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ABSTRACT 
Social media plays a key role in decision making process. The 

challenge with the social media data is that it is highly 

categorical in nature. The classification of dataset into some 

prescribed format is really a tedious task. In this paper, the 

existing two clustering approaches is being experimented on 

the twitter datasets i.e. tweets to justify the fact that clustering 

is really an approach essentially utilized to classify the 

categorical dataset. Genetic k-means and fuzzy k-modes 

algorithm is tested on the tweets. Results shown that genetic 

k-means performs better for tweets classification.  
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1. INTRODUCTION 
Segmentation analysis or taxonomy analysis is a way to create 

set of objects in databases into homogeneous groups or 

clusters is a fundamental operation in data mining. It is useful 

in a number of tasks, such as classification (unsupervised) 

aggregation and dissection [1] and has four design phases: 

data representation, modeling, optimization and validation [2]. 

The problem of clustering in general deals with partitioning a 

data set consisting of n points embedded in m-dimensional 

space into k distinct set of clusters, such that the data points 

within the same cluster are more similar to each other than to 

data points in other clusters. The three sub-problems [3] 

addressed by the clustering process are: 

(i) Implementing an efficient algorithm to discover the 

clusters of most similar elements in an unsupervised way 

(ii) Derive a description that can characterize the elements of 

a cluster in an epigrammatic manner and 

(iii) Defining a similarity measure to judge the similarity (or 

distance) between different elements  

Traditional clustering algorithms used Euclidean and 

Manhattan distance [7] measure to judge the similarity of two 

data elements [4] [5]. This works well when the defining 

attributes of a data set are purely numeric in nature. However, 

Euclidean and Manhattan distance   measure fails to capture 

the similarity of data elements when attributes are categorical 

or mixed. Increasingly, the data mining community is besiege 

with a large collection of categorical data [6] Like those 

collected from banks, or health sector, web-log data and 

biological sequence data. 

Banking sector or health sector data are primarily mixed data 

containing numeric attributes like age, salary, etc. and 

categorical attributes like sex, smoking or non-smoking, etc. 

In order to handle mixed or categorical data, some of the 

strategies that have been used are as under: [2] 

(1) The data representation phase predetermines what kind of 

cluster structures can be identified in the data. 

(2) On the basis of data representation, the modeling phase 

defines the notion of clusters and the criteria that separate the 

desired group structures from unpropitious ones.  

(3) A quality measure which can be either optimized during 

the search for hidden structures in the data is produced. 

(4) The validation phase is necessary to validate the results 

produced by the clustering algorithm. 

(5) Another approach has been discretizing the data in the 

columns to enable the use of the algorithm to produce a 

mining model. It is the process of putting the values into 

buckets that there will be possible state   

2. RELATED WORK 
In general, clustering algorithm is classified into two ways: 

hard clustering algorithm and fuzzy clustering algorithm. In 

the hard clustering, each object belongs to one and only one 

clusters and in fuzzy clustering each object is allowed to have 

membership functions to all clusters. In terms of clustering we 

are interested in Genetic algorithms which can efficiently 

cluster large data sets containing mixed and categorical values 

because such data sets are frequently encountered in data 

mining application. Genetic algorithms (GA) were originally 

proposed by Holland [8].GA has been applied to many 

function optimization problems and is shown to be good in 

finding best and near optimal solutions. Their robustness of 

search in large search spaces and their domain independent 

nature motivated their application in various fields like pattern 

recognition, machine learning, VLSI design etc. [9]. Krishna 

and Murty proposed a new clustering method called genetic k-

means algorithm (GKA) [4], which hybridizes a genetic 

algorithm with the k-means algorithm and genetic fuzzy k-

modes algorithm. This approach combines the robust nature 

of the genetic algorithm with the high performance of the k-

means algorithm. Lu et al [11] introduced fast genetic K-

means cluster technique (FGKA). 

FGKA did several improvements over GKA including an 

efficient evaluation of the objective value Total Within-cluster 

Variation (TWCV), avoiding illegal string elimination 

overhead, and a simplification of the mutation operator. These 

improvements result that FGKA runs 20 times faster than 

GKA [4] but FGKA suffers from a potential disadvantage. 

