
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 8, August 2018

16

Selecting Best Software Reliability Growth Models: A

Social Spider Algorithm based Approach

Najla Akram AL-Saati, PhD

Assist. Professor, Software Engineering Dept.
College of Computer Sciences & Mathematics,

University of Mosul, Iraq

Marrwa Abd-AlKareem Alabajee

Assist. Lecturer, Software Engineering Dept.
College of Computer Sciences & Mathematics,

University of Mosul, Iraq

ABSTRACT

Software Reliability is considered to be an essential part of

software systems; it involves measuring the system’s

probability of having failures; therefore, it is strongly related

to Software Quality. Software Reliability Growth Models are

used to indicate the expected number of failures encountered

after the software has been completed, it is also an indicator of

the software readiness to be delivered. This paper presents a

study of selecting the best Software Reliability Growth Model

according to the dataset at hand. Several Comparison Criteria

are used to yield a ranking methodology to be used in pointing

out best models. The Social Spider Algorithm (SSA), one of

the newly introduced Swarm Intelligent Algorithms, is used

for estimating the parameters of the SRGMs for two datasets.

Results indicate that the use of SSA was efficient in assisting

the process of criteria weighting to find the optimal model and

the best overall ranking of employed models.

Keywords

Software Reliability, SRGMs, Models Ranking, Weighted

Criteria, Social Spider Algorithm.

1. INTRODUCTION
Software nowadays can found in all aspects of life, in all

scientific, commercial and industrial sectors. It is simply made

of a group of code lines that links a specific input(s) into some

desirable output(s) carrying out a certain task as defined by

the user’s requirements. Software, being human written, can

very likely contain problems or faults that can lead to an

overall system failure. Such failures in software have a direct

impact on the reliability and dependability from the user point

of view [1]. For such reasons there was a necessity to yield

high quality software projects that can function correctly with

on-time performance satisfying the given requirements [2]. A

software project is defined “as a set of activities with a

starting date, specific goals and conditions, defined

responsibilities, a budget, a planning, a fixed end date, and

multiple parties involved”[3]. The main issue in developing

faultless software is reliability, reliable software projects can

be expensive and time consuming. Furthermore, the reliability

of software has to be calculated to be used in planning test

resources throughout the development of software [2][4]. In

general, Reliability can be defined as “the probability for

failure-free operation of a program for a specified time under

a specified set of operating conditions”. Software reliability

has a direct impact on software quality, and it can be viewed

as a key attribute to quality[5]. Assessing software reliability

can be done using software reliability growth models

(SRGMs). SRGMs offer quantifiable statistics necessary for

improving the software reliability of products, software

engineers can also benefit from SRGMs in quantifying levels

of defect, rates of failure and reliability through the coding

and testing phases [2][6]. Various SRGMs have been

proposed since 1970 in the literature, yet none of them

satisfies all datasets. As Lyu has observed that no universally

acceptable model is found that can be trustworthy of giving

precise results for all circumstances; every single model

embraces some benefits and yet some drawbacks. The

selection of the best model for any dataset relays essentially

on software requirements [1][7][8]. Swarm intelligence (SI) is

a branch of Artificial Intelligence entirely inspired by the

social behavior of organisms living and interacting in the

interior of large groups of independent individuals. Such

behavior can be observed in flocks of birds, Bats, Fireflies,

schools of fish, colonies of ants, and even human social

behavior. The observed behaviors of swarms can be used for

allowing groups of individuals to achieve processes that

cannot be done by each single individual by itself [9][10].

Recently, authors are employing SI to obtain feasible

solutions for complex optimization problems and in software

reliability optimization [11].

In this work, the Weighted Criteria technique proposed by

Anjum [7] is applied with the aid of the Social Spider

Algorithm (SSA) rather than Least Square and Maximum

Likelihood Estimation. SSA is used in the course of

estimating the parameters of SRGMs, in order to enhance the

performance of criteria weighting to rank the SRGMs

according to the best. The Weighted Criteria technique is

carried out here with 10 different criteria instead of only 7 to

increase efficiency of results.

2. LITERATURE REVIEW
Many methods have been proposed in the literature to find a

way for selecting the best fit model, such as:

Stringfellow and Andrews, (2002) applied various SRGMs

iteratively in system testing; these models were fitted to

weekly cumulative failure data. They were used to estimate

the expected residual number of failures after software

release. When an SRGM passes the proposed criteria, then it

is selected to make release decision[12]. In the same year,

Kharchenko et al. proposed to choice SRGMs based on the

analysis of assumptions and compatibility of input and output

parameters, where an assumptions matrix was developed for

such choice depending on the features of software engineering

and testing processes [13].In 2006, Sheta employed Particle

Swarm Optimization (PSO) in estimating the parameters of

some of SRGMs such as the exponential model, power model

and S-Shaped models[14]. In addition, Garg et al. in 2010

suggested a method based on matrix operations based on

performance analysis of SRGMs. They used seven

comparison criteria to rank various SRGMs. The result was a

ranking of SRGMs based on Permanent value [15]. Also in

2010, Sharma et al. presented a deterministic quantitative

model based on distance based approach (DBA) and was

applied to select and rank SRGMs [16]. Sharma et al.

modified the Artificial Bee Colony (ABC) in 2011, yielding

the DABC (Dichotomous ABC), by converging to individual

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 8, August 2018

17

optimal point and to compensate the limited amount of search

moves of original ABC. They also explored the use of DABC

in estimating SRGMs parameters [17].While the work of

Shanmugam and Florence in 2012 solved the parameter

estimation problem using Ant Colony Algorithm. Results

were gained using six typical models [18]. In 2013, Anjum et

al. offered a method based on weighted criteria, where a set of

twelve comparison criteria were formulated. Case study

results showed that the weighted criteria value method gave a

very promising performance in SRGMs comparison [7].

