
International Journal of Computer Applications (0975 – 8887) 

Volume 182 – No. 10, August 2018 

28 

Effective Bug Triage with Data Reduction 

S. R. Birajdar 

Dept.of Computer Science and Engineering 
VVP Institute of Engineering and Technology, 

Soregaon, Solapur, Maharashtra, India  

 

H. B. Torvi 

Assistant Professor 
Dept.of Computer Science and Engineering 

VVP Institute of Engineering and Technology, 
Soregaon, Solapur, Maharashtra, India 

 

ABSTRACT 

As human beings we all make mistakes and these mistakes are 

reflected as defects in the software product. These defects 

make the software fail which are due to our limitations as 

human beings. When the testing is done, the reasons for 

failure are identified and the defects are found. Then the 

defects are corrected. This is an iterative process- you need to 

test the software, fine defect, correct the code, and test 

software again. The defect has to be removed by developer. 

To remove defect which is not easy, Most of the organization 

spend 40% of cost to remove defect. The process of fixing or 

remove bug is bug triage. Remember every mistake in manual 

bug triggering, even those rated with the least priority. In 

order to reduce time, manual boom trials are applied to price, 

text classification techniques to take automated bug triage. 

In this paper, deal with the problem of data reduction for bug 

triage, i.e., how to reduce the scale and improve the quality of 

bug data. For the same combine instance selection and feature 

selection to reduce data scale on the bug dimension and the 

word dimension. 

Keywords 

Bug Triage, Bug Report, Instances Selection, Feature 

Selection, Data Reduction   

1. INTRODUCTION 
Fuzzy needs, software complications, programming errors, 

communication gap, documentation errors, standard deviation, 

lack of design, lack of designing experience, unreal time 

schedules for development, bugs in software due to last 

minute changes in error. Fixing bug is time-consuming of 

software development process [1]. Late bug fixing[4] can 

cause software failure problems. Bug fixing is an important 

aspect of open source software like Eclipse and Mozilla [2]. 

In software projects, usually a database is maintained to 

collect and manage the large number of bug reports. This 

database is known as a bug repository or a bug tracking 

system [5]. Bug repositories are used for all kind of software, 

but they are mostly used for open source systems where the 

developers, users, tester and other team members are 

distributed all over the world. The purpose of the fault report 

is to reflect the bug and explain it to the developers. The bug 

report must comply with some guidelines, avoid duplicate bug 

reporting, always test the latest available build, state useful 

facts, do not think of votes or complain, flag security / privacy 

vulnerability. Bug report records summary is to make the 

report searchable and uniquely identifiable, 

Overview/Description, Steps to Reproduce, Test result, 

Environment setup, configuration ,any additional information. 

Bug Triaging involves categorizing the bug according to bug 

type, assign severity and priority and most important is assign 

the bug to effective developer who can solve bug The bug 

report should be clear and concise. Report an individual 

problem with each bug. If there is more than one problem in a 

single bug report, you can’t close it until all issues are 

resolved. 

The manual triage process of assigning bug to developer is 

error prone [6] and time consuming [16]. In case of Open 

Source Software Development where developers are 

geographically separate location and different time zones it is 

more difficult task to assign developer for bug fixing. But, 

still there was a problem with bug report are namely large 

scale and low quality due to miscommunication ,confusion 

,lack of clarity. Report each bug as a separate issue. On one 

hand for open source project, an average 30 new bug are 

reported per day [13]. On the other hand bug reports suffer 

from low-quality, noise and redundancy.   

This paper is having sub sections are as follows. We start with 

an Introduction. In Section 2 described Related work. Section 

3 Proposed system and its system architecture. Algorithms in 

Section 4. Section 5 defines the experimental results. Finally 

Section 6 represents conclusions and feature works. 

2. RELATED WORK 
To examine the relationship between bug data, Sandusky et al. 

[7] form a bug report network to monitor to investigate the 

quality of bug data, Zimmermann et al. [8] Developer and 

three users Design Questionnaire Open source project. After 

analyzing the questionnaire, He makes good bug reports and 

displays them Train the classifier to identify the bug quality 

and correct the report. Duplicate bug reports weaken Quality 

of bug data by delaying handling costs to find bugs for 

duplicate bug reports Wang et al. [9] represents, a natural 

language processing method to adapt the execution 

information; Sun et al. [10] design a duplicate bug 

identification method by optimizing a recovery function on 

multiple features. 

