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ABSTRACT 

To Implement Machine learning algorithms there are a 

number of Tools like python, R, Apache Mahout, Cloud-

based services etc. In some tools, there are different packages 

that help us in data preprocessing and implementing machine 

learning algorithms. So, in this paper, aim to discuss how can 

use caret package in R software to implement machine 

learning techniques. 
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1. INTRODUCTION 
Since in python scikit-learn is a famous library for 

implementing machine learning algorithms. Similarly, for R 

users there is a package called Caret. It not only implement 

models but also helps in pre-processing. So, first starting with 

data cleansing, handling factors and then dividing the Titanic 

dataset into training data and test data. After doing above 

process can be to implement different models like a Decision 

tree, random Forest etc. Lastly analyzing evaluation error 

metrics and performance on the unknown test data. The 

dataset used here is Titanic data has been taken from 

Kaggle.com containing 892 rows 12 variables. In this dataset 

survived is target variable containing values 0 and 1.  

2. CARET PACKAGE 
Name Caret comes from Classification And Regression Tree. 

R users can use this package for data splitting, Pre-processing, 

feature engineering, parameter tuning, modeling and variable 

importance estimation. But, here topic restrict to use splitting, 

pre-processing and modeling functions only. 

3. METHODOLOGY 
The main objective not to just implement the models, but to 

show how caret package useful in data wrangling as well. 

Mainly focused on the following: 

 Replacing Missing terms with appropriate values. 

 Dealing with factors. 

 Data Splitting. 

 Implementing models like Decision tree and 

Random Forest. 

So, now starting by loading dataset in R studio /R and here 

data named as titanic _dataset. 

3.1 Replacing Missing Terms With 

Appropriate Values 
Implementing models by ignoring missing values may lead to 

an error, of course, some algorithm like decision tree is not 

sensitive to missing values. So, to avoid that error first should 

check if there are any missing values. In Titanic dataset, there 

are total 177 missing values. In Caret package there is 

function preProcess that help us to remove missing values. 

PreProcess takes two values first data that is titanic dataset 

and method. In method it takes three values as a vector that is 

scale, center and medianImpute/knnImpute. Depending on the 

dataset we choose medianImpute/knnImpute which replace 

NA values either by taking Median or applying Knn 

algorithm. The scale will set all attributes on the same scale 

by either dividing maximum value or calculating mean 

deviation and divided by the maximum value. In preProcess 

there can be more input which are optional for this dataset. 

After implementing the above function there are no missing 

values. 

3.2 Dealing With Factors 
In R, attributes with factor datatype that is categorical 

variables again may lead to an error if values in columns are 

more than the maximum value of nlevels. So, there is the 

dummyVars function in caret that can helps to handle these 

categorical attributes. It makes a new column for each value 

in categorical variables. dummyVars takes three values that 

are ~., data and fullRank. Here tilde “~.” will take all the 

attributes. fullRank should be true and it takes (n-1) columns 

for attributes with factor with n different levels. 

3.3 Data Splitting 
In kaggle competition they already have test data excluding 

target variable. but here using the same titanic _dataset for 

validation as well, by dividing data into the training and test 

dataset. Here, it's better to divide dataset three times in 

different proportion and then applying models on three 

different test data. Proportion will be 60% and 40%, 50% and 

50%, 40% and 60%.In Caret createDatapartition function will 

divide the data in train and test dataset and have to use this 

function three times in different proportions. 

CreateDatapartition takes three values that are data, the 

percentage of the training set and the list that should be False. 

For first proportion it takes 60% that is p=0.60 remaining 

dataset will automatically use for validation and repeating the 

same thing for remaining two proportions. while doing above 

process data should be replaced every time for each 

proportion.  

4. MODELING 
After doing data Pre-processing now ready to apply different 

Machine learning algorithms to see the predictions on the test 

data. Machine Learning problem can be categorized in 

supervised, unsupervised and reinforcement learning. if the 

dataset has both predictors and target variable than it can be 

classified as supervised learning. In the absence of target 

variable, it classified as unsupervised learning. In supervised 

learning, there are another two types of problem that is 

Regression and Classification problem. There are many 

regression problems like linear regression, multiple linear 

regression, ridge regression, lasso regression etc. and some 

classification problems are a logistic regression, support 
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vector machine, Naive Bayes, decision tree, random forest, 

boosting etc. Before applying algorithms it’s good to use 

feature engineering, but escaping that part and moving to the 

first model Decision tree. 