Miglani proposed a guide for the selection of best SRGMs in

2014; the technique was tested on various datasets. The model

recommended on the basis of proposed technique has proved

to be better in comparison with other recommendations [19].

Sheta and Abdel-Raouf in 2016 investigated the possibility of

using the Grey Wolf Optimization (GWO) in the estimation of

the SRGM’s parameters aiming at minimizing the difference

between the estimated and the actual number of failures of the

software system [20].

3. DEBUGGING PROCESS
Debugging is the process of detecting software faults and

correcting them; Saxena et al. divided the process of

debugging into the following two types [21] as shown in the

following sections.

3.1 Perfect Debugging
Perfect debugging involves the correction of faults with

certainties responsible for software failures without

introducing new faults. Previously introduced software

reliability models adopt the fact of perfecting the fault

removal process. Jelinski and Moranda presume that the

software failure rate is proportional to the number of residual

bugs, where each bug owns a constant failure rate impact [22].

Furthermore, the number of bugs drops by one subsequent to

each failure designating a flawless elimination of bugs

causing the failure. Next are some of the perfect debugging

NHPP SRGMs [2]:

1. Goel-Okumoto Model (Goel-O.):

m t = a 1 − e−bt ……………....................... (1)

 a > 0, 𝑏 > 0

2. Generalized Goel Model (G.Goel):

m t = a 1 − e−btc
 …………..…………….. (2)

a > 0, 𝑏 > 0, 𝑐 > 0

3. Gompert Growth Curve Model (Gompert):

m t = ake−bt ……………………………….. (3)

a > 0,0 < 𝑏 < 1, 0 < 𝑘 < 1

4. Inflected S-Shaped Model (Inf.S.):

𝑚 𝑡 = 𝑎 ∗
1−exp −𝑏𝑡

1+𝛽∗exp −𝑏𝑡
……….………….… (4)

𝑎 > 0, 𝑏 > 0, 𝛽 > 0

5. Logistic Growth Curve Model (Log.Gro.):

𝑚 𝑡 =
𝑎

1+𝑘∗exp −𝑏𝑡
…………………..……. (5)

𝑎 > 0, 𝑏 > 0, 𝑘 > 0

6. Musa-Okumoto Model (Musa-O.)

𝑚 𝑡 = a ∗ 𝑙𝑛 1 + 𝑏𝑡 …………………….. (6)

𝑎 > 0, 𝑏 > 0

7. Yamada Delayed S-Shaped Model (Y. Del.):

𝑚 𝑡 = 𝑎 1 − 1 + 𝑏𝑡 ∗ exp −𝑏𝑡 ……. (7)

 𝑎 > 0, 𝑏 > 0

8. Modified Duane Model (Modi-D.):

𝑚 𝑡 = 𝑎 1 −
𝑏

𝑏+𝑡

𝑐

 ………...............….. (8)

 𝑎 > 0, 𝑏 > 0, 𝑐 > 0

9. Pham Zhang IFD Model(P-Z-IFD):

𝑚 𝑡 = 𝑎 − 𝑎 ∗ exp −𝑏𝑡 ∗ 1 + 𝑏 + 𝑑 ∗ 𝑡 + 𝑏𝑑𝑡2

………….. (9)𝑎 > 0, 𝑏 > 0, 𝑑 > 0

3.2 Imperfect Debugging
Imperfect debugging was introduced after noticing that

Perfect Debugging is an unrealistic assumption, this is mainly

because of the human element involved in software

debugging. Each time a new fault is introduced in the

correction process and, for some reason, was detected but not

removed with certainty, the debugging is called Imperfect

Debugging. Below are samples of the Imperfect Debugging

models [2][21].

1. Yamada Rayleigh Model (Y. Ray.):

𝑚 𝑡 = 𝑎 1 − exp −𝑟𝛼 1 − exp −
𝛽𝑡2

2
 ……

(10)𝑎 > 0, 𝑟 > 0, 𝛼 > 0, 𝛽> 0

2. Yamada Imperfect Debugging Model 1 (Y. M1):

𝑚 𝑡 = 𝑎 ∗ 𝑏 ∗
exp 𝛼𝑡 −exp −𝑏𝑡

𝛼+𝑏
 ………………… (11)

𝑎 > 0, 𝑏 > 0, 𝛼 > 0

3. Yamada Imperfect Debugging Model 2 (Y. M2):

𝑚 𝑡 = 𝑎 ∗ 1 − exp −𝑏𝑡 ∗ 1 −
𝛼

𝑏
 + 𝛼𝑎𝑡 …….

(12)𝑎 > 0, 𝑏 > 0, 𝛼 > 0

4. Yamada Exponential Model (Y. Exp.):

𝑚 𝑡 = 𝑎 ∗ 1 − exp −𝛼𝑟 1 − exp −𝛽𝑡 ……..

(13)𝑎 > 0, 𝑏 > 0, 𝛼 > 0, 𝛽 > 0

5. Pham Nordmann Zhang (P–N–Z) model (P-N-Z):

𝑚 𝑡 =
𝑎∗ 1−exp −𝑏𝑡 ∗ 1−

𝛼

𝑏
 +𝛼𝑎𝑡

1+𝛽∗exp −𝑏𝑡
 ……………..…. (14)

𝑎 > 0, 𝑏 > 0, 𝛼 > 0, 𝛽 > 0

6. Pham–Zhang Model (P–Z) model:

𝑚 𝑡 =
1

(1+𝛽∗exp −𝑏𝑡)
 𝑐 + 𝑎 ∗ 1 − exp −𝑏𝑡 −

𝑎𝑏

𝑏−𝛼
∗

 exp −𝛼𝑡 − exp −𝑏𝑡 …………………………..(15)

𝑎 > 0, 𝑏 > 0, 𝑐 > 0, 𝛼 > 0, 𝛽 > 0

7. Zhang-Teng-Pham Model (Z-T-P):

𝑚 𝑡 =
𝑎

𝑝−𝛽
∗ 1 −

 1+𝛼 ∗exp −𝑏𝑡

1+𝛼∗exp −𝑏𝑡

𝑐

𝑏
 𝑝−𝛽

………… (16)

𝑎 > 0, 𝑏 > 0, 𝑐 > 0, 𝑝 > 0, 𝛼 > 0, 𝛽 ≥ 0

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 8, August 2018

18

4. SOCIAL SPIDER ALGORITHM (SSA)
SSA is a newly presented swarm algorithms, it was developed

by Yua and Lia [23] for solving global numerical optimization

problems. It is built on the bases of the social spiders’

behavior to work out solutions for optimization problems.

