
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.6, July 2018

39

Pre-processing and Modelling using Caret Package in R

Ajeet Kumar Rai

Department of Mathematics
NIT Warangal

Telangana, India

ABSTRACT

To Implement Machine learning algorithms there are a

number of Tools like python, R, Apache Mahout, Cloud-

based services etc. In some tools, there are different packages

that help us in data preprocessing and implementing machine

learning algorithms. So, in this paper, aim to discuss how can

use caret package in R software to implement machine

learning techniques.

General Terms

R Programming, Caret Package, Statistical analysis, Data Pre-

Processing.

Keywords

Titanic Dataset, Machine Learning, Decision Tree, Random

Forest, Confusion Matrix, ROC Curve.

1. INTRODUCTION
Since in python scikit-learn is a famous library for

implementing machine learning algorithms. Similarly, for R

users there is a package called Caret. It not only implement

models but also helps in pre-processing. So, first starting with

data cleansing, handling factors and then dividing the Titanic

dataset into training data and test data. After doing above

process can be to implement different models like a Decision

tree, random Forest etc. Lastly analyzing evaluation error

metrics and performance on the unknown test data. The

dataset used here is Titanic data has been taken from

Kaggle.com containing 892 rows 12 variables. In this dataset

survived is target variable containing values 0 and 1.

2. CARET PACKAGE
Name Caret comes from Classification And Regression Tree.

R users can use this package for data splitting, Pre-processing,

feature engineering, parameter tuning, modeling and variable

importance estimation. But, here topic restrict to use splitting,

pre-processing and modeling functions only.

3. METHODOLOGY
The main objective not to just implement the models, but to

show how caret package useful in data wrangling as well.

Mainly focused on the following:

 Replacing Missing terms with appropriate values.

 Dealing with factors.

 Data Splitting.

 Implementing models like Decision tree and

Random Forest.

So, now starting by loading dataset in R studio /R and here

data named as titanic _dataset.

3.1 Replacing Missing Terms With

Appropriate Values
Implementing models by ignoring missing values may lead to

an error, of course, some algorithm like decision tree is not

sensitive to missing values. So, to avoid that error first should

check if there are any missing values. In Titanic dataset, there

are total 177 missing values. In Caret package there is

function preProcess that help us to remove missing values.

PreProcess takes two values first data that is titanic dataset

and method. In method it takes three values as a vector that is

scale, center and medianImpute/knnImpute. Depending on the

dataset we choose medianImpute/knnImpute which replace

NA values either by taking Median or applying Knn

algorithm. The scale will set all attributes on the same scale

by either dividing maximum value or calculating mean

deviation and divided by the maximum value. In preProcess

there can be more input which are optional for this dataset.

After implementing the above function there are no missing

values.

3.2 Dealing With Factors
In R, attributes with factor datatype that is categorical

variables again may lead to an error if values in columns are

more than the maximum value of nlevels. So, there is the

dummyVars function in caret that can helps to handle these

categorical attributes. It makes a new column for each value

in categorical variables. dummyVars takes three values that

are ~., data and fullRank. Here tilde “~.” will take all the

attributes. fullRank should be true and it takes (n-1) columns

for attributes with factor with n different levels.

3.3 Data Splitting
In kaggle competition they already have test data excluding

target variable. but here using the same titanic _dataset for

validation as well, by dividing data into the training and test

dataset. Here, it's better to divide dataset three times in

different proportion and then applying models on three

different test data. Proportion will be 60% and 40%, 50% and

50%, 40% and 60%.In Caret createDatapartition function will

divide the data in train and test dataset and have to use this

function three times in different proportions.

CreateDatapartition takes three values that are data, the

percentage of the training set and the list that should be False.

For first proportion it takes 60% that is p=0.60 remaining

dataset will automatically use for validation and repeating the

same thing for remaining two proportions. while doing above

process data should be replaced every time for each

proportion.

