
International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 8, August 2018 

50 

Tri-Search: A New and Efficient Searching Algorithm: An 

Extension of Ternary Search Approach with Variable 

Partitioning  

Hriday Kumar Gupta 

Shobhit University, Meerut 
NH-58, Modipuram, Meerut, Uttar Pradesh 250110 

 

Rajesh Pandey 

Shobhit University, Meerut 
NH-58, Modipuram, 

Meerut, Uttar Pradesh 250110 

 

ABSTRACT 

Searching is a traversal technique in a data structure to search 

a particular element in a given set of particular domain. 

Sorting Technique is generally used in a huge variety of 

important applications to search a particular item. There are 

various Searching Algorithms for different data structure 

having different time and space complexity. This paper 

contributes an efficient searching algorithm Tri-Search search 

which is poisoned on dividing the given elements into three 

unequal parts. This paper  also compare the Tri-Search search 

algorithm with Linear Search and Binary Search. Python is 

used for implementation and Analysis of CPU time taken for 

all the three searching algorithms used. Linear search can be 

used with any random array elements but for binary search 

and Tri-Search search element must be in sorted array. Result 

shows that Tri-Search search algorithm requires less time for 

search any particular element. 

General Terms 

Searching, Data Structure, Binary Search, Tri-Search, types of 

searching, Classification of searching. 

Keywords 

Binary Search, Complexity, algorithms, data, key. procedure. 

1. INTRODUCTION 
In computer science, searching is the process of finding an 

item with specified properties among a collection of items. 

The items may be stored as records in a database, simple data 

elements in arrays, text in files, nodes in trees, vertices and 

edges in graphs or may be elements of other search space. 

Several Searching/Traversal Algorithms with different time 

and space complexity for different data structure  are exist 

and used. This paper discussed and compare the previously 

exist searching algorithms. 

This paper contributes a novel searching algorithm Tri-Search 

which is based on dividing the given elements into three 

unequal parts. In this paper the comparison of the Tri-Search 

search algorithm with Linear Search and Binary Search is 

also has been reviewed. 

2. RELATED WORK 
There are assertive ways of organizing the data which 

enhance searching process. That means, if  the data is 

organized  in some proper structure then it is accessible to 

search the required item. Sorting is one of the approaches for 

making the elements ordered. 

3. SEQUENTIAL SEARCH 

3.1 Unsorted Sequential Search  
Suppose given an array in which order of element is 

unknown. That means the elements of the array are not sorted. 

In this case if searching  for an element then  array list has to 

be scan completely  and  t will be cleared if the element is 

there in the given array or not. 

//Serch procedure for a matching data in the array 

int UnsorteddSequentialSearch (int ARR [], int N, int KEY) 

{ 

//loop overall items in the array 

for (int i = 0; i < N; i++) 

{if (ARR [i] == KEY) 

//if data found return index 

return i;} 

//Scanning done but data  not found  then return -1 

return -1; 

} 

3.2 Sorted Sequential Search  
If the array elements  are already sorted then in many cases 

the there is no need to  scan the complete array to see if the 

element is there in the given array or not. In the below 

algorithm, it can be seen that, at any point if the value at  Arr[i 

] is greater than the to be searched data  then  just return −1 

without searching the remaining array elements. 

//Serch procedure for a matching data in the array 

int SortedSequentialSearch(int ARR [], int N, int KEY){ 

//loop overall items in the array 

for (int i = 0; i < N; i++){ 

if (ARR [i] == KEY) 

//if data found return index 

return i; 

else if(ARR [i] > KEY) 

//if data value exceeds ,return -1 

return -1;} 

//Scanning done but data  not found  then return -1 

return -1;} 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 8, August 2018 

51 

3.3 Complexity Analysis of Sequential 

Search 
For unsorted and sorted sequential search Time complexity 

O(n) .This is because in the worst case we need to scan the 

complete array, but the average case of sorted sequential 

search reduces the complexity even though the growth rate is 

same. 

4. BINARY SEARCH 
Suppose  the aim is to search a word in a dictionary, generally 

approach is to  go directly on some page and start searching 

from there. If the word that  are searching is same then 

suppose to stop  the  search. If the page is before the selected 

pages then we generally apply the same process recur for the 

first half otherwise apply the same process recur for the 

second half. Binary search also works in the same way. The 

algorithm implement such a approach is introduced as binary 

search. 

4.1 Procedure  
In this procedure  basically ignore half of the elements just 

after one comparison. 