SSA was designed to handle continuous unconstrained

problems. This is usually done by formulating the search

space of the problem as a hyper-dimensional spider web,

where each spider on the web has a specific position; this

position denotes a feasible solution to the optimization

problem. Artificial spiders in SSA have the ability to move

without obstruction on the web, each time a spider changes its

position it produces a vibration that is propagated over the

web. Here the web functions as a transmission media of the

vibrations produced when the spiders move [23]. The

following subsections will introduce a more detailed

specification of SSA.

4.1 Spider
SSA depends largely on the primary functioning agents

known as the artificial spiders. Artificial spiders are placed on

the web when the algorithm starts. Assuming that(t) is the

current iteration index and f(x)is the objective function, each

spider (s) in the population is called theith spider, and it holds

two attributes: position pi(t) and fitness f(pi(t)) for the current

position. Each spider owns a memory to store the previous

attributes as well as several attributes used to direct the spider

to search for the global optimum. Such attributes are [23][24]:

1. The target vibration of (s) in the previous iteration.

2. The number of iterations since (s) has last changed its

target vibration.

3. The previous movement that (s) do it in the iteration.

4. The dimension mask that (s) used it to direct the

movement in the previous iteration.

4.2 Vibration
SSA is recognized by its main vibration feature, the variation

is generated and spread across the web each time a spider

makes a move to a new position, other spiders on the web will

all get that vibration. Spiders in a population are allowed to

share their personal information to generate a collective social

knowledge of the solution space. Vibrations are recognized

using the source position (P)and the source intensity (I), the

value of P depends on the search space of the problem, while

the I value is limited in the range of [0,+) and can be

calculated using the fitness value of the position f(p) using

Eq.17 [25].

𝐼 = 𝑙𝑜𝑔
1

𝑓 𝑃 −𝐶
+ 1 …………….……. (17)

where

I: is the source intensity,f(p): is the fitness value of (p),

C: is a small constant.

After generating the vibration, it can be propagated

across the web; other spiders in the population just receive

partial information of the vibration due to the consideration of

vibration attenuation in the design of the SSA. The vibration

attenuation process is shown in Eq.18 [25]:

𝐼𝑑 = 𝐼 ∗ exp −
𝑑

𝜎 ∗𝑟𝑎
 ……………..…. (18)

where

Id: is the attenuated intensity after being propagating for

distance(d),

d: is the distance between spiders a and b, calculated using

Manhattan distance,

𝜎 : is the mean of the standard deviation of the population's

positions over all dimensions, a: is used for controlling

the attenuation rate of the vibration intensity,a (0,+).

The larger a is the weaker the attenuation of the vibration.

4.3 Search in SSA
In order to conduct a search-for-solution procedure in SSA,

first the parameters for the algorithm must be set as well as

the definition of the fitness function and solution space of the

optimization problem. Then a random generation of the initial

population of artificial spiders with their positions is

performed. An iteration is started following the next steps

[25][23]:

Step1: Fitness Evaluation: At the start of any iteration, a re-

evaluation of the fitness values is performed for each spider

on different positions on the web. This evaluation is carried

out once for every spider during each iteration.

Step2: Vibration Generation: each spider generates a new

vibration at its current position using Eq.17. This vibration,

after that, is propagated over the web by Eq.18 and is

expected by all other spiders. Hence, each spider in the

population will receive vibrations by the size of the

population |pop|, each spider will choose the one with the

largest attenuated vibration intensity Vbestfrom |pop|, and then

compare it with Vtar (the target vibration), if Vbest is greater,

then it is saved as the new Vtar. When there is no change in the

target vibration, then the spider’s inactive degree is increased

by (1), otherwise this degree is reset to (0).

Step3: Mask Changing: in this step a random walk is prepared

towardsVtar, the dimension mask (m) is used to guide the

movement. Each spider holds a dimension mask (m), which is

a (0-1) binary vector of length D (the dimension of the

optimization problem). Throughout the iterations, the spider

has a probability of (1- p
c

din)to change its mask, where

pc(0,1) is user-controlled, and din is the inactive degree of

the spider. If a decision is made to change the mask, then each

bit of the mask can be assigned (1) with (p
m

) probability, and

assigned (0) with (1-p
m

). This probability is user-controlled in

the range of (0,1). Bits of a mask are changed independently

and don’t have any correlation with previous masks. When all

bits are (0), one randomly chosen bit of the mask is flipped to

(1). Correspondingly, if all bits are (1), one random bit is

changed to (0).

Step4: Random Walk: after conducting step3, a new

following position (p
s

fo) is generated based on the mask for

spider (s).The value of the ith dimension for (p
s,i

fo) is created

according to Eq.19.

ps,i
fo =

ps,i
tar ms,i = 0

ps,i
r ms,i = 1

 ………………………... (19)

where

p
s

fo :a new following position.

r: is a random integer value generated in [1,|pop|],

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 8, August 2018

19

ms,i: is the ith dimension of the dimension mask (m) for spider

(s),

r: is generated independently for two different dimensions

with ms,i= 1.

