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ABSTRACT 

Software Reliability is considered to be an essential part of 

software systems; it involves measuring the system’s 

probability of having failures; therefore, it is strongly related 

to Software Quality. Software Reliability Growth Models are 

used to indicate the expected number of failures encountered 

after the software has been completed, it is also an indicator of 

the software readiness to be delivered. This paper presents a 

study of selecting the best Software Reliability Growth Model 

according to the dataset at hand. Several Comparison Criteria 

are used to yield a ranking methodology to be used in pointing 

out best models. The Social Spider Algorithm (SSA), one of 

the newly introduced Swarm Intelligent Algorithms, is used 

for estimating the parameters of the SRGMs for two datasets. 

Results indicate that the use of SSA was efficient in assisting 

the process of criteria weighting to find the optimal model and 

the best overall ranking of employed models. 
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1. INTRODUCTION 
Software nowadays can found in all aspects of life, in all 

scientific, commercial and industrial sectors. It is simply made 

of a group of code lines that links a specific input(s) into some 

desirable output(s) carrying out a certain task as defined by 

the user’s requirements. Software, being human written, can 

very likely contain problems or faults that can lead to an 

overall system failure. Such failures in software have a direct 

impact on the reliability and dependability from the user point 

of view [1]. For such reasons there was a necessity to yield 

high quality software projects that can function correctly with 

on-time performance satisfying the given requirements [2]. A 

software project is defined “as a set of activities with a 

starting date, specific goals and conditions, defined 

responsibilities, a budget, a planning, a fixed end date, and 

multiple parties involved”[3]. The main issue in developing 

faultless software is reliability, reliable software projects can 

be expensive and time consuming. Furthermore, the reliability 

of software has to be calculated to be used in planning test 

resources throughout the development of software [2][4]. In 

general, Reliability can be defined as “the probability for 

failure-free operation of a program for a specified time under 

a specified set of operating conditions”. Software reliability 

has a direct impact on software quality, and it can be viewed 

as a key attribute to quality[5]. Assessing software reliability 

can be done using software reliability growth models 

(SRGMs). SRGMs offer quantifiable statistics necessary for 

improving the software reliability of products, software 

engineers can also benefit from SRGMs in quantifying levels 

of defect, rates of failure and reliability through the coding 

and testing phases [2][6]. Various SRGMs have been 

proposed since 1970 in the literature, yet none of them 

satisfies all datasets. As Lyu has observed that no universally 

acceptable model is found that can be trustworthy of giving 

precise results for all circumstances; every single model 

embraces some benefits and yet some drawbacks. The 

selection of the best model for any dataset relays essentially 

on software requirements [1][7][8]. Swarm intelligence (SI) is 

a branch of Artificial Intelligence entirely inspired by the 

social behavior of organisms living and interacting in the 

interior of large groups of independent individuals. Such 

behavior can be observed in flocks of birds, Bats, Fireflies, 

schools of fish, colonies of ants, and even human social 

behavior. The observed behaviors of swarms can be used for 

allowing groups of individuals to achieve processes that 

cannot be done by each single individual by itself [9][10]. 

Recently, authors are employing SI to obtain feasible 

solutions for complex optimization problems and in software 

reliability optimization [11]. 

In this work, the Weighted Criteria technique proposed by 

Anjum [7] is applied with the aid of the Social Spider 

Algorithm (SSA) rather than Least Square and Maximum 

Likelihood Estimation. SSA is used in the course of 

estimating the parameters of SRGMs, in order to enhance the 

performance of criteria weighting to rank the SRGMs 

according to the best. The Weighted Criteria technique is 

carried out here with 10 different criteria instead of only 7 to 

increase efficiency of results. 

2. LITERATURE REVIEW 
Many methods have been proposed in the literature to find a 

way for selecting the best fit model, such as: 

Stringfellow and Andrews, (2002) applied various SRGMs 

iteratively in system testing; these models were fitted to 

weekly cumulative failure data. They were used to estimate 

the expected residual number of failures after software 

release. When an SRGM passes the proposed criteria, then it 

is selected to make release decision[12]. In the same year, 

Kharchenko et al. proposed to choice SRGMs based on the 

analysis of assumptions and compatibility of input and output 

parameters, where an assumptions matrix was developed for 

such choice depending on the features of software engineering 

and testing processes [13].In 2006, Sheta employed Particle 

Swarm Optimization (PSO) in estimating the parameters of 

some of SRGMs such as the exponential model, power model 

and S-Shaped models[14]. In addition, Garg et al. in 2010 

suggested a method based on matrix operations based on 

performance analysis of SRGMs. They used seven 

comparison criteria to rank various SRGMs. The result was a 

ranking of SRGMs based on Permanent value [15]. Also in 

2010, Sharma et al. presented a deterministic quantitative 

model based on distance based approach (DBA) and was 

applied to select and rank SRGMs [16]. Sharma et al. 

modified the Artificial Bee Colony (ABC) in 2011, yielding 

the DABC (Dichotomous ABC), by converging to individual 
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optimal point and to compensate the limited amount of search 

moves of original ABC. They also explored the use of DABC 

in estimating SRGMs parameters [17].While the work of 

Shanmugam and Florence in 2012 solved the parameter 

estimation problem using Ant Colony Algorithm. Results 

were gained using six typical models [18].  In 2013, Anjum et 

al. offered a method based on weighted criteria, where a set of 

twelve comparison criteria were formulated. Case study 

results showed that the weighted criteria value method gave a 

very promising performance in SRGMs comparison [7]. 