The cost of calculating centroids and TWCV from score can 

be much more expensive because if the mutation probability 

is small, then the number of allele changes will be small. 

To overcome from this problem of FGKA has been proposed 

an incremental genetic k-means algorithm (IGKA) [5].When 

the mutation probability is small IGKA inherits all the 

advantage of FGKA including the convergence to the global 

optimum, and outperforms FGKA. The main idea of IGKA is 

to calculate the objective value TWCV and to cluster 

centroids incrementally. IGKA performs well when mutation 

probability is smaller than some threshold value but not when 

mutation probability is larger than some threshold value. 
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Therefore, a hybrid genetic k-means algorithm (HGKA) is 

proposed. HGKA combines the benefits of FGKA and IGKA 

and did well in smaller and larger mutation probability. 

Mathematically, a fuzzy clustering problem can be shown as 

an optimization problem [18]: 

Min Y(X, Z) =       
  

           
 
    

Such that 

0≤wli≤1,1≤l≤k,1≤i≤n,              (1)        

 

        
   1≤i≤n,                 (2)             

                                                              

0<              
        (3)                                                                                  

Where n is the number of objects in the data set under 

consideration, k is the number of clusters, E=            is a 

set of n objects each of which is described by d attributes, Z= 

{z1, z2,  ..... zk} is a set of k clusters centers ,X=(wli) is a k x n 

fuzzy membership matrix, α € [1,∞] is a weighting exponent , 

and e (zi, qi) is a certain distance measure between cluster 

center zl and the object ei . 

A well-known fuzzy clustering algorithm is the fuzzy k-

Means algorithm due to [12] [10]. The fuzzy k-Means 

algorithm starts with an initial value of X and then repeatedly 

iterates between estimating cluster centers Z given X and 

estimating the membership matrix X given Z until two 

successive values of X or Z are equal. Since the fuzzy k-

Means algorithm works only on numeric values, a fuzzy k-

Modes algorithm [13] has been developed for the purpose of 

clustering categorical data sets. A known problem associated 

with both the fuzzy k-Means algorithm and the fuzzy k-

Modes algorithm is that they may only stop at local optima of 

the optimization problem, since the function F (X,Z)  is non-

convex in general [14]. 

 To find a global solution of the optimization problem, GA 

[15] and tabu-search (TS) based techniques [16] are applied. 

The genetic k-means algorithm [17] for example, integrates 

the k-means algorithm and the genetic algorithm so as to find 

the globally optimal solutions. In order to find the globally 

optimal solution for the fuzzy k-Modes algorithm, Ng and 

Wong introduced tabu-search based fuzzy k-Modes algorithm 

[14].    

3. GENETIC K-MEANS CLUSTERING 

ALGORITHM FOR MIXED 

NUMERIC AND CATEGORICAL 

DATA 
In this section we will describe proposed genetic k-means 

clustering algorithm for mixed numeric and categorical data. 

3.1  Objective Function 
The data for clustering consists of N genes and their 

corresponding N patterns. Each pattern is a 

Vector of Z dimensions recording the expression levels of the 

genes under AGKA each of the Z 

Monitored conditions or at each of the Z time points. The goal 

of AGKA algorithm is to partition the N patterns into user-

defined K groups. The Total Within-Cluster Variation 

(TWCV) is used to minimize for clustering in GKA, FGKA 

and IGKA. It can define as Eq. (4).Let X1, X2,…, XN be the N 

patterns, and Xnd denotes the zth feature of pattern Xn 

(n=1…N). 

Each partitioning is represented by a string, a sequence of 

numbers a1…aN, where an takes a value from {1, 2,…, K} 

representing the cluster number that pattern Xn belongs to. Let 

Gk denote the kth cluster and Dk denote the number of 

patterns in Gk.  