Spider (s) conducts a random walk to the new position using

Eq. 20.

ps t + 1 = ps + ps − ps t − 1 ∗ r + ps
fo − ps ⨀R,

…..…(20)

where,

: is element-wise multiplication, R: is a vector of random

float-point numbers generated from 0 to 1 uniformly.

Before following (p
s

fo), spider (s) moves along its previous

direction according to the previous iteration. The distance

along this direction is a random portion of the previous

movement. After that, s approaches (p
s

fo) along each

dimension with random factors generated in (0, 1). This factor

is independently generated for different dimensions. After

performing this random walk, s stores its movement in the

current iteration for the next iteration.

Step5: Constraint-Handling: During the previous step, one

spider or more may move out of the web. This leads to a

violation of the constraints for the optimization problem.

Thus, to implement the constraint-handling scheme Eq.21

must be used.

ps,i t + 1 =
 xi − ps,i ∗ r if ps,i t + 1 > xi

(ps,i − xi) ∗ r if ps,i t + 1 > xi

 …..…. (21)

where

xi: is the upper bound of the search space,

xi : is the lower bound of the search space,

r: is a random floating point number generated between (0,1).

When the stopping criterion is met, the iteration is

terminated with the best solution for the optimization

problem.

5. COMPARISON CRITERIA
To study the efficiency of software reliability growth models,

an evaluation of the model can be done relying on its

capability of reproducing the perceived behavior for the

software, and to expect the future behavior of the software

from the detected failure data. Thus a number of comparison

criteria are suggested in order to carry out a comparison

among different proposed models. Comparison criteria are

described as follows, where 𝑘 represents the sample size of

the data set, and pis the number of parameters [16][7]:

1. Bias: describes the sum of the difference between the

estimated and the actual data curve as shown in Eq.22.

𝐵𝑖𝑎𝑠 =
 (𝑚 𝑡𝑖 −𝑚 𝑖)

𝑘
𝑖=1

𝑘
 ………………... (22)

2. Mean Square Error (MSE): is the deviation between the

predicted values and the actual observations as illustrated

in Eq.23.

𝑀𝑆𝐸 =
 (𝑚 𝑖−𝑚 𝑡𝑖)2𝑘

𝑖=1

𝑘−𝑝
 …………..….. (23)

3. Mean Absolute Error (MAE): is the same as MSE, but

here the absolute values are used as in Eq.24.

𝑀𝐴𝐸 =
 |𝑚 𝑖−𝑚 𝑡𝑖 |𝑘

𝑖=1

𝑘−𝑝
…..………….… (24)

4. Mean Error of Prediction (MEOP): is the sum of the

absolute value of the difference between the actual data

and the estimated curve, this is given in Eq.25.

𝑀𝐸𝑂𝑃 =
 |𝑚 𝑡𝑖 −𝑚 𝑖|

𝑘
𝑖=1

𝑘−𝑝+1
 ………... (25)

5. Accuracy of Estimation (AE): is the difference between

the estimated numbers of all errors with the actual number

of all detected errors. Where Ma and (a) are the actual and

estimated cumulative number of detected errors after the

test, respectively, thenEq.26 shows the formula.

𝐴𝐸 =
𝑀𝑎−𝑎

𝑀𝑎
 ………….….………….…. (26)

6. Noise:is defined as in Eq. 27.

𝑁𝑜𝑖𝑠𝑒 =
𝜆 𝑡𝑖 −𝜆 𝑡𝑖−1

𝜆 𝑡𝑖−1
 𝑘

𝑖=1 ……..…. (27)

7. Predictive-Ratio Risk (PRR): shows the distance of model

estimates from the actual data against the model estimate.

It can be formulated asin Eq.28.

𝑃𝑅𝑅 =
𝑚 𝑡𝑖 −𝑚 𝑖

𝑚 𝑡𝑖
𝑘
𝑖=1 …………........... (28)

8. Variance: is the standard deviation of the prediction bias,

it is defined asin Eq. 29

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
 (𝑚 𝑖−𝑚 𝑡𝑖 −𝐵𝑖𝑎𝑠)2𝑘

𝑖=1

𝑘−1
…(29)

9. Root Mean Square Prediction Error (RMSPE): measures

the closeness with which the model predicts the

observation as given in Eq. 30.

𝑅𝑀𝑆𝑃𝐸 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒2 + 𝐵𝑖𝑎𝑠2 … (30)

10. 𝑅𝑠𝑞 : is a measure of how successful the fit is in explaining

the variation of the data. Eq. 31 shows the measure.

𝑅𝑠𝑞 = 1 −
 (𝑚 𝑖−𝑚 𝑡𝑖)2𝑘

𝑖=1

 (𝑚 𝑖−
𝑚 𝑗

𝑛
𝑘
𝑗=1)2𝑘

𝑖=1

…………. (31)

11. Sum of Squared Errors (SSE): is formulated as in Eq. 32.

𝑆𝑆𝐸 = (𝑚𝑖 − 𝑚 𝑡𝑖)2𝑘
𝑖=1 …………. (32)

12. Theil Statistic (TS): is the average deviation percentage

over all periods with regard to the actual values. The

closer TS to zero, the better the prediction capability of

the model. It is illustrated in Eq. 33

𝑇𝑆 = 100 ∗
 𝑚 𝑖−𝑚 𝑡𝑖

2𝑘
𝑖=1

 𝑚 𝑖
2𝑘

𝑖=1

 %… (33)

6. THE RANKING METHODOLOGY
Considering a multi-attributes decision problem, the

formulation of the objective and constraint functions that

occur when using a mathematical programming model can be

simplified by adopting the approach presented in [7]. This

methodology can be used to develop a deterministic

quantitative model based on weighted mean, aimed at finding

a rank for the software reliability models. To apply this

methodology, a matrix is used to denote the value of criteria

for each model. Anjum et al. describe the procedure steps as

follows [7].-

Step1: Constructing the Criteria Value Matrix:

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 8, August 2018

20

A matrix is constructed, where each element aij is the value of

jth criteria of ith model. Assuming that (n) is the number of

SRGMs and (m) are the criteria, then this matrix can be given

below as:

Criteria value matrix =

a11 a12 ⋯
a21 a22 ⋯
⋮ ⋮ ⋯

a1m

a2m

⋮
an1 an2 ⋯

 Amin 1 Amin 2 ⋯
 Amax 1 Amax 2 ⋯

anm

 Amin m

 Amax m

where

(Amax)j= Maximum value of jth criteria,

(Amin)j= Minimum value of jth criteria,

aij= Value of jthcriteria of ith model.

Step 2: Calculating Criteria Rating:

Different software reliability models have different criterion

ratings, therefore the criteria rating matrix differs from model

to model, it can be determined as:

When smaller value of the criterion represents fitting well to

the actual data (Eq.34).

Xij =
(Amax)j−a ij

(Amax)j−(Amin)j
……………….. (34)

 When bigger value of the criterion represents fitting

well to the actual data (Eq.35)

Xij =
a ij − Amin j

 Amax j− Amin j
………………. (35)

where

i = (1, 2, 3, ….n) and j = (1, 2, 3, …..m)

Step3: Formation of Weight Matrix

Calculating the weight of the criteria can be performed as in

Eq. 36.

Wij = 1 − Xij , ……………………. (36)

where

Xij: is the matrix of criteria rating.

Weight Matrix =

W11 W12 ⋯
W21 W22 ⋯

W1m

W2m

⋮ ⋮ ⋯
Wn1 Wn2 ⋯

⋮
Wnm

Step4: Building the Weighted Criteria Value Matrix

Weighted criteria value can be computed using Eq.37.

𝐴𝑖𝑗 = 𝑊𝑖𝑗 ∗ 𝑎𝑖𝑗 ……………….…. (37)

Weighted Criteria Value Matrix =

A11 A12 ⋯
A21 A22 ⋯

A1m

A2m

⋮ ⋮ ⋯
An1 An2 ⋯

⋮
Anm

Step5: Computation of Model’s Permanent Value

The Permanent value of a model is the weighted mean value

of all criteria, Eq. 38.

𝑍𝑖 =
 𝐴𝑖𝑗

𝑚
𝑖=1

 𝑊𝑖𝑗
𝑚
𝑖=1

……………………. (38)

where

i: is (1, 2, 3, … n)

Ranking of modelsis carried out using the permanent value of

a model; here smaller permanent value of model reflects good

rank, opposing to bigger values. Therefore, a comparison is

performed among all permanent values to provide ranking for

each model.

7. EXPERIMENTAL RESULTS

 7.1 Parameter Settings
Four parameters are used in the Social Spider Algorithm;

these are:

1. Population Size (pop): it determines the individual

diversity and influences the convergence speed.

2. Attenuation Rate (ra): it defines the rate of vibration

attenuation while propagating over the spider web.

3. Mask Changing Probabilities (pc) and (pm): These two

cooperate to determine the dimension mask of each spider

in the population. 𝑝𝑐 controls the probability of changing

spider’s dimension mask in the random walk step, and 𝑝𝑚

defines the probability of each value in a dimension mask

to be one.

In this work, these parameters are set as follows :(pop=40,

ra=1, pc=0.7, pm=0.1)

7.2 Case Study1
The Dataset employed in this work(Phase2 dataset) is used as

Dataset1by [26], it includes the number of faults detected in

21 week of testing, and the cumulative number of faults since

the starting of test is recorded for each week. Phase2 data

observes 416hours per week of testing [26].Sixteen SRGMs

are selected for investigation in this study; first the Social

Spider Algorithm is applied for estimating the parameters of

these models, Table 1 shows the values of estimated

parameters for Dataset1 using SSA.

Table 1. Parameter Estimation using SSA (Dataset1)

 Model Parameter Values

1 Goel-O. a=4.5457*10^(3), b=4.6771*10(-4)

2 G.Goel a=51.5350, b=0.0099, c=1.7236

3 Gompert a=53.6928, b=0.8669, k =0.0179

4 Inf. S. a=46.3662, b=0.2580, β=14.8860

5 Log.Gro. a=45.8508, b=0.2741, k= 19.9806

6 Musa-O. a=2.7617*10^(3), b=7.7032*10(-4)

7 Y. Del. a=60.8072, b=0.1232

8 Modi-D. a=1.1528*10^(3), b=196.8210, c=0.3779

9 P-Z-IFD a=58.0815, b=0.1420, d=0.0091

10 Y. Ray. a=108.7096, α = 0.5833, β=0.0095

11 Y. M1 a=651.9094, b=0.0030, α =0.0128

12 Y. M2 a=2.5130, b=0.3456, α =0.9875

13 Y. Exp. a=749.2519, α= 7.1016, β=3.9344*10(-4)

14 P-N-Z a=45.0971, b=0.2605, α = 0.0012, β=14.6798

15 P-Z a=46.7686, b=0.2064, C=7.2006, α =0.1156,

β=2.6478

16 Z-T-P a=581.8986, b=0.1460, c=0.0353, α =0.3392,

β=11.2635

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 8, August 2018

21

After estimating the parameters of the selected SRGMs, the

Weighted Criteria technique is engaged using the ten of the

comparison criteria explained in section5 (MSE, MAE,

MEOP, AE, Noise, RMSPE, SSE,TS, PRR, Rsq) rather than

the seven criteria employed by [7] to rank the different

SRGMs, results are shown in Table 2. Table 3 shows the

Model’s Permanent value and ranking using Dataset1.The

fifth row in Table 3 shows that the Logistic Growth Model is

the best model suitable for Dataset1. Figure 1 illustrates the

actual and estimated failures for the Logistic Growth Model

using SSA Values of actual and estimated failures are very

close together indicating the optimality of the model.