Miglani proposed a guide for the selection of best SRGMs in 

2014; the technique was tested on various datasets. The model 

recommended on the basis of proposed technique has proved 

to be better in comparison with other recommendations [19]. 

Sheta and Abdel-Raouf in 2016 investigated the possibility of 

using the Grey Wolf Optimization (GWO) in the estimation of 

the SRGM’s parameters aiming at minimizing the difference 

between the estimated and the actual number of failures of the 

software system [20]. 

3. DEBUGGING PROCESS 
Debugging is the process of detecting software faults and 

correcting them; Saxena et al. divided the process of 

debugging into the following two types [21] as shown in the 

following sections. 

3.1 Perfect Debugging 
Perfect debugging involves the correction of faults with 

certainties responsible for software failures without 

introducing new faults. Previously introduced software 

reliability models adopt the fact of perfecting the fault 

removal process. Jelinski and Moranda presume that the 

software failure rate is proportional to the number of residual 

bugs, where each bug owns a constant failure rate impact [22]. 

Furthermore, the number of bugs drops by one subsequent to 

each failure designating a flawless elimination of bugs 

causing the failure. Next are some of the perfect debugging 

NHPP SRGMs [2]: 

1. Goel-Okumoto Model (Goel-O.): 

m t = a 1 − e−bt  ……………....................... (1) 

 a > 0, 𝑏 > 0 

2. Generalized Goel Model (G.Goel): 

m t = a 1 − e−btc
 …………..…………….. (2) 

a > 0, 𝑏 > 0, 𝑐 > 0 

3. Gompert Growth Curve Model (Gompert): 

m t = ake−bt ……………………………….. (3) 

a > 0,0 < 𝑏 < 1, 0 <  𝑘 < 1 

4. Inflected S-Shaped Model (Inf.S.): 

𝑚 𝑡 = 𝑎 ∗
1−exp  −𝑏𝑡  

1+𝛽∗exp  −𝑏𝑡  
……….………….… (4) 

𝑎 > 0, 𝑏 > 0, 𝛽 > 0 

5. Logistic Growth Curve Model (Log.Gro.): 

𝑚 𝑡 =
𝑎

1+𝑘∗exp  −𝑏𝑡  
…………………..……. (5) 

𝑎 > 0, 𝑏 > 0, 𝑘 > 0 

6. Musa-Okumoto Model (Musa-O.) 

𝑚 𝑡 = a ∗ 𝑙𝑛 1 + 𝑏𝑡 …………………….. (6) 

𝑎 > 0, 𝑏 > 0 

7. Yamada Delayed S-Shaped Model (Y. Del.): 

𝑚 𝑡 = 𝑎 1 −  1 + 𝑏𝑡 ∗ exp −𝑏𝑡  ……. (7) 

 𝑎 > 0, 𝑏 > 0 

8. Modified Duane Model (Modi-D.): 

𝑚 𝑡 = 𝑎  1 −  
𝑏

𝑏+𝑡
 

𝑐

    ………...............….. (8) 

 𝑎 > 0, 𝑏 > 0, 𝑐 > 0 

9. Pham Zhang IFD Model(P-Z-IFD): 

𝑚 𝑡 = 𝑎 − 𝑎 ∗ exp −𝑏𝑡 ∗  1 +  𝑏 + 𝑑 ∗ 𝑡 + 𝑏𝑑𝑡2  

………….. (9)𝑎 > 0, 𝑏 > 0, 𝑑 > 0 

3.2 Imperfect Debugging 
Imperfect debugging was introduced after noticing that 

Perfect Debugging is an unrealistic assumption, this is mainly 

because of the human element involved in software 

debugging. Each time a new fault is introduced in the 

correction process and, for some reason, was detected but not 

removed with certainty, the debugging is called Imperfect 

Debugging. Below are samples of the Imperfect Debugging 

models [2][21]. 

1. Yamada Rayleigh Model (Y. Ray.): 

𝑚 𝑡 = 𝑎  1 − exp  −𝑟𝛼  1 − exp  −
𝛽𝑡2

2
    …… 

(10)𝑎 > 0, 𝑟 > 0, 𝛼 > 0, 𝛽> 0  

2. Yamada Imperfect Debugging Model 1 (Y. M1): 

𝑚 𝑡 = 𝑎 ∗ 𝑏 ∗  
exp  𝛼𝑡  −exp  −𝑏𝑡  

𝛼+𝑏
  ………………… (11) 

𝑎 > 0, 𝑏 > 0, 𝛼 > 0 

3. Yamada Imperfect Debugging Model 2 (Y. M2): 

𝑚 𝑡 = 𝑎 ∗  1 − exp −𝑏𝑡  ∗  1 −
𝛼

𝑏
 + 𝛼𝑎𝑡 ……. 