4. MODELING
After doing data Pre-processing now ready to apply different

Machine learning algorithms to see the predictions on the test

data. Machine Learning problem can be categorized in

supervised, unsupervised and reinforcement learning. if the

dataset has both predictors and target variable than it can be

classified as supervised learning. In the absence of target

variable, it classified as unsupervised learning. In supervised

learning, there are another two types of problem that is

Regression and Classification problem. There are many

regression problems like linear regression, multiple linear

regression, ridge regression, lasso regression etc. and some

classification problems are a logistic regression, support

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.6, July 2018

40

vector machine, Naive Bayes, decision tree, random forest,

boosting etc. Before applying algorithms it’s good to use

feature engineering, but escaping that part and moving to the

first model Decision tree.

4.1 Decision Tree
Decision tree works with both regression and classification

problem. Since in dataset target variable has two values 0 and

1 that is its binary classification problem. A Decision tree is

nothing but the graphical representation of solutions based on

the certain conditions. It has a root node, internal node, and

leaf node as shown in below diagram.

 Root Node

Internal

Node

Leaf Node

Fig 1: Decision tree

It uses the information gain/Entropy to select the most

appropriate variables. The decision tree is not sensitive with

anomalous and can handle the missing values. Its split

variables in such way that leaf node contain only

homogeneous data. Entropy is calculates as:

Entropy= -p*log2p - (1-p)*log2(1-p), where p is probability

One disadvantage of using this model is that it's generally

overfitting. So, in machine learning there is method called

ensemble method which can help us to deal with overfitting.

Ensemble method can be cauterized in Bagging, Boosting and

Stacking. Now, we will use bagging technique and one of the

bagging technique is Random Forest.

4.2 Random Forest
Random Forest also works with both Regression and

Classification problems. It builds a number of the Decision

tree and adds them together to get a more effective result. It

can also be used for variable importance estimation. In this

Algorithm, each tree uses 63.2% of data for training with

replacement. Remaining 36.8% data used to calculate out of

the bag error i.e. misclassification rate. even in the random

forest there is no need of validation data since OOB rate itself

enough for analyzing unknown data. To choose random

variable we can use mtry value or by default, it takes a square

root of a total number of predictors in classification problem

or it divides the total number of predictors by 3 for regression

problem. Random Forest is a good choice if the model is

suffering from the High Variance problem.

5. COMPLETE CODE IN R USING

CARET PACKAGE
Loading

datadata=read.csv("titanic_dataset.csv",header=TRUE,strings

AsFactors = F)

#installing and loading caret package

Install.packages(“Caret”)

library(caret)

preprocvalues=preProcess(data,method=c("medianImpute","c

enter","scale"))

 #taking median for all NA values with respective variables &

adjusting variables on same scale.

library(RANN)

data_pro=predict(preprocvalues,data)

sum(is.na(data_pro))

[1] 0 #total 0 NA values

#removing unnecessary variables, of course these variables

can be used for feature engineering.

data_pro=subset(data_pro,select=-c(Name))

data_pro=subset(data_pro,select=-c(PassengerId))

data_pro=subset(data_pro,select=-c(Ticket))

str(data_pro)

'data.frame': 891 obs. of 9 variables:

 $ Survived: num -0.789 1.266 1.266 1.266 -0.789 ...

 $ Pclass : num 0.827 -1.565 0.827 -1.565 0.827 ...

 $ Sex : chr "male" "female" "female" "female" ...

 $ Age : num -0.53 0.571 -0.255 0.365 0.365 ...

 $ SibSp : num 0.433 0.433 -0.474 0.433 -0.474 ...

 $ Parch : num -0.473 -0.473 -0.473 -0.473 -0.473 ...

 $ Fare : num -0.502 0.786 -0.489 0.42 -0.486 ...

 $ Cabin : chr "" "C85" "" "C123" ...

 $ Embarked: chr "S" "C" "S" "S" ...