7.3 Case Study2
The second dataset used in this paper is (DS1) used by [27],

this dataset is used in this work as Dataset2.47.65 CPU hours

were spent in 19 weeks, and 328 software faults have been

found and removed [27]. SSA was also used for parameter

estimation as Table 4 shows the values of estimated

parameters for dataset2. After that, the weighted criteria

method is applied also using the same ten comparison criteria

used in Case Study1 to rank the different SRGMs. Table 5

demonstrates the values for the selected models. In Table 6,

the Model permanent values and ranking are given for

Dataset2. Table 6 shows that Z-T-P model is the best model

that suitable for Dataset2. Figure2 Depicts the actual and

estimated failures of Z-T-P model using SSA. Here again the

actual and estimated failure values are very close to each other

signifying that the first ranked model is optimal.

Table 2. Criteria Values of SRGMs (Dataset1)

Model/

Criteria

MSE MAE MEOP AE Noise RMSPE SSE TS PRR Rsq

Goel-O. 6.6637 2.2751 2.1614 0.0233 0.0094 2.6789 126.6111 9.1599 1.0198 0.9693

G.Goel 3.0991 1.7045 1.6148 0.0233 2.1581 1.6712 55.7831 6.0800 -6.4582 0.9865

Gompert 2.1885 1.4235 1.3486 0.0233 10.7874 1.4058 39.3935 5.1094 -1.4299 0.9904

Inf. S. 2.0470 1.2351 1.1701 0 5.5569 1.3837 36.8456 4.9414 -4.4564 0.9911

Log.Gro. 1.1412 0.9049 0.8572 0 2.9727 1.1025 20.5410 3.6895 -4.4564 0.9911

Musa-O. 6.7084 2.2716 2.1580 0.0233 0.0153 2.6629 127.4587 9.1905 0.9983 0.9691

Y. Del. 3.4349 1.7784 1.6894 0.0233 2.0994 1.8222 65.2638 6.5764 -7.5830 0.9842

Modi-D. 8.0185 2.5304 2.3973 0 0.0600 2.7755 144.3333 9.7800 1.1054 0.9650

P-Z-IFD 3.8053 1.9004 1.8004 0.0233 3.1817 6.7373 68.4963 1.8865 -325.9355 0.9834

Y. Ray. 3.6088 1.7644 1.6715 0.0233 3.1675 1.8391 64.9592 6.5611 -11.9533 0.9842

Y. M1 6.2901 2.2754 2.1556 0.0698 0.2049 2.4489 113.2227 8.6621 0.9983 0.9691

Y. M2 5.3514 2.0944 1.9841 0.0930 0.6582 2.2841 96.3260 7.9896 -1.6504 0.9766

Y. Exp. 8.6727 2.6004 2.4636 0 0.0634 2.8811 156.1078 10.1711 0.3945 0.9621

P-N-Z 2.1437 1.3043 1.2318 0 2.6767 1.3850 36.4426 4.9143 -4.4704 0.9912

P-Z 3.0792 1.7359 1.6338 0.0233 2.7651 1.7523 49.2667 5.7139 -6.7189 0.9880

Z-T-P 4.2792 1.9509 1.8362 0 3.4787 2.2287 68.4666 6.7359 -33.5239 0.9834

Table3. Permanent Values and Ranking (Dataset1)

Rank Model

Value

Sum of

weighted

value

Sum of

weight

Model

12 21.9772 5.3644 117.8944 Goel-O. 1

6 6.0821 3.4581 21.0328 G.Goel 2

5 5.6310 3.5080 19.7532 Gompert 3

3 4.0808 2.5051 10.2226 Inf. S. 4

1 1.4490 1.2840 1.8606 Log. Gro. 5

13 22.2762 5.3616 119.4365 Musa-O. 6

8 7.8446 3.7429 29.3619 Y. Del. 7

14 27.1832 5.7294 155.7421 Modi-D. 8

16 70.8875 5.0692 359.3462 P-Z-IFD 9

7 7.7548 3.8666 29.9845 Y. Ray. 10

11 17.0506 5.5175 94.0768 Y. M1 11

10 12.4056 5.4126 67.1463 Y. M2 12

15 30.4574 6.0050 182.8969 Y. Exp. 13

2 3.4434 2.3270 8.0126 P-N-Z 14

4 4.8108 3.5384 17.0227 P-Z 15

9 8.9616 4.2558 38.1385 Z-T-P 16

Table 4. Parameter Estimation SSA (Dataset2)

 Model Parameter Values

1 Goel-O. a=738.9787, b=0.0335

2 G.Goel a=431.3436, b=0.0361, c=1.2780

3 Gompert a=385.9318, b=0.0483, c=0.8487

4 Inf. S. a=381.7563, b=0.1774, β=2.7918

5 Log. Gro. a=347.2247, b=0.2846, k= 10.6625

6 Musa-O. a=640.2760, b=0.0386

7 Y. Del. a=369.8893, b=0.2017

8 Modi-D. a=1.0724*10^(3), b=95.4546, c=2.1796

9 P-Z-IFD a=369.9175, b=0.2018, d=9.3438e-005

10 Y. Ray. a=540.5019, α = 0.9836, β=0.0155

11 Y. M1 a=774.0665, b=0.0315, α=1.7150*10^(-4)

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 8, August 2018

22

12 Y. M2 a=883.6043, b=0.0268, α=2.2544e-005

13 Y. Exp. a=811.3068, (r*α)= 8.6992, β=0.0035

14 P-N-Z a=290.1209, b=0.1511, α=0.0251, β=1.0722

15 P-Z a=211.2503, b=0.1844, c=167.3081,

α=40.0734, β=3.0363

16 Z-T-P a=212.5387, b=0.2466, c=0.3025, α=9.8988,

β=0.5939

Table 5. Criteria values of SRGMs for Dataset2

Model/

Criteria

MSE MAE MEOP AE Noise RMSPE SSE TS PRR Rsq

Goel-O. 156.5539 11.0704 10.4554 0.0610 0.5930 12.5235 2661.4 5.2771 0.6510 0.9864