(12)𝑎 > 0, 𝑏 > 0, 𝛼 > 0 

4. Yamada Exponential Model (Y. Exp.): 

𝑚 𝑡 = 𝑎 ∗  1 − exp −𝛼𝑟 1 − exp −𝛽𝑡     …….. 

(13)𝑎 > 0, 𝑏 > 0, 𝛼 > 0, 𝛽 > 0 

5. Pham Nordmann Zhang (P–N–Z) model (P-N-Z): 

𝑚 𝑡 =
𝑎∗ 1−exp  −𝑏𝑡   ∗ 1−

𝛼

𝑏
 +𝛼𝑎𝑡

1+𝛽∗exp  −𝑏𝑡  
   ……………..…. (14) 

𝑎 > 0, 𝑏 > 0, 𝛼 > 0, 𝛽 > 0 

6. Pham–Zhang Model (P–Z) model: 

𝑚 𝑡 =
1

(1+𝛽∗exp  −𝑏𝑡  )
  𝑐 + 𝑎 ∗  1 − exp −𝑏𝑡  −

𝑎𝑏

𝑏−𝛼
∗

 exp −𝛼𝑡 − exp −𝑏𝑡   …………………………..(15) 

𝑎 > 0, 𝑏 > 0, 𝑐 > 0, 𝛼 > 0, 𝛽 > 0 

7. Zhang-Teng-Pham Model (Z-T-P): 

𝑚 𝑡 =
𝑎

𝑝−𝛽
∗  1 −

 1+𝛼 ∗exp  −𝑏𝑡  

1+𝛼∗exp  −𝑏𝑡  
 

𝑐

𝑏
 𝑝−𝛽 

………… (16) 

𝑎 > 0, 𝑏 > 0, 𝑐 > 0, 𝑝 > 0, 𝛼 > 0, 𝛽 ≥ 0 
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4. SOCIAL SPIDER ALGORITHM (SSA) 
SSA is a newly presented swarm algorithms, it was developed 

by Yua and Lia [23] for solving global numerical optimization 

problems. It is built on the bases of the social spiders’ 

behavior to work out solutions for optimization problems. 

SSA was designed to handle continuous unconstrained 

problems. This is usually done by formulating the search 

space of the problem as a hyper-dimensional spider web, 

where each spider on the web has a specific position; this 

position denotes a feasible solution to the optimization 

problem. Artificial spiders in SSA have the ability to move 

without obstruction on the web, each time a spider changes its 

position it produces a vibration that is propagated over the 

web. Here the web functions as a transmission media of the 

vibrations produced when the spiders move [23]. The 

following subsections will introduce a more detailed 

specification of SSA. 

4.1 Spider 
SSA depends largely on the primary functioning agents 

known as the artificial spiders. Artificial spiders are placed on 

the web when the algorithm starts. Assuming that(t) is the 

current iteration index and f(x)is the objective function, each 

spider (s) in the population is called theith spider, and it holds 

two attributes: position pi(t) and fitness f(pi(t)) for the current 

position. Each spider owns a memory to store the previous 

attributes as well as several attributes used to direct the spider 

to search for the global optimum. Such attributes are [23][24]: 

1. The target vibration of (s) in the previous iteration. 

2. The number of iterations since (s) has last changed its 

target vibration. 

3. The previous movement that (s) do it in the iteration. 

4. The dimension mask that (s) used it to direct the 

movement in the previous iteration. 

4.2 Vibration 
SSA is recognized by its main vibration feature, the variation 

is generated and spread across the web each time a spider 

makes a move to a new position, other spiders on the web will 

all get that vibration. Spiders in a population are allowed to 

share their personal information to generate a collective social 

knowledge of the solution space. Vibrations are recognized 

using the source position (P)and the source intensity (I), the 

value of P depends on the search space of the problem, while 

the I value is limited in the range of [0,+) and can be 

calculated using the fitness value of the position f(p) using 

Eq.17 [25]. 

𝐼 = 𝑙𝑜𝑔  
1

𝑓 𝑃 −𝐶
+ 1  …………….……. (17) 

where 

I: is the source intensity,f(p): is the fitness value of (p), 

C: is a small constant. 

After generating the vibration, it can be propagated 

across the web; other spiders in the population just receive 

partial information of the vibration due to the consideration of 

vibration attenuation in the design of the SSA. The vibration 

attenuation process is shown in Eq.18 [25]: 

𝐼𝑑 = 𝐼 ∗ exp  −
𝑑

𝜎 ∗𝑟𝑎
  ……………..…. (18)   

 

where 

Id: is the attenuated intensity after being propagating for 

distance(d), 

d: is the distance between spiders a and b, calculated using 

Manhattan distance,  

𝜎 : is the mean of the standard deviation of the population's 

positions over all dimensions, a: is used for controlling 

the attenuation rate of the vibration intensity,a (0,+). 

The larger a is the weaker the attenuation of the vibration. 

