordinal data, a type of 

categorical data. 
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