G.Goel 121.4961 9.4312 8.8764 0.0366 1.0999 10.5401 1943.89 4.5100 -0.3768 0.9901

Gompert 103.2497 8.4137 7.9188 0.0274 9.5592 9.5848 1652.0 4.1576 0.2290 0.9916

Inf. S. 98.5457 8.2750 7.7882 0.0244 2.9237 9.3823 1576.7 4.0618 -0.1223 0.9920

Log. Gro. 108.1181 8.1123 7.6351 0.0091 2.5916 9.8495 1729.9 4.2545 0.3640 0.9912

Musa-O. 166.3821 11.3840 10.7515 0.0732 0.5048 12.8768 2828.5 5.4402 0.6046 0.9856

Y. Del. 190.1881 11.2141 10.5911 0.0091 2.3755 14.1097 3233.20 5.8164 -2.8140 0.9835

Modi-D. 169.6865 11.8601 11.1625 0.0671 10.6590 12.5391 2715.0 5.3299 0.5855 0.9862

P-Z-IFD 202.3143 11.9158 11.2149 0.0091 2.3779 14.1303 3237 5.8198 -2.8313 0.9835

Y.Ray. 324.2411 13.7609 12.9514 0.0061 3.5059 20.1835 5187.9 7.3677 -6.1168 0.9735

Y. M1 166.2916 11.7372 11.0468 0.0640 0.5540 12.3293 2660.7 5.2763 0.5651 0.9864

Y. M2 171.7253 11.7006 11.0123 0.0762 0.4755 12.3982 2747.6 5.3618 0.4260 0.9860

Y. Exp. 167.3101 11.7926 11.0989 0.0610 0.5826 12.3886 2677 5.2925 0.6101 0.9863

P-N-Z 141.8075 10.7410 10.0697 0.0549 1.3576 10.8955 2127.1 4.7177 0.2888 0.9892

P-Z 112.9091 9.4423 8.8128 0.0244 2.0134 9.4392 1580.7 4.0669 -0.2514 0.9919

Z-T-P 91.4009 8.0141 7.4798 0.0183 2.4192 8.4909 1279.6 3.6591 0.2446 0.9935

Table 6. Permanent Values and Ranking (Dataset2)

Rank Model

value

Sum of

weighted

value

Sum of

weight

Model

12 249.7447 4.0190 1003.7 Goel-O. 1

6 137.7159 2.5744 354.5 G.Goel 2

3 66.1315 2.6428 174.8 Gompert 3

4 69.5552 1.8185 126.5 Inf. S. 4

5 125.0868 1.6845 210.7 Log. Gro. 5

13 271.6751 4.4016 1195.8 Musa-O. 6

15 401.1755 4.2911 1721.5 Y. Del. 7

8 200.6151 5.4221 1087.8 Modi-D. 8

14 380.7546 4.5851 1745.8 P-Z-IFD 9

16 763.7493 7.2976 5573.5 Y. Ray. 10

9 238.5525 4.2571 1015.5 Y. M1 11

11 248.7051 4.4760 1113.2 Y. M2 12

10 240.8343 4.2932 1034 Y. Exp. 13

7 146.1123 3.4655 506.4 P-N-Z 14

2 62.9943 2.2090 139.2 P-Z 15

1 1.0565 1.3852 1.5 Z-T-P 16

Fig 1: Actual and estimated failures for the Logistic

Growth Model using SSA (Dataset1)

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 8, August 2018

23

Fig 2: Actual and estimated failures for Z-T-P model using

SSA (Dataset2)

8. CONCLUSIONS
According to the fact that there is no optimal growth model of

Software Reliability suitable for all the involved criteria, then

a unified criterion is needed to decide the most appropriate

model for a given dataset.This work discusses the question of

selecting the optimal software reliability growth model by

using the weighted matrix method applied on two datasets of

failure. The Social Spider Algorithm (SSA) was used for

parameter estimation instead of relying on parameter

estimated using the Least Square and Maximum Likelihood

Estimation.The weighted criteria method was used to

determine the overall rank of a model. Results were improved

by using SSA. Ranks of Models were provided accordingly

for the two selected datasets, and the best ranked models were

proven to be the optimal after comparing the actual and

estimated failures for these models.

9. REFERENCES
[1] Bidhan, K. and Awasthi, A. 2014. A Review on

Parameter Estimation Techniques of Software Reliability

Growth Models, International Journal of Computer

Applications Technology and Research, Vol.(3), No.(4)

pp:267– 272.

[2] Kaur,R. and Panwar,P. 2015. Study of Perfect and

Imperfect Debugging NHPP SRGMs used for Prediction

of Faults in a Software, IJCSC, available online at

www.csjournalss.com.Vol. (6), No.(1), pp:73-78.

[3] Berkun,S. 2005. The Art of Project Management (Theory

in Practice),1st Ed, O'Reilly Media, PP:488.

[4] Al-Rahamneh,Z., Reyalat,M., Sheta,A. F., Bani-

Ahmad,S. and Al-Oqeili, S. 2011. A New Software

Reliability Growth Model: Genetic-Programming-Based

Approach, Journal of Software Engineering and

Applications, Vol.(4), No.(8), pp:476-481.