To determine a suitable developer of bug trials to fix a new 

bug, e.g. bug fixes. Cubranic and Murphy [11] first propose 

the problem of automatic bug triage is to reduce the cost of 

manual bug triage [3]. They use text classification techniques 

to predict related developers. Anvik et al. [12] examine 

several techniques on bug triage, including data preparation 

and typical classifiers. Anvik and Murphy [13] worked to 

reduce efforts to create bug-related recommendations by 

making development-oriented recommendations. Park et al. 

[15] design to convert bug trigger to optimization problem 

and offer a collaborative filtering approach to reduce bug 

fixing time [4]. In addition to studying the relationship 

between them Bug report, Hong et al. [14] developers Create 

Social Networks Examine the cooperation between developers 

Mozilla project's bug data or developer social network The 

developer is able to understand the community And the 

evolution of the project, map the bug priority. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 182 – No. 10, August 2018 

29 

3. PROPOSED SYSTEM  
The proposed system, address the problem of data reduction 

and improve the quality to facilitate the process of bug triage.  

The aim is to build effective bug report/bug data and assign 

bug to appropriate developer to fix bug. Bug triage is most 

lengthy and difficult in selecting of developer for bug fixing. 

The expert person who has domain knowledge will assign bug 

to developer. If in case assign developer could not resolve it, 

it is assign to another developer [6]. This would increase both 

time and money. Thus, it is really important part to assign the 

bug to developer who could successfully fix bug.  

As shown in figure 1, in the proposed system, we combine 

instance selection and feature selection algorithms decrease 

the bug dimensions and word dimensions.Reduced bug data 

includes reporting bugs related to native bug reports and 

providing similar information to key word and original bug 

data. Historical bug sets the data base based on bugs fixed by 

the developer, our system can predict the most appropriate 

developer to solve a new bug and reduce the time taken for 

the fixing process. 

 

Fig 1: Bug Triage System for prediction of developers list 

4.  ALGORITHMS 
Proposed system consists of CHI Square for feature selection 

and Cosine Similarity for instances selection algorithms that 

help in predicting developers. The algorithms used are as 

follow. 

4.1 CHI-Square Test 
The chi-square test is an important test for independence to 

determine the dependency of two variables. Where, chi-square 

test is only applicable to categorical or nominal variable. 

From the definition, of chi-square we can easily deduce the 

application of chi-square technique in feature selection [5]. 

Lets you have a target variable and some other features that 

describes each data sample. Now, we calculate chi-square 

relation between every feature variable and the target variable 

and observe the existence of a relationship between the 

variables and the target. If the target variable is independent 

of the feature variable, we can reject that feature variable. If 

they are dependent, the feature variable is accepted. The 

formula for the chi-square statistic used in the chi square test 

is [17].  

 














 


cr

crcr

E

EO
X

,

2

,,2  

O is observed value and E is expected value.  The summation 

symbol means that calculation for every single data item in 

your data set. The chi-squared statistic is a single number that 

tells you how much difference exists between your observed 

counts and the counts you would expect [5]. It includes steps 

in determining the association and they are as follow. 

1) The degrees of freedom (DF) are equal to: 

   11  crDF  

Where r is the number of levels for one variable, and c is the 

number of levels for the other variable. 

2) The expected value counts are computed separately for 

each level of one variable at each level of the other categorical 

variable. Compute r * c expected frequencies, according to the 

following formula [19]. 

  nnnE crcr ,  

http://stattrek.com/Help/Glossary.aspx?Target=Degrees%20of%20freedom


International Journal of Computer Applications (0975 – 8887) 

Volume 182 – No. 10, August 2018 

30 

where Er,c is the expected value for level r of Variable A and 

level c of Variable B,  nr is the total number of sample 

observations at level r of Variable A, nc is the total number of 

sample observations at level c of Variable B, and n is the total 

sample size. 

