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ABSTRACT 

Our aim in this paper is to show how simple adaptive IIR 

filter can be used in system identification. The main objective 

of our research is to study the LMS algorithm and its 

improvement by the genetic search approach, namely, LMS-

GA, to search the multi-modal error surface of the adaptive 

IIR filter to avoid local minima and finding the optimal 

weight vector when only measured or estimated data are 

available. Convergence analysis of the LMS algorithm in the 

case of colored input signal, i.e., correlated input signal is 

demonstrated via the input’s power spectral density and the 

Fourier transform of the autocorrelation matrix of the input 

signal. Simulations have been carried out on adaptive filtering 

of IIR filter and tested on white and colored input signals to 

validate the powerfulness of the genetic-based LMS 

algorithm. 
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1. INTRODUCTION 
Adaptive filters are systems whose structure is alterable or 

adjustable in such a way that its behavior or performance 

improves through contact with its environment. Such systems 

usually can automatically adapt in the face of changing 

environments, they can be trained to achieve particular 

filtering, and they do not require elaborate synthesis 

procedures usually needed for non-adaptive systems, other 

characteristics can be found in [1].  Traditional non-adaptive 

filters which are utilized for extraction of data from a certain 

input sequence have typically the linearity and time-

invariance properties. While for the case of the adaptive 

filters, the limitation of invariance is eliminated. This is 

achieved by enabling the filter to update its own weights as 

per certain foreordained optimization process.  Adaptive 

digital filters can be classified into adaptive Finite Impulse 

Response (FIR) filter, or commonly known as an Adaptive 

Linear Combiner which is unconditionally stable, and Infinite 

Impulse Response (IIR) presents a prospective enhancement 

in the performance and less computation power than 

corresponding adaptive FIR filter. Common applications of 

adaptive filters are noise cancelation, inverse modeling, 

prediction, jammer suppression [2]–[4], and adaptive system 

identification, which is the main topic of this paper. 

Adaptive system identification had a long history of many 

types of research ranged from the implementation of neural 

networks [5]–[9] to swarm optimization algorithms [10]–[14], 

reaching to the application of LMS adaptation algorithm on 

IIR and FIR adaptive filters on different applications [3], 

[15]–[18]. Application of genetic algorithm and its variant in 

system identification are studied in [4], [19] respectively.  

The major drawback with the standard LMS algorithm in 

system identification is that, the adaptive IIR digital filter 

suffers from the multimodality of the error surface versus the 

filter coefficients, and