4.3 Search in SSA 
In order to conduct a search-for-solution procedure in SSA, 

first the parameters for the algorithm must be set as well as 

the definition of the fitness function and solution space of the 

optimization problem. Then a random generation of the initial 

population of artificial spiders with their positions is 

performed. An iteration is started following the next steps 

[25][23]: 

Step1: Fitness Evaluation: At the start of any iteration, a re-

evaluation of the fitness values is performed for each spider 

on different positions on the web. This evaluation is carried 

out once for every spider during each iteration. 

Step2: Vibration Generation: each spider generates a new 

vibration at its current position using Eq.17. This vibration, 

after that, is propagated over the web by Eq.18 and is 

expected by all other spiders. Hence, each spider in the 

population will receive vibrations by the size of the 

population |pop|, each spider will choose the one with the 

largest attenuated vibration intensity Vbestfrom |pop|, and then 

compare it with Vtar (the target vibration), if Vbest is greater, 

then it is saved as the new Vtar. When there is no change in the 

target vibration, then the spider’s inactive degree is increased 

by (1), otherwise this degree is reset to (0). 

Step3: Mask Changing: in this step a random walk is prepared 

towardsVtar, the dimension mask (m) is used to guide the 

movement. Each spider holds a dimension mask (m), which is 

a (0-1) binary vector of length D (the dimension of the 

optimization problem). Throughout the iterations, the spider 

has a probability of (1- p
c

din)to change its mask, where 

pc(0,1) is user-controlled, and din is the inactive degree of 

the spider. If a decision is made to change the mask, then each 

bit of the mask can be assigned (1) with (p
m

) probability, and 

assigned (0) with (1-p
m

). This probability is user-controlled in 

the range of (0,1). Bits of a mask are changed independently 

and don’t have any correlation with previous masks. When all 

bits are (0), one randomly chosen bit of the mask is flipped to 

(1). Correspondingly, if all bits are (1), one random bit is 

changed to (0). 

Step4: Random Walk: after conducting step3, a new 

following position (p
s

fo) is generated based on the mask for 

spider (s).The value of the ith dimension for (p
s,i

fo) is created 

according to Eq.19. 

ps,i
fo =  

ps,i
tar ms,i = 0

ps,i
r  ms,i = 1

 ………………………... (19)   

where 

p
s

fo :a new following position.  

r: is a random integer value generated in [1,|pop|], 
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ms,i: is the ith dimension of the dimension mask (m) for spider 

(s),  

r: is generated independently for two different dimensions 

with ms,i= 1. 

Spider (s) conducts a random walk to the new position using 

Eq. 20. 

ps t + 1 = ps +  ps − ps t − 1  ∗ r +  ps
fo − ps ⨀R,  

…..…(20) 

where, 

: is element-wise multiplication, R: is a vector of random 

float-point numbers generated from 0 to 1 uniformly.  

Before following (p
s

fo), spider (s) moves along its previous 

direction according to the previous iteration. The distance 

along this direction is a random portion of the previous 

movement. After that, s approaches (p
s

fo) along each 

dimension with random factors generated in (0, 1). This factor 

is independently generated for different dimensions. After 

performing this random walk, s stores its movement in the 

current iteration for the next iteration.  

Step5: Constraint-Handling: During the previous step, one 

spider or more may move out of the web. This leads to a 

violation of the constraints for the optimization problem. 

Thus, to implement the constraint-handling scheme Eq.21 

must be used. 

ps,i t + 1 = 
 xi − ps,i ∗ r if ps,i t + 1 > xi

(ps,i − xi) ∗ r if ps,i t + 1 > xi

 …..…. (21) 

where 

xi: is the upper bound of the search space, 

xi : is the lower bound of the search space, 

r: is a random floating point number generated between (0,1). 

When the stopping criterion is met, the iteration is 

terminated with the best solution for the optimization 

problem. 

5. COMPARISON CRITERIA 
To study the efficiency of software reliability growth models, 

an evaluation of the model can be done relying on its 

capability of reproducing the perceived behavior for the 

software, and to expect the future behavior of the software 

from the detected failure data. Thus a number of comparison 

criteria are suggested in order to carry out a comparison 

among different proposed models. Comparison criteria are 

described as follows, where 𝑘 represents the sample size of 

the data set, and pis the number of parameters [16][7]: 

1. Bias: describes the sum of the difference between the 

estimated and the actual data curve as shown in Eq.22. 

𝐵𝑖𝑎𝑠 =
 (𝑚 𝑡𝑖 −𝑚 𝑖)

𝑘
𝑖=1

𝑘
 ………………... (22) 

2. Mean Square Error (MSE): is the deviation between the 

predicted values and the actual observations as illustrated 

in Eq.23. 

𝑀𝑆𝐸 =
 (𝑚 𝑖−𝑚 𝑡𝑖 )2𝑘

𝑖=1

𝑘−𝑝
 …………..….. (23) 

3. Mean Absolute Error (MAE): is the same as MSE, but 

here the absolute values are used as in Eq.24. 

𝑀𝐴𝐸 =  
 |𝑚 𝑖−𝑚 𝑡𝑖 |𝑘

𝑖=1

𝑘−𝑝
…..………….… (24) 

4. Mean Error of Prediction (MEOP): is the sum of the 

absolute value of the difference between the actual data 

and the estimated curve, this is given in Eq.25. 