3) The P-value is the probability of observing a sample 

statistic as extreme as the test statistic. Since the test statistic 

is a chi-square, use the Chi-Square distribution calculator to 

assess the probability associated with the test statistic. Use the 

degrees of freedom computed above. 

4) If the sample findings are unlikely, given the null 

hypothesis, the researcher rejects the null hypothesis. 

Typically, this involves comparing the P-value to 

the significance level, and rejecting the null hypothesis when 

the P-value is less than the significance level. 

4.2 Cosine Similarity 
Cosine similarity is a calculate similarity between two 

vectors. Let’s say for example vector1 which is dataSet1 and 

vector 2 which are dataSet2. Now, going to decide how close 

these two vectors are to each other by calculating one function 

of those two vectors, namely the cosine of the angle between 

two vectors. Let’s say for example vector1 which is dataSet1 

and vector 2 which are dataSet2. Now, going to decide how 

close these two vectors are to each other by calculating one 

function of those two vectors, namely the cosine of the angle 

between them. We check the similarity between two date sets 

of report. If the similarity is greater than the threshold value, 

then the report is stated as duplicate and is given as a 

reference of previously solved report else it is passed to NB 

Classifier. Cosine similarity is finding using below formula.  

cos𝜃=



 

4.3 NB-Classifier 
NB-Classifier algorithm is used to predict developers. Along 

with this data the input also contains keyword count of new 

bug report [11]. By using these counts we calculate prior, 

maximum posterior probability the prediction order of 

developer is decide. 

5. EXPERMENTAL RESULTS  
The accuracy of our trained bug data set can be measured by 

using the formula 

Accuracy k= correct relevant developers/all bug reports in test 

data sets. 

K is size of recommendation list. To improve the quality of 

bug triage, we follow to use recommendation list. A list with 

size k can provide k developer as the prediction result for each 

new-coming bug report. Table 1 shows bug data set for 

Mozilla of three different sizes. Bug data set contains bug id, 

bug summary, bug description and label as developer. 

Table 1: Accuracy of practice Data Set on Mozilla 

M
o
zi

ll
a 

Name DS-M1 DS-M2 DS-M3 

Label developers 20 40 60 

Correct Developers 17 30 47 

Accuracy (%) 85 65 78 

 

The accuracy rate is the most significant evaluation criterion 

for bug triage since it measures the quality of prediction. 

 

Fig 2: Accuracy for Dataset Mozilla 

Precision and Recall are the basic measures used in bug 

resolved count and finding duplicate bug report.  

 

Fig 3: Experimental Bug status out of Total bug 

Figure 3 shows number of not assign bug, new, resolved, 

duplicate bug out of total bug. Precision is the ratio of 

resolved bug count to total number of bug. Precision can be 

seen as measure of exactness or quality i.e. correctness. The 

Precision and recall value for the trained data set can be 

calculated by using the formulae.  

Precision = Resolved Bug Count / Total Bug Count 

Recall is the ratio of duplicate bug found to total resolved bug 

report. That is recall is the fraction of duplicate bug report that 

are successfully find. Recall is a measure of completeness or 

quality. 

Recall = Duplicate Bug Count / Resolved Bug Count. 

To balance the precision and recall value, F- measure is 

defined as  

F-Measure = 2 * (precision * recall / precision + recall) 

 

Fig 3: Comparison Graph for Precision, Recall, F-measure 

0

200

400

600

800

To
ta

l N
u

m
b

e
r 

o
f 

B
u

g 
R

e
p

o
rt



International Journal of Computer Applications (0975 – 8887) 

Volume 182 – No. 10, August 2018 

31 

6. CONCLUSION 
The proposed system combines the feature selection algorithm 

(FS) and instance selection algorithm (IS) in order to reduce 

the scale of bug data sets as well as improve the data set 

quality. The proposed system performance is verified using 

Mozilla bug data set. To demonstrate the effectiveness, scales 

of data set is reduced by using data reduction technique in 

order to decrease the time and labor cost, improve the 

accuracy of bug triage with high-quality bug data in software 

development and maintenance.  

The future work of the proposed system is to improve the 

results of data reduction in bug triage to explore how to 

prepare a high value bug data set and deal with a domain-

specific software task. To predict reduction orders, try to 

identify potential links in the characteristics of bug data sets 

and decrease orders. 