Now having only 9 variables including target variable.

dv=dummyVars("~.",data_pro,fullRank = T)

data_tran=data.frame(predict(dv,data_pro))

str(data_tran)

'data.frame': 891 obs. of 157 variables:

 $ Survived : num -0.789 1.266 1.266 1.266 -0.789 ...

 $ Pclass : num 0.827 -1.565 0.827 -1.565 0.827 ...

 $ Sexmale : num 1 0 0 0 1 1 1 1 0 0 ...

 $ Age : num -0.53 0.571 -0.255 0.365 0.365 ...

#here just showing few lines of code. Now there are 157

variables and all are numeric datatype including target

variable. But need to convert again target variable into factor

datatype.

data_tran$Survived=as.factor (data_tran$Survived

set.seed(5)

index <- createDataPartition(data_tran$Survived, p=0.60,

list=FALSE) #Data Splitting

train <- data_tran [index,] #Training data=60%

test<- data_tran [-index,] #Test data=40%

#Implementing Decision Tree

model_rpart<-train(Survived~.,test,method='rpart')

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.6, July 2018

41

prediction=predict.train(model_rpart,test,type="raw")

confusionMatrix(table(predict(model_rpart,test),test$Survived

))

Accuracy on validation dataset.

Accuracy : 0.8394

95% CI : (0.797, 0.8761)

No Information Rate : 0.6169

P-Value [Acc > NIR] : < 2e-16

Kappa : 0.6531

Mcnemar's Test P-Value : 0.06369

Sensitivity : 0.9041

Specificity : 0.7353

Pos Pred Value : 0.8462

Neg Pred Value : 0.8264

Prevalence : 0.6169

Detection Rate : 0.5577

Detection Prevalence : 0.6592

Balanced Accuracy : 0.8197

'Positive' Class : -0.788829297442119

using another evaluation error metrics ROC curve.

for_auc=predict(model_rpart,test,type="prob")

library(pROC)

area_under_curve=auc(test$Survived,for_auc[,2])

area_under_curve

Area under the curve: 0.8379

plot(roc(test$Survived,for_auc[,2]),main="Decision
Tree",col="green")

Fig 2: ROC Curve for Decision tree

#Now implementing random Forest.

Set.seed(100)

model_rf<-train(Survived~.,test,method='rf')

prediction=predict.train(model_rf,test,type="raw")

confusionMatrix(table(predict(model_rf,test),test$Survived))

Accuracy : 0.9775

95% CI : (0.9636, 0.9938)

No Information Rate : 0.6169

P-Value [Acc > NIR] : <2e-16

Kappa : 0.9641

Mcnemar's Test P-Value : 0.6831

Sensitivity : 0.9909

Specificity : 0.9706

Pos Pred Value : 0.9819

Neg Pred Value : 0.9851

Prevalence : 0.6169

Detection Rate : 0.6113

Detection Prevalence : 0.6225

Balanced Accuracy : 0.9807

'Positive' Class : -0.788829297442119

#ROC Curve

for_auc=predict(model_rf,test,type="prob")

library(pROC)

area_under_curve=auc(test$Survived,for_auc[,2])

area_under_curve

Area under the curve: 0.9975

plot(roc(test$Survived,for_auc[,2]),main="Random

Forest",col="red")

Fig 3: ROC Curve for Random Forest

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No.6, July 2018

42

#after applying random forest new accuracy is 0.9775, which

shows random forest is better than decision tree.

#repeating the same code two times more with different

proportions of training and test dataset.

Now, comparing the results.

Table 1: Algorithm and Percentage of accuracy

Algorithms

Train-60%

Test-40%

Train-40%

Test-60%

Train-50%

Test-50%

Decision Tree

 0.8394

 0.8146

 0.7978

Random

Forest

 0.9775

 0.9738

 0.964

6. CONCLUSION
After doing the pre-processing and modelling and presenting

the results in the above table. Results clearly show that

random forest performs better than a decision tree. Also pre-

processing help us in avoiding errors. There are other

packages also those help R users for data wrangling and

statistical analysis without doing complex coding, but by

studying caret package came to know that this one package is

enough to building machine learning system.