𝑀𝐸𝑂𝑃 =
 |𝑚 𝑡𝑖 −𝑚 𝑖|

𝑘
𝑖=1

𝑘−𝑝+1
 ………... (25) 

5. Accuracy of Estimation (AE): is the difference between 

the estimated numbers of all errors with the actual number 

of all detected errors. Where Ma and (a) are the actual and 

estimated cumulative number of detected errors after the 

test, respectively, thenEq.26 shows the formula. 

𝐴𝐸 =  
𝑀𝑎−𝑎

𝑀𝑎
 ………….….………….…. (26) 

6. Noise:is defined as in Eq. 27. 

𝑁𝑜𝑖𝑠𝑒 =    
𝜆 𝑡𝑖 −𝜆 𝑡𝑖−1 

𝜆 𝑡𝑖−1 
 𝑘

𝑖=1 ……..…. (27) 

7. Predictive-Ratio Risk (PRR): shows the distance of model 

estimates from the actual data against the model estimate. 

It can be formulated asin Eq.28. 

𝑃𝑅𝑅 =   
𝑚 𝑡𝑖 −𝑚 𝑖

𝑚 𝑡𝑖 
𝑘
𝑖=1 …………........... (28) 

8. Variance: is the standard deviation of the prediction bias, 

it is defined asin Eq. 29 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
 (𝑚 𝑖−𝑚 𝑡𝑖 −𝐵𝑖𝑎𝑠 )2𝑘

𝑖=1

𝑘−1
…(29) 

9. Root Mean Square Prediction Error (RMSPE): measures 

the closeness with which the model predicts the 

observation as given in Eq. 30. 

𝑅𝑀𝑆𝑃𝐸 =  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒2 + 𝐵𝑖𝑎𝑠2 … (30) 

10. 𝑅𝑠𝑞 : is a measure of how successful the fit is in explaining 

the variation of the data. Eq. 31 shows the measure. 

𝑅𝑠𝑞 = 1 −
 (𝑚 𝑖−𝑚 𝑡𝑖 )2𝑘

𝑖=1

 (𝑚 𝑖− 
𝑚 𝑗

𝑛
𝑘
𝑗=1 )2𝑘

𝑖=1

…………. (31) 

11. Sum of Squared Errors (SSE): is formulated as in Eq. 32. 

𝑆𝑆𝐸 =  (𝑚𝑖 − 𝑚 𝑡𝑖 )2𝑘
𝑖=1 …………. (32) 

12. Theil Statistic (TS): is the average deviation percentage 

over all periods with regard to the actual values. The 

closer TS to zero, the better the prediction capability of 

the model. It is illustrated in Eq. 33 

𝑇𝑆 = 100 ∗  
  𝑚 𝑖−𝑚 𝑡𝑖  

2𝑘
𝑖=1

 𝑚 𝑖
2𝑘

𝑖=1

 %… (33) 

6. THE RANKING METHODOLOGY 
Considering a multi-attributes decision problem, the 

formulation of the objective and constraint functions that 

occur when using a mathematical programming model can be 

simplified by adopting the approach presented in [7]. This 

methodology can be used to develop a deterministic 

quantitative model based on weighted mean, aimed at finding 

a rank for the software reliability models. To apply this 

methodology, a matrix is used to denote the value of criteria 

for each model. Anjum et al. describe the procedure steps as 

follows [7].- 

Step1: Constructing the Criteria Value Matrix: 
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A matrix is constructed, where each element aij is the value of 

jth criteria of ith model. Assuming that (n) is the number of 

SRGMs and (m) are the criteria, then this matrix can be given 

below as: 

Criteria value matrix =

 
 
 
 
 
 

a11 a12 ⋯
a21 a22 ⋯
⋮ ⋮ ⋯

a1m

a2m

⋮
an1 an2 ⋯

 Amin 1  Amin 2 ⋯
 Amax 1  Amax 2 ⋯

anm

 Amin m

 Amax m  
 
 
 
 
 

 

where 

(Amax)j= Maximum value of jth criteria,  

(Amin)j= Minimum value of jth criteria,  

aij= Value of jthcriteria of ith model. 

Step 2: Calculating Criteria Rating:  

Different software reliability models have different criterion 

ratings, therefore the criteria rating matrix differs from model 

to model, it can be determined as:  

When smaller value of the criterion represents fitting well to 

the actual data (Eq.34). 

Xij =
(Amax )j−a ij

(Amax )j−(Amin )j
……………….. (34) 

 When bigger value of the criterion represents fitting 

well to the actual data (Eq.35) 

Xij =
a ij − Amin  j

 Amax  j− Amin  j
………………. (35) 

where 

i = (1, 2, 3, ….n) and j = (1, 2, 3, …..m) 

Step3: Formation of Weight Matrix  

Calculating the weight of the criteria can be performed as in 

Eq. 36. 

Wij =  1 − Xij , ……………………. (36) 

where 

Xij: is the matrix of criteria rating. 