7. REFERENCES 
[1] W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards training 

set reduction for bug triage,” in Proc. IEEE 35th Annual 

CS and Application Conference, Washington, DC, USA: 

IEEE Computer Society, 2011.  

[2] Thomas Zimmermann, Rahul premraj, Jonathan Sillito, 

Silvia Brell, “Improving Bug Tracking Systems”, 

ICSE’09, May 2016. 

[3]  J. Anvik,”Automatic bug report assignment,” in Proc 

28th International Conference on Software Engineering. 

ACM, 2006. 

[4]  H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-

fixing time: An empirical study of commercial software 

projects,” in Proc. 35th Int. Conf. Softw. Eng, May 2013.  

[5]  Shanthi Priya Duraisamy, Laxmi Raja, KalaiSelvi 

Kandaswamy,”An Approach for Predicting Bug Triage 

using Data Reduction Methods”in International Journal 

of Computer Applications ,November 2017 

[6] Gaeul Jeong, Sunghun Kim,Thomas Zimmermann,” 

Improving Bug Triage with Bug Tossing Graphs”,in 

Proc. Joint Meeting 12th Eur. Softw.Eng.Conf.17th ACM 

SIGSOFT Symp. Found. Softw. Eng., Aug.2009. 

[7] R. J. Sandusky, L. Gasser, and G. Ripoche, “Bug report 

networks: Varieties, strategies, and impacts in an F/OSS 

development community,” in Proc. 1st Intl. Workshop 

Mining Softw. Repositories, May 2004, pp. 80–84. 

[8] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. 

Schr€oter, and C. Weiss, “What makes a good bug 

report?” IEEE Trans. Softw. Eng., vol. 36, no. 5, pp. 

618–643, Oct. 2010.  

[9] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An 

approach to detecting duplicate bug reports using natural 

language and execution information,” in Proc. 30th Int. 

Conf. Softw. Eng., May 2008, pp. 461–470. 

[10] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more 

accurate retrieval of duplicate bug reports,” in Proc. 26th 

IEEE/ACM Int Conf. Automated Softw. Eng., 2011, pp. 

253–262. 

[11] D. _Cubrani_c and G. C. Murphy, “Automatic bug triage 

using text categorization,” in Proc. 16th Int. Conf. Softw. 

Eng. Knowl. Eng., Jun. 2004, pp. 92–97. 

[12] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix 

this bug?” in Proc. 28th Int. Conf. Softw. Eng., May 

2006, pp. 361–370. 

[13] J. Anvik and G. C. Murphy, “Reducing the effort of bug 

report triage: Recommenders for development-oriented 

decisions,” ACM Trans. Soft. Eng. Methodol., vol. 20, 

no. 3, article 10, Aug. 2011. 

[14]Q. Hong, S. Kim, S. C. Cheung, and C. Bird, 

Understanding a developer social network and its   

evolution,” in Proc. 27th IEEE Int. Conf. Software 

Maintenance, Sep. 2011, pp. 323–332 

[15] J. W. Park, M. W. Lee, J. Kim, S. W. Hwang, and S. 

Kim, “Costriage: A cost-aware triage algorithm for bug 

reporting systems,” in Proc. 25th Conf. Artif. Intell. Aug. 

2011, pp. 139–144. 

[16] Jifeng Xuan, He Jiang , Member ,IEEE, Yan Hu,      

Zhilei  Ren, Weiqiu Zou, Zhongxuan Luo et al: Towards 

Effective Bug Triage with Data Reduction Techniques, 

in IEEE Transactions, vol.27, No.1 January 2015  

[17] S.Shibaji E.J. Whitehead, Jr., R. Akella, and S. Kim, 

Reduction features to improve code changes based bug 

prediction, IEEE Trans. Soft. Eng., vol. 39, no. 4, 

pp.552-569, Apr.2013. 

[18] Mamdouh Alenezi and Kenneth Magel: Efficient Bug 

Triaging Using Text Mining in 2013 Academy Publisher 

 

IJCATM : www.ijcaonline.org 