Compare x with the middle element. 

If x matches with middle element, return the mid index. 

Else If x is greater than the mid element, then x can only lie in 

right half subarray after the mid element. So  recur for right 

half.Else(x is smaller)recur for the left half.  

// A recursive binary search function, It returns location of x 

in given array    arr[0..n-1] is present, otherwise -1 

int BinarySearch(int ARR[],int START,int END,int KEY){ 

if(START== END){ 

if(ARR [START]== KEY) 

return START; 

else 

return -1;} 

else{ 

// The below original middle point condition  is done to avoid 

overflow that may occure in adding two very big integers 

range where the addition result may become greater than 

INT_MAX limit and yield unexpected results. 

int MIDDLE= START +( END - START)/2; 

// If the element is present at the middle itself 

if(ARR [MIDDLE]== KEY) 

return middle; 

//If element is smaller than middle, then 

if(ARR [MIDDLE]> KEY) 

BinarySearch(ARR, START, MIDDLE -1, KEY); 

else 

BinarySearch(ARR, MIDDLE +1, END, KEY); 

}} 

4.2 Complexity Analysis of Binary Search  
After every passes , the array  list is divided into 2 equal parts. 

Therefore N items can be divided into two parts almost log2n 

times. So execution time of binary search is O( log2N).  

After 1st iteration, N/2 items remain (N/21) 

After 2nd iteration, N/4 items remain (N/22) 

Worst case: Number of iterations is log2(N) 

It is said that Binary Search is a logarithmic algorithm and 

executes in O(log2N) time. 

5. PROPOSED ALGORITHMS TRI-

SEARCH 
In the proposed algorithm element are stored in array in either 

increasing or non-increasing order. As in binary search we 

divide the array in two equal part( half-half) after finding  

middle point index but here we are  dividing array list in three 

unequal parts after calculating two locations(P1 and P2) . The 

first part of the first pass contains 25% elements, second part 

contains 50% element and third part contains 25% element. 

The element to be search can be lying in any of these three 

parts. Similarly in second pass array list is divided into 

unequal part as 35% ,30% and 35% respectively and in third 

pass array list divided into 45%,10% and 45% respectively. 

After performing these passes partially finished one iteration 

of the proposed algorithms. If till this iteration if searched 

element not found then suppose to recursively perform this 

procedure 

5.1 Implementation of Proposed Algorithm 
//Tri-Search Search PROGRAM implemented recursively. 

Output: hold the index of searched item if found and -1 value 

if not found 

//A is array passed by main function also TS received START 

and END index value of array list  along with value to  be 

searched and I is a global variable having initial value -10  . 

int TS(int ARR [],int START ,int END,int KEY) 

{ 

int P1,P2;//contain the index of first part and second part of 

array list 

IF(START<=END){ 

I=I+10;//I is used for updating the index 

IF(I==30) I=0; 

P1=START+(25+I)*(END-START)/100; 

P2=START+END-P1; 

IF(ARR [P1]==KEY) return P1; 

ELSE IF(ARR [P2]==KEY) return P2; 

ELSE IF(KEY> ARR [P1] &&KEY< ARR [P2]) 

{ START=P1+1; 

END=P2-1; 

return TS(ARR,START,END,KEY);} 

ELSE IF(ARR [P1]>KEY) 

{END=P1-1;return TS(ARR,START,END,KEY);} 

ELSE IF(ARR [P2]<KEY) 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 8, August 2018 

52 

{ START=P2+1; return TS(ARR,START,END,KEY);} 

}//END IF 

return -1; 

}//end of function 

If searched element is not found then this function will return 

-1 otherwise return the index of the key if searched element is 

found at P1 or P2.The proposed algorithms will check flowing 

three conditions after finding P1 and P2 when the key is not 

found at the P1 and P2.  

Condition 1: IF SEARCHKEY is less than P2 and also 

greater than P1.Then (P1 + 1) will become the   FIRST and 

(P2 - 1) will become the LAST and the procedure will be 

repeated for sub list. 

Condition 2 : IF SEARCHKEY is greater than P2. Then 

(P2+1) will become the FIRST and then the procedure will be 

repeated for sub list. 

Condition 3: IF SEARCHKEY is less than P1. Then (P1 -1) 

will become the LAST procedure will be repeated for sub list. 