4.1 Decision Tree 
Decision tree works with both regression and classification 

problem. Since in dataset target variable has two values 0 and 

1 that is its binary classification problem. A Decision tree is 

nothing but the graphical representation of solutions based on 

the certain conditions. It has a root node, internal node, and 

leaf node as shown in below diagram. 

                 Root Node 

 

 

Internal 

Node 

 

 

Leaf Node 

Fig 1: Decision tree 

It uses the information gain/Entropy to select the most 

appropriate variables. The decision tree is not sensitive with 

anomalous and can handle the missing values. Its split 

variables in such way that leaf node contain only 

homogeneous data. Entropy is calculates as: 

Entropy= -p*log2p - (1-p)*log2(1-p), where p is probability 

One disadvantage of using this model is that it's generally 

overfitting. So, in machine learning there is method called 

ensemble method which can help us to deal with overfitting. 

Ensemble method can be cauterized in Bagging, Boosting and 

Stacking. Now, we will use bagging technique and one of the 

bagging technique is Random Forest. 

4.2 Random Forest 
Random Forest also works with both Regression and 

Classification problems. It builds a number of the Decision 

tree and adds them together to get a more effective result. It 

can also be used for variable importance estimation. In this 

Algorithm, each tree uses 63.2% of data for training with 

replacement. Remaining 36.8% data used to calculate out of 

the bag error i.e. misclassification rate. even in the random 

forest there is no need of validation data since OOB rate itself 

enough for analyzing unknown data. To choose random 

variable we can use mtry value or by default, it takes a square 

root of a total number of predictors in classification problem 

or it divides the total number of predictors by 3 for regression 

problem. Random Forest is a good choice if the model is 

suffering from the High Variance problem. 

5. COMPLETE CODE IN R USING  

CARET PACKAGE 
# Loading 

datadata=read.csv("titanic_dataset.csv",header=TRUE,strings

AsFactors = F)  

#installing and loading caret package  

Install.packages(“Caret”) 

library(caret) 

preprocvalues=preProcess(data,method=c("medianImpute","c

enter","scale")) 

 #taking median for all NA values with respective variables &    

adjusting variables on same scale. 

library(RANN) 

data_pro=predict(preprocvalues,data) 

sum(is.na(data_pro))                        

[1] 0                                           #total 0 NA values 

#removing unnecessary variables, of course these variables 

can be used for feature engineering.  

data_pro=subset(data_pro,select=-c(Name)) 

data_pro=subset(data_pro,select=-c(PassengerId)) 

data_pro=subset(data_pro,select=-c(Ticket)) 

str(data_pro) 

'data.frame': 891 obs. of  9 variables: 

 $ Survived: num  -0.789 1.266 1.266 1.266 -0.789 ... 

 $ Pclass  : num  0.827 -1.565 0.827 -1.565 0.827 ... 

 $ Sex     : chr  "male" "female" "female" "female" ... 

 $ Age     : num  -0.53 0.571 -0.255 0.365 0.365 ... 

 $ SibSp   : num  0.433 0.433 -0.474 0.433 -0.474 ... 

 $ Parch   : num  -0.473 -0.473 -0.473 -0.473 -0.473 ... 

 $ Fare    : num  -0.502 0.786 -0.489 0.42 -0.486 ... 

 $ Cabin   : chr  "" "C85" "" "C123" ... 

 $ Embarked: chr  "S" "C" "S" "S" ... 

# Now having only 9 variables including target variable. 

dv=dummyVars("~.",data_pro,fullRank = T)      

data_tran=data.frame(predict(dv,data_pro)) 

str(data_tran) 

'data.frame': 891 obs. of  157 variables: 

 $ Survived            : num  -0.789 1.266 1.266 1.266 -0.789 ... 