[5] Wohlin,C., Höst,M., Runeson, P. and Wesslén,A.

2001.Software Reliability, in Academic Press. Meyers,

R. Encyclopedia of Physical Sciences and Technology

(3rdEdition), pp:25-39.

[6] Alweshah,M.,Ahmed, W. and Aldabbas, H. 2015.

Evolution of Software Reliability Growth Models: A

Comparison of Auto-Regression and Genetic

Programming Models, International Journal of Computer

Applications. Vol.(125), No.(3), pp:20-25.

[7] Anjum,M., Haque,M. A. and Ahmad,N. 2013. Analysis

and Ranking of Software Reliability Models Based on

Weighted Criteria Value, I.J. Information Technology

and Computer Science, Vol.(5), No.(2), pp:1-14.

[8] Aggarwal,G. and Gupta,V. K. 2014. Software Reliability

Growth Model. International Journal of Advanced

Research in Computer Science and Software

Engineering, Vol.(4), No.(1), pp:475-479.

[9] Weiss, R. M. 2010. GPU-Accelerated Data Mining with

Swarm Intelligence, Honors Thesis, Department of

Computer Science, Macalester College, pp:1-88.

[10] Liu,H.,Abraham,A. and Clerc, M. 2007. Chaotic

dynamic characteristics in swarm intelligence. Science

Direct, Applied Soft Computing, Vol.(7), No.(3),

pp:1019–1026.

[11] Kaswan,S. K., Choudhary,S. and Sharma,K. 2015.

Software Reliability Modeling using Soft Computing

Techniques: Critical Review, I.J. Information

Technology and Computer Science, Vol.(07), No.(7),

pp:90-101.

[12] Stringfellow,C. and Andrews, A. A. 2002. An Empirical

Method for Selecting Software Reliability Growth

Models, Empirical Software Engineering, Vol.(7),

No.(4), pp:319-343.

[13] Kharchenko,V., Tarasyuk, O., Sklyar,V. and

Dubnitsky,V. 2002. The Method of Software Reliability

Growth Models Choice Using Assumptions Matrix,

Proceedings of the 26th Annual International Computer

Software and Applications Conference (COMPSAC’02).

[14] Sheta, A. 2006. Reliability Growth Modeling for

Software Fault Detection Using Particle Swarm

Optimization, IEEE Congress on Evolutionary

Computation Sheraton Vancouver Wall Centre Hotel,

Vancouver, BC, Canada, pp:3071- 3078.

[15] Garg,R., Sharma,K., Kumar,R. and Garg,R. K. 2010.

Performance Analysis of Software Reliability Models

using Matrix Method. International Journal of Electrical

and Computer Engineering,Vol.(5), No.(2), pp:113-120.

[16] Sharma,K., Garg,R., Nagpal,C. K. and Garg,R. K. 2010.

Selection of Optimal Software Reliability Growth

Models Using a Distance Based Approach. IEEE

Transactions On Reliability, Vol.(59). No.(2), pp:266-

276.

[17] Sharma,T. K., PantM. and Abraham, A. 2011.

Dichotomous Search in ABC and its Application in

Parameter Estimation of Software Reliability Growth

Models. Nature and Biologically Inspired

Computing(NaBIC), Third World Congress, IEEE,

pp:207-212.

[18] Shanmugam,L. and Florence,L. 2012. A Comparison of

Parameter best Estimation Method for Software

Reliability Models”. International Journal of Software

Engineering & Applications, Vol.(3), No.(5), pp:91-102.

[19] Miglani,N. 2014. On the Choice of an Appropriate

Software Reliability Growth Model. International Journal

of Computer Applications, Vol.(87), No.(9), pp:18-24.

[20] Sheta,A. and Abdel-Raouf, A. 2016. Estimating the

Parameters of Software Reliability Growth Models Using

the Grey Wolf Optimization Algorithm. International

Journal of Advanced Computer Science and

Applications, Vol.(7), No.(4), pp:499-505.

[21] Saxena,S., Choudhary,D. and Gupta,A. 2014. Software

Reliability Growth Model with Efficient Debugging

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.O.M.%20Tarasyuk.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.V.%20Sklyar.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.Yu.%20Dubnitsky.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.Yu.%20Dubnitsky.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.Yu.%20Dubnitsky.QT.&newsearch=true

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 8, August 2018

24

Involving Time Dependent Fault Content Function”. I. J.

of Computer Applications, Vol.(87), No.(10), pp:56-58.

[22] Jelinski,Z. and Moranda,P. 1972.Software reliability

research”. in Statistical Computer Performance

Evaluation, W. Freiberger, ED., Academic Press, New

York, pp:465-484.

[23] Yua,J. J. Q. and Lia, V. O. K. 2015. A Social Spider

Algorithm for Global Optimization. Elsevier Applied

Soft Computing, Vol.(30), pp:614-627.

[24] Yua,J. J. Q. and Lia,V. O. K. 2016. A Social Spider

Algorithm for Solving the Non-convex Economic Load

Dispatch Problem. Elsevier Neurocomputing, Vol. (171),

No.(C), pp:955-965.

[25] Yua,J. J. Q. and Lia,V. O. K. 2015. Parameter Sensitivity

Analysis of Social Spider Algorithm. IEEE Congress on

Evolutionary Computation, CEC 2015–Proceedings,

pp:3200 –3205.

[26] Pham, H.2007. An Imperfect-debugging Fault-detection

Dependent-parameter Software. International Journal of

Automation and Computing, Vol.(4),No.(4), pp:325-328.

[27] Huang,C.-Y, Kuo,S.-Y. and Michael,R. L. 2007. “An

Assessment of Testing-Effort Dependent Software

Reliability Growth Models”. IEEE Transactions On

Reliability, Vol.(56), No.(2), pp:198-211.

IJCATM : www.ijcaonline.org