Weight Matrix =  

W11 W12 ⋯
W21 W22 ⋯

W1m

W2m

⋮ ⋮ ⋯
Wn1 Wn2 ⋯

⋮
Wnm

  

Step4: Building the Weighted Criteria Value Matrix  

Weighted criteria value can be computed using Eq.37. 

𝐴𝑖𝑗  = 𝑊𝑖𝑗 ∗ 𝑎𝑖𝑗 ……………….…. (37) 

Weighted Criteria Value Matrix =  

A11 A12 ⋯
A21 A22 ⋯

A1m

A2m

⋮ ⋮ ⋯
An1 An2 ⋯

⋮
Anm

  

Step5: Computation of Model’s Permanent Value  

The Permanent value of a model is the weighted mean value 

of all criteria, Eq. 38. 

𝑍𝑖 =
 𝐴𝑖𝑗

𝑚
𝑖=1

 𝑊𝑖𝑗
𝑚
𝑖=1

……………………. (38)  

where  

i: is (1, 2, 3, … n) 

Ranking of modelsis carried out using the permanent value of 

a model; here smaller permanent value of model reflects good 

rank, opposing to bigger values. Therefore, a comparison is 

performed among all permanent values to provide ranking for 

each model. 

7. EXPERIMENTAL RESULTS 

 7.1 Parameter Settings 
Four parameters are used in the Social Spider Algorithm; 

these are: 

1. Population Size (pop): it determines the individual 

diversity and influences the convergence speed. 

2. Attenuation Rate (ra): it defines the rate of vibration 

attenuation while propagating over the spider web. 

3. Mask Changing Probabilities (pc) and (pm): These two 

cooperate to determine the dimension mask of each spider 

in the population. 𝑝𝑐  controls the probability of changing 

spider’s dimension mask in the random walk step, and 𝑝𝑚  

defines the probability of each value in a dimension mask 

to be one.  

In this work, these parameters are set as follows :( pop=40, 

ra=1, pc=0.7, pm=0.1) 

7.2 Case Study1 
The Dataset employed in this work(Phase2 dataset) is used as 

Dataset1by [26], it includes the number of faults detected in 

21 week of testing, and the cumulative number of faults since 

the starting of test is recorded for each week. Phase2 data 

observes 416hours per week of testing [26].Sixteen SRGMs 

are selected for investigation in this study; first the Social 

Spider Algorithm is applied for estimating the parameters of 

these models, Table 1 shows the values of estimated 

parameters for Dataset1 using SSA. 

Table 1.  Parameter Estimation using SSA (Dataset1) 

 Model Parameter Values 

1  Goel-O. a=4.5457*10^(3), b=4.6771*10(-4) 

2  G.Goel a=51.5350, b=0.0099, c=1.7236 

3  Gompert a=53.6928, b=0.8669, k =0.0179 

4  Inf. S. a=46.3662, b=0.2580, β=14.8860 

5  Log.Gro. a=45.8508, b=0.2741, k= 19.9806 

6  Musa-O. a=2.7617*10^(3), b=7.7032*10(-4) 

7  Y. Del. a=60.8072, b=0.1232 

8  Modi-D. a=1.1528*10^(3), b=196.8210, c=0.3779 

9  P-Z-IFD a=58.0815, b=0.1420, d=0.0091 

10  Y. Ray. a=108.7096, α = 0.5833, β=0.0095 

11  Y. M1 a=651.9094, b=0.0030, α =0.0128 

12  Y. M2 a=2.5130, b=0.3456, α =0.9875 

13  Y. Exp. a=749.2519, α= 7.1016, β=3.9344*10(-4) 

14  P-N-Z  a=45.0971, b=0.2605, α = 0.0012, β=14.6798 

15  P-Z a=46.7686, b=0.2064, C=7.2006, α =0.1156, 

β=2.6478 

16  Z-T-P a=581.8986, b=0.1460, c=0.0353, α =0.3392, 

β=11.2635 
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After estimating the parameters of the selected SRGMs, the 

Weighted Criteria technique is engaged using the ten of the 

comparison criteria explained in section5 (MSE, MAE, 

MEOP, AE, Noise, RMSPE, SSE,TS, PRR, Rsq) rather than 

the seven criteria employed by [7] to rank the different 

SRGMs, results are shown in Table 2. Table 3 shows the 

Model’s Permanent value and ranking using Dataset1.The 

fifth row in Table 3 shows that the Logistic Growth Model is 

the best model suitable for Dataset1. Figure 1 illustrates the 

actual and estimated failures for the Logistic Growth Model 

using SSA Values of actual and estimated failures are very 

close together indicating the optimality of the model. 

7.3 Case Study2  
The second dataset used in this paper is (DS1) used by [27], 

this dataset is used in this work as Dataset2.47.65 CPU hours 

were spent in 19 weeks, and 328 software faults have been 

found and removed [27]. SSA was also used for parameter 

estimation as Table 4 shows the values of estimated 

parameters for dataset2. After that, the weighted criteria 

method is applied also using the same ten comparison criteria 

used in Case Study1 to rank the different SRGMs. Table 5 

demonstrates the values for the selected models. In Table 6, 

the Model permanent values and ranking are given for 

Dataset2. Table 6 shows that Z-T-P model is the best model 

that suitable for Dataset2. Figure2 Depicts the actual and 

estimated failures of Z-T-P model using SSA. Here again the 

actual and estimated failure values are very close to each other 

signifying that the first ranked model is optimal.  