The Total Within-Cluster Variation (TWCV) is define as [5] 

TWCV=  
        

  
   -  

 

  

 
        

  
                (4) 

the numeric attribute. Here we are using modified cost 

function specified in Eq. (5s), which is to be minimized for 

clustering mixed data sets has two distinct components, one 

for handling numeric attributes and another for handling 

categorical attributes. The cost function can define for 

clustering mixed data sets with n data objects and m attributes 

(mr numeric attributes, mc categorical attributes, m = mr + 

mc) as 

Ψ=         
 
                         (5)                     

Where V(Zi, Cj) is the distance of a data object di from the 

closest cluster center Cj. V(Zi, Cj) is defined as Eq.(3) 

V(    )=   
    
   (   

     
 ))2 +        

    
  

    
   

2    (6)          

Where     
    
   (   

     
 )) 2    denotes the distance of object 

zi from its closest cluster center Cj, for numeric attributes only, 

wu denotes the significance of the uth numeric attribute, which 

is to be computed from the data set            
    

  
    
   

2  

denotes the distance between data object zi and its closest 

cluster center Cj in terms of categorical attributes only. 

3.2  The Selection Operator 
Proportional selection is used for the selection operator in 

which, the population of the next Generation is determined by 

N independent random experiments. Each experiment 

randomly selects a solution from the current population {X1, 

X2 ,…, Xz} according to the probability distribution {p1, 

p2,…, pz} defined by [5]. 

pn=
     

      
 
   

(n=1,2,.......N)               (7)             

F (Xn) denotes the fitness value of solution Xn. In our context, 

the objective is to minimize the V which can obtain from 

equation (6). Therefore, solutions with smaller Vx should have 

higher probabilities for survival and should be assigned with 

greater fitness values. In addition, illegal 

strings are less desirable and should have lower probabilities 

for survival, and thus should be assigned with lower fitness 

values. We define F (Xn) as follows, 

F(  )= 
                                

                     
        (8)           

Where Vmax is the maximum V that has been encountered till 

the present generation, Fmin is the smallest fitness value of 

the legal strings in the current population if they exist, 

otherwise Fmin is defined as 1 

3.3  The Mutation Operator 
The mutation operator performs the function of shaking the 

algorithm out of a local optimum, and moving it towards the 

global optimum. During mutation, we replace an by an’ for 

n=1,…,N simultaneously. an’ is a cluster number randomly 

selected from {1,…,K} with the probability distribution 

{p1,p2,…,pK} defined by 
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  =
                      

     

                               
 
   

                       (9)                                                    

where d(Xn,ck) is the Euclidean distance between pattern Xn 

and the centroid ck of the kth cluster, and          

           . If the kth cluster is empty, then d (Xn,ck) is 

defined as 0. The bias 0.5 is introduced to avoid divide by- 

zero error in the case that all patterns are equal and are 

assigned to the same cluster in the given solution. 

3.4.  The k-Means Operator 
In order to speed up the convergence process, one step of the 

classical K-means algorithm, which we call K-means operator 

(KMO) is introduced. Given a solution that is encoded by 

a1…aN, we replace an by an’ for n=1,….N simultaneously, 

where an’ is the number of the cluster  whose centroid is 

closest to Xn in Euclidean distance. 

To account for illegal strings, we define d(Xn, ck) = +  if the 

kth cluster is empty. This definition is different from section 

3.2, in which we defined d (Xn, ck) = 0 if the kth cluster is 

empty. The motivation for this new definition here is that we 

want to avoid reassigning all patterns to empty clusters. 

Therefore, illegal string will remain illegal after the 

application of KMO. 

4. FUZZY K-MODES 
To describe the fuzzy k-Modes algorithm [13], let us begin 

with some notations. 

Let E={Q1,Q2,.........Q3} be a categorical data set with n 

objects each of which is described by e categorical attributes 

A1,A2,........A3............Ae.. Attribute Aj (1 ≤  j  ≤  e) has nj 

categories, i.e. DOM(Aj)={aj1,aj2.......ajn}.let the cluster centers 

be represented by zl = (zl1,zl2,........zle) for 1≤ l ≤ k, 

Where k is the number of clusters. The simple matching 

distance measure between m and p in E is defined as  

ec(m,p)=         
 
   ,              (10)                                                                                                    

where mj  and  pj   are the jth components of m and p, 

respectively, and  

δ(mj,pj) =     
               

              
  

then the objective of the fuzzy k-modes clustering is to find X 

and Z that minimize 

Yc(X,Z)=     
  

            
 
             (11)              

Subject to 1, 2, 3 where α > 1 is the weighting 

component,  (..) is defined in Eq(10) 

X = (   ) is the k x n fuzzy membership matrix, and Z 

={         } is the set of clusters centers. Note that α = 1 

gives the hard k-modes clustering i.e. the k-modes algorithm. 