7. ACKNOWLEDGEMENTS
My special thanks to my parents, Prof. J.V Ramana Murthy

Sir and my friends who encourage me to write this research

paper.

8. REFERENCES
[1] Hastie T, Tibshirani R, Friedman JH (2001). The Elements

of Statistical Learning. SpringerVerlag, New York. URL

http://www-stat.stanford.edu/~tibs/ElemStatLearn/.

[2] Titanic: Machine Learning from disaster

https://www.kaggle.com/c/titanic Algorithm-

d457d499ffcd

[3] Non-Linear Classification in R with Decision Trees.

(2016, September 21). Retrieved February 23, 2018,

from https://machinelearningmastery.com/non-linear-

classification-in-r-with-decisiontrees/

[4] Kuhn, M. (2017). The Caret Package. GitHub. Retrieved

14 December 2017, from https://topepo.github.io/Caret/

[5] The CARET package, Max Kuhn. Contributions from Jed

Wing, Steve Weston, Andre Williams, Chris Keefer and

Allan Engelhardt (2012). caret: Classification and

Regression Training. R package version 5.15-044.

[6] Kaggle, Data Science Community, [Online]. Available:
http://www.kaggle.com/ [Accessed: 2-Jun-2017

[7] Prediction of Survivors in Titanic Dataset: A Comparative

Study using Machine Learning Algorithms Tryambak

Chatterjee* Department of Management Studies, NIT

Trichy, Tiruchirappalli, Tamilnadu, India

[8] Statistics review 13: Receiver operating characteristic

curves. Critical Care (London, England), 8(6), 508512.

http://dx.doi.org/10.1186/cc3000

[9] X. Wu, V. Kumar and J. R. Quinlan, “Top 10 algorithms

in data mining”, Knowledge and Information Systems,

vol. 14, no. 1, (2008), pp. 1-37.

[10] N. Bissantz and J. Hagedorn, “Data mining”, Business

and Information Systems Engineering, vol. 1, (2009), pp.

118-122

[11] Eric Lam, Chongxuan Tang. Titanic – Machine

LearningFromDisaster.AvailableFTP: cs229.stanford.edu

Directory: proj2012 File: LamTang-

TitanicMachineLearningFromDisaster.pdf

[12] Trevor Stephens. (2014). Titanic: Getting Started With R

- Part 3: Decision Trees [Online]. Available:

http://trevorstephens.com/kaggletitanic-tutorial/r-part-3-

decision-trees/

 [13] Robnik M, Sikonja, (2004): Improving Random Forests,

J F Boulicaut et al (eds): Machine Learning, ECML 2004

Proceedings, Springer, Berlin

[14] Zhang H, Wang M, (2009): Search for the smallest

Random Forest, Statistics and Its Interface Volume.2, pp

381-388.

[15] Bradley, A.P., 1997. The use of the area under the ROC

curve in the evaluation of machine learning algorithms.

Pattern Recogn. 30 (7), 1145–1159.

[16] Breiman, L., Friedman, J., Olshen, R., Stone, C., 1984.

Classification and Regression Trees. Wadsworth

International Group, Belmont, CA.

[17] Fawcett, T., 2001. Using rule sets to maximize ROC

performance. In: Proc. IEEE Internat. Conf. on Data

Mining (ICDM-2001), pp. 131– 138.

IJCATM : www.ijcaonline.org

http://www-stat.stanford.edu/~tibs/ElemStatLearn/
https://topepo.github.io/Caret/
http://trevorstephens.com/kaggletitanic-tutorial/r-part-3-decision-trees/
http://trevorstephens.com/kaggletitanic-tutorial/r-part-3-decision-trees/