6. EMPERICAL RESULTS  

6.1 Improvement of Tri-Search over 

Binary Search and Ternary search: Time 

Complexity 
After every passes, the array  list is divided into three unequal 

parts. In worst case after completion of  all three iteration of 

kth pass the total time taken is  

N(1/2)k(7/20)k(9/20)k  

To terminate the recursive tree for this recursive procedure  

we have relation  

N(1/2)k(7/20)k(9/20)k =1 

In worst case  and to terminate recursive tree we have 

condition as 

N(63/800)k=1     

After computation the value of k is logB(n) where B=12.6 

 

7. CONCLUSION AND FUTURE SCOPE   
This paper, present a new efficient approach for searching  

data and had been achieved to search within the sorted linear 

order of items with worst-case complexity as 

O(log12.69(n)).The approach  that had been used to implement 

this algorithm involves variable partitioning of array list . The 

performance graph for binary, ternary and tri-search is also 

present along with their comparison graph. Thus it can 

observed that how efficient is to use this algorithm it has 

minimum worst-case complexity. Ternary search are efficient 

for problem like “Given a word, find the next word in 

dictionary” or “Find all telephone numbers starting with 9758 

or “typing few starting characters in a web browser displays 

all website names with this prefix”. Used in spell checks. 

8. ACKNOWLEDGMENTS 
Our thanks to the experts who have contributed towards 

development of the template. 

9. REFERENCES 
[1]   D. E. Knuth, The Art of Computer Programming, Vol. 3: 

Sorting and Searching. Reading, MA: Addiso     

Wesley,1973 Structures.. 

[2]Quadratic Research Paper International Journal of 

Computer Applications (975– 8887) Volume 65– No.14, 

March 2013 

[3] Cormen T.H., Leiserson C.E., Rivest R.L. and Stein 

C.(2003) Introduction to Algorithms MIT Press, 

Cambridge, MA, 2nd edition. 

[4]  Knight, W.: Search in an ordered array having variable 

probe cost. SIAM J. Comput. 17(6), 1203–1214 (1988). 

[5]  D. Coppersmith, “Fast evaluation of logarithms in finite 

fields of characteristic two,” IEEE Trans. Inform. 

Theory, vol. IT-30, pp. 587-594, 1984. 

 [6] Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in 

trees. SIAM J. Comput. 28(6), 2090–2102 (199Carmo, 

R., Donadelli, J., Kohayakawa, Y., Laber, E.: Searching 

in random partially ordered sets.Theor. Comput. Sci. 

321(1), 41–57 (2004) 

[7] Knight, W.: Search in an ordered array having variable 

probe cost. SIAM J. Comput. 17(6), 1203–1214 (1988) 

[8] Navarro, G., Baeza-Yates, R., Barbosa, E., Ziviani, N., 

Cunto, W.: Binary searching with nonuniform costs and 

its application to text retrieval. Algorithmica 27(2), 145 

169(2000) 

[9] The -Version of Binary Search Trees: An Average Case 

Analysis, Hindawi Publishing CorporationISRN 

Combinatorics,Volume 2013, Article ID 450627, 8 

pages,http://dx.doi.org/10.1155/2013/450627 

[10] Machine Vision and Applications,DOI 10.1007/s00138- 

013-0483-3A 3-degree of freedom binary search pose 

estimation technique,Robert Ross · Andrew Martchenko 

John Devlin,Received: 18 September 2011 / Revised: 29 

October 2012 / Accepted: 11 january 2013,© Springer- 

Verlag Berlin Heidelberg 2013 

[11] IEEE TRANSACTIONS ON SOFTWARE 

ENGINEERING, VOL. SE-5, NO. 4, JULY 

1979,Multidimensional Binary Search Trees in Database 

Applications,JON L. BENTLEY, MEMBER, IEEE 

[12] Non-blocking Binary Search Trees, PODC’10, July 25– 

28,2010, Zurich, Switzerland.Copyright 2010 ACM 978- 

1-60558-888-9/10/07 ...$10.00. 



International Journal of Computer Applications (0975 – 8887) 

Volume 181 – No. 8, August 2018 

53 

[13] A Non-Blocking Internal Binary Search Tree,SPAA’12, 

June 25–27, 2012, Pittsburgh, Pennsylvania, 

USA.Copyright 2012 ACM 978-1-4503-1213-4/12/06     

[14] Noisy binary search and its applications,Computer 

ScienceDivision, University of California, Berkeley. 

Supported I part by NSF grant CCF-0515259 

karp@icsi.berkeley.edu, rdk@cs.cornell.edu 

 

IJCATM : www.ijcaonline.org 