 

 

Table 2. Criteria Values of SRGMs (Dataset1) 

Model/ 

Criteria 

MSE MAE MEOP AE Noise RMSPE SSE TS PRR Rsq 

Goel-O. 6.6637 2.2751 2.1614 0.0233 0.0094 2.6789 126.6111 9.1599 1.0198 0.9693 

G.Goel 3.0991 1.7045 1.6148 0.0233 2.1581 1.6712 55.7831 6.0800 -6.4582 0.9865 

Gompert 2.1885 1.4235 1.3486 0.0233 10.7874 1.4058 39.3935 5.1094 -1.4299 0.9904 

Inf. S. 2.0470 1.2351 1.1701 0 5.5569 1.3837 36.8456 4.9414 -4.4564 0.9911 

Log.Gro. 1.1412 0.9049 0.8572 0 2.9727 1.1025 20.5410 3.6895 -4.4564 0.9911 

Musa-O. 6.7084 2.2716 2.1580 0.0233 0.0153 2.6629 127.4587 9.1905 0.9983 0.9691 

Y. Del. 3.4349 1.7784 1.6894 0.0233 2.0994 1.8222 65.2638 6.5764 -7.5830 0.9842 

Modi-D. 8.0185 2.5304 2.3973 0 0.0600 2.7755 144.3333 9.7800 1.1054 0.9650 

P-Z-IFD 3.8053 1.9004 1.8004 0.0233 3.1817 6.7373 68.4963 1.8865 -325.9355 0.9834 

Y. Ray. 3.6088 1.7644 1.6715 0.0233 3.1675 1.8391 64.9592 6.5611 -11.9533 0.9842 

Y. M1 6.2901 2.2754 2.1556 0.0698 0.2049 2.4489 113.2227 8.6621 0.9983 0.9691 

Y. M2 5.3514 2.0944 1.9841 0.0930 0.6582 2.2841 96.3260 7.9896 -1.6504 0.9766 

Y. Exp. 8.6727 2.6004 2.4636 0 0.0634 2.8811 156.1078 10.1711 0.3945 0.9621 

P-N-Z  2.1437 1.3043 1.2318 0 2.6767 1.3850 36.4426 4.9143 -4.4704 0.9912 

P-Z  3.0792 1.7359 1.6338 0.0233 2.7651 1.7523 49.2667 5.7139 -6.7189 0.9880 

Z-T-P 4.2792 1.9509 1.8362 0 3.4787 2.2287 68.4666 6.7359 -33.5239 0.9834 

 

Table3. Permanent Values and Ranking (Dataset1) 

Rank Model 

Value 

Sum of 

weighted 

value 

Sum of 

weight 

Model  

12 21.9772 5.3644 117.8944 Goel-O. 1  

6 6.0821 3.4581 21.0328 G.Goel 2  

5 5.6310 3.5080 19.7532 Gompert 3  

3 4.0808 2.5051 10.2226 Inf. S. 4  

1 1.4490 1.2840 1.8606 Log. Gro. 5  

13 22.2762 5.3616 119.4365 Musa-O. 6  

8 7.8446 3.7429 29.3619 Y. Del. 7  

14 27.1832 5.7294 155.7421 Modi-D. 8  

16 70.8875 5.0692 359.3462 P-Z-IFD 9  

7 7.7548 3.8666 29.9845 Y. Ray. 10  

11 17.0506 5.5175 94.0768 Y. M1 11  

10 12.4056 5.4126 67.1463 Y. M2 12  

15 30.4574 6.0050 182.8969 Y. Exp. 13  

2 3.4434 2.3270 8.0126 P-N-Z  14  

4 4.8108 3.5384 17.0227 P-Z 15  

9 8.9616 4.2558 38.1385 Z-T-P 16  

 

Table 4. Parameter Estimation SSA (Dataset2) 

 Model  Parameter Values 

1  Goel-O. a=738.9787, b=0.0335 

2  G.Goel a=431.3436, b=0.0361, c=1.2780 

3  Gompert a=385.9318, b=0.0483, c=0.8487 

4  Inf. S. a=381.7563, b=0.1774, β=2.7918 

5  Log. Gro. a=347.2247, b=0.2846, k= 10.6625 

6  Musa-O. a=640.2760, b=0.0386 

7  Y. Del. a=369.8893, b=0.2017 

8  Modi-D. a=1.0724*10^(3), b=95.4546, c=2.1796 

9  P-Z-IFD a=369.9175, b=0.2018, d=9.3438e-005 

10  Y. Ray. a=540.5019, α = 0.9836, β=0.0155 

11  Y. M1 a=774.0665, b=0.0315, α=1.7150*10^(-4) 
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12  Y. M2 a=883.6043, b=0.0268, α=2.2544e-005 