To update the cluster centers given the estimate of X, Huang 

and Ng [13] proved the following theorem   

Theorem 1. The quantity Yc(X, Z) defined in Eq. 11 is 

minimized if and only if     =     ε DOM(  ) where 

r = arg 
   

      
    

 
          

 

i.e.,     
 

         
       

 
         

 ,       1≤ t ≤    

for  1 ≤  j ≤ d  and  1 ≤  l ≤ k. 

To update the fuzzy membership matrix X given the estimate 

of Z, the following theorem is also presented in [13]. 

Theorem 2 let Z= {           }   be fixed, then the fuzzy 

membership matrix X which minimizes the quantity    (X,Z) 

defined in eq (11) subject to 1,2,3 is given by  

    

 
 

 
                       
                       

 

  
        

        
 

 

   
  

   

       if otherwise, 1 ≤ l ≤ l ≤ k , l ≤ i ≤ 

n 

Based on the two theorems described above, the fuzzy k-

modes algorithm can be implemented recursively (see 

algorithm 1.) 

Algorithm 1 fuzzy k-modes algorithm, n  is the maximum 

number of iterations  

1: choose starting point    ε    ; 

2:Find 

                                                    
3: for t= 1 to n do 

4:Find   such that the cost function 

                     
5: if  Y(    )  =  Y(    ) then  

6: stop; 

7: else 

8:Find    such that the cost function Y(    ) is 

minimized; 

9: if Y(    ) = Y(    ) then 

10: stop; 

11: else 

12:       ; 

13: endif 

14:endif 

15:end for 

 

5. EXPERIMENT AND RESULTS 
The algorithms defined in the paper have been implemented 

on twitter dataset. The twitter dataset is highly categorical 

dataset in the context of dimensions. It contains high 

dimensional attributes and it has no structure. The clustering 

algorithms are used to apply over numerical dataset. But here, 

it has been experimented over categorical dataset which is 

twitter in this case. The real time streaming tweets have been 

retrieved by applying the code developed in python script. 

The experiment runs on the machine having on Intel core i7, 

3.9 GHz, 64GB RAM computer.  

The results derived by comparing the values of AC, PR and 

RE which has been defined in Yang’s accuracy measure [18].  

The AC , PR and RE values defined as follows: 

The definitions of accuracy (AC), precision (PR), and recall 

(RE) are given as follows [18]: 

AC= 
   
 
   

 
    

PR= 
 

  
      

 
   

 
     

RE= 
 

  
      

 
   

 
     

Where, 

ai = The number of data objects that are correctly allocated to 

class Ci,  
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bi = The number of data objects that are incorrectly allocated to 

class Ci,  

ci = The number of data objects that are incorrectly denied 

from class Ci,  

k = The total number of class contained in a dataset, and  

n = The total number of data objects in a dataset,  

The higher the values of these parameters the better clustering 

results it considers. 

Table 1 The AC of the three algorithms on the Twitter 

dataset 

Algorithms AC 

Best Avg Std 

Fuzzy k-modes  0.8231 0.8124 0.0107 

Genetic k-

means 

0.8014 0.7697 0.0040 

 

Table 2 The PR of the three algorithms on the Twitter 

dataset 

Algorithms PR 

Best Avg. Std. 

Fuzzy k-modes  0.8432 0.8329 0.0082 

Genetic k-

means 

0.7213 0.7863 0.0071 

 

Table 3 The RE of the three algorithms on the Twitter 

dataset 

Algorithms RE 

Best Avg. Std. 

Fuzzy k-modes  0.7823 0.7213 0.0032 

Genetic k-

means 

0.7235 0.6921 0.0063 

 

6. CONCLUSION 
The experiment carried out on the twitter datasets which is 

highly categorical in nature. The results show that clustering 

approaches better can be utilized to cluster the unstructured 

datasets in the format which may be used to implement for 

decision-making process. Twitter data can be proven as an 

asset for so many organizations. The genetic k-means 

algorithm found to be better in comparison with the fuzzy k-

modes algorithm to cluster categorical datasets like tweets. In 

future, hybrid approaches may be developed through the 

inclusion of existing evolutionary clustering algorithm.  
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