 $ Pclass              : num  0.827 -1.565 0.827 -1.565 0.827 ... 

 $ Sexmale             : num  1 0 0 0 1 1 1 1 0 0 ... 

 $ Age                 : num  -0.53 0.571 -0.255 0.365 0.365 ... 

#here just showing few lines of code. Now there are 157 

variables and all are numeric datatype including target 

variable. But need to convert again target variable into factor 

datatype. 

data_tran$Survived=as.factor (data_tran$Survived 

set.seed(5) 

index <- createDataPartition(data_tran$Survived, p=0.60, 

list=FALSE)        #Data Splitting 

train <- data_tran [ index,]       #Training data=60% 

test<- data_tran [-index,]         #Test data=40% 

#Implementing Decision Tree 

model_rpart<-train(Survived~.,test,method='rpart') 
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prediction=predict.train(model_rpart,test,type="raw") 

confusionMatrix(table(predict(model_rpart,test),test$Survived

)) 

# Accuracy on validation dataset. 

Accuracy : 0.8394 

95% CI : (0.797, 0.8761) 

No Information Rate : 0.6169 

P-Value [Acc > NIR] : < 2e-16 

Kappa : 0.6531 

Mcnemar's Test P-Value : 0.06369 

Sensitivity : 0.9041 

Specificity : 0.7353 

Pos Pred Value : 0.8462 

Neg Pred Value : 0.8264 

Prevalence : 0.6169 

Detection Rate : 0.5577 

Detection Prevalence : 0.6592 

Balanced Accuracy : 0.8197 

'Positive' Class : -0.788829297442119 

# using another evaluation error metrics ROC curve. 

for_auc=predict(model_rpart,test,type="prob") 

library(pROC) 

area_under_curve=auc(test$Survived,for_auc[,2]) 

area_under_curve 

Area under the curve: 0.8379 

plot(roc(test$Survived,for_auc[,2]),main="Decision 
Tree",col="green") 

 

Fig 2: ROC Curve for Decision tree 

#Now implementing random Forest. 

Set.seed(100) 

model_rf<-train(Survived~.,test,method='rf') 

prediction=predict.train(model_rf,test,type="raw") 

confusionMatrix(table(predict(model_rf,test),test$Survived)) 

Accuracy : 0.9775 

95% CI : (0.9636, 0.9938) 

No Information Rate : 0.6169 

P-Value [Acc > NIR] : <2e-16 

Kappa : 0.9641 

Mcnemar's Test P-Value : 0.6831 

Sensitivity : 0.9909 

Specificity : 0.9706 

Pos Pred Value : 0.9819 

Neg Pred Value : 0.9851 

Prevalence : 0.6169 

Detection Rate : 0.6113 

Detection Prevalence : 0.6225 

Balanced Accuracy : 0.9807 

'Positive' Class : -0.788829297442119 

#ROC Curve 

for_auc=predict(model_rf,test,type="prob") 

library(pROC) 

area_under_curve=auc(test$Survived,for_auc[,2]) 

area_under_curve 

Area under the curve: 0.9975 

plot(roc(test$Survived,for_auc[,2]),main="Random 

Forest",col="red") 

 

Fig 3: ROC Curve for Random Forest 
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#after applying random forest new accuracy is 0.9775, which 

shows random forest is better than decision tree. 

#repeating the same code two times more with different 

proportions of training and test dataset. 

Now, comparing the results. 

Table 1: Algorithm and Percentage of accuracy 

 

Algorithms 

 

Train-60% 

Test-40% 

 

Train-40% 

Test-60% 

 

Train-50% 

Test-50% 

 

Decision Tree 

  

   0.8394 

  

   0.8146 

 

    0.7978 

 

Random 

Forest 

 

   0.9775 

 

 0.9738 

 

 0.964 

   

6. CONCLUSION 
After doing the pre-processing and modelling and presenting 

the results in the above table. Results clearly show that 

random forest performs better than a decision tree. Also pre-

processing help us in avoiding errors. There are other 

packages also those help R users for data wrangling and 

statistical analysis without doing complex coding, but by 

studying caret package came to know that this one package is 

enough to building machine learning system. 
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