13  Y. Exp. a=811.3068, (r*α)= 8.6992, β=0.0035 

14  P-N-Z  a=290.1209, b=0.1511, α=0.0251, β=1.0722 

15  P-Z  a=211.2503, b=0.1844, c=167.3081, 

α=40.0734, β=3.0363 

16  Z-T-P a=212.5387, b=0.2466, c=0.3025, α=9.8988, 

β=0.5939 

 

Table 5. Criteria values of SRGMs for Dataset2 

Model/ 

Criteria  

MSE MAE MEOP AE Noise RMSPE SSE TS PRR Rsq 

Goel-O. 156.5539 11.0704 10.4554 0.0610 0.5930 12.5235 2661.4 5.2771 0.6510 0.9864 

G.Goel 121.4961 9.4312 8.8764 0.0366 1.0999 10.5401 1943.89 4.5100 -0.3768 0.9901 

Gompert 103.2497 8.4137 7.9188 0.0274 9.5592 9.5848 1652.0 4.1576 0.2290 0.9916 

Inf. S. 98.5457 8.2750 7.7882 0.0244 2.9237 9.3823 1576.7 4.0618 -0.1223 0.9920 

Log. Gro. 108.1181 8.1123 7.6351 0.0091 2.5916 9.8495 1729.9 4.2545 0.3640 0.9912 

Musa-O. 166.3821 11.3840 10.7515 0.0732 0.5048 12.8768 2828.5 5.4402 0.6046 0.9856 

Y. Del. 190.1881 11.2141 10.5911 0.0091 2.3755 14.1097 3233.20 5.8164 -2.8140 0.9835 

Modi-D. 169.6865 11.8601 11.1625 0.0671 10.6590 12.5391 2715.0 5.3299 0.5855 0.9862 

P-Z-IFD 202.3143 11.9158 11.2149 0.0091 2.3779 14.1303 3237 5.8198 -2.8313 0.9835 

Y.Ray. 324.2411 13.7609 12.9514 0.0061 3.5059 20.1835 5187.9 7.3677 -6.1168 0.9735 

Y. M1 166.2916 11.7372 11.0468 0.0640 0.5540 12.3293 2660.7 5.2763 0.5651 0.9864 

Y. M2 171.7253 11.7006 11.0123 0.0762 0.4755 12.3982 2747.6 5.3618 0.4260 0.9860 

Y. Exp. 167.3101 11.7926 11.0989 0.0610 0.5826 12.3886 2677 5.2925 0.6101 0.9863 

P-N-Z  141.8075 10.7410 10.0697 0.0549 1.3576 10.8955 2127.1 4.7177 0.2888 0.9892 

P-Z  112.9091 9.4423 8.8128 0.0244 2.0134 9.4392 1580.7 4.0669 -0.2514 0.9919 

Z-T-P 91.4009 8.0141 7.4798 0.0183 2.4192 8.4909 1279.6 3.6591 0.2446 0.9935 

 

Table 6. Permanent Values and Ranking (Dataset2) 

Rank Model 

value 

Sum of 

weighted 

value 

Sum of 

weight 

Model  

12 249.7447 4.0190 1003.7 Goel-O. 1  

6 137.7159 2.5744 354.5 G.Goel 2  

3 66.1315 2.6428 174.8 Gompert 3  

4 69.5552 1.8185 126.5 Inf. S. 4  

5 125.0868 1.6845 210.7 Log. Gro. 5  

13 271.6751 4.4016 1195.8 Musa-O. 6  

15 401.1755 4.2911 1721.5 Y. Del. 7  

8 200.6151 5.4221 1087.8 Modi-D. 8  

14 380.7546 4.5851 1745.8 P-Z-IFD 9  

16 763.7493 7.2976 5573.5 Y. Ray. 10  

9 238.5525 4.2571 1015.5 Y. M1 11  

11 248.7051 4.4760 1113.2 Y. M2 12  

10 240.8343 4.2932 1034 Y. Exp. 13  

7 146.1123 3.4655 506.4 P-N-Z  14  

2 62.9943 2.2090 139.2 P-Z  15  

1 1.0565 1.3852 1.5 Z-T-P 16  

 

 

Fig 1: Actual and estimated failures for the Logistic 

Growth Model using SSA (Dataset1) 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 8, August 2018 

23 

 

Fig 2: Actual and estimated failures for Z-T-P model using 

SSA (Dataset2) 

8. CONCLUSIONS 
According to the fact that there is no optimal growth model of 

Software Reliability suitable for all the involved criteria, then 

a unified criterion is needed to decide the most appropriate 

model for a given dataset.This work discusses the question of 

selecting the optimal software reliability growth model by 

using the weighted matrix method applied on two datasets of 

failure. The Social Spider Algorithm (SSA) was used for 

parameter estimation instead of relying on parameter 

estimated using the Least Square and Maximum Likelihood 

Estimation.The weighted criteria method was used to 

determine the overall rank of a model. Results were improved 

by using SSA. Ranks of Models were provided accordingly 

for the two selected datasets, and the best ranked models were 

proven to be the optimal after comparing the actual and 

estimated failures for these models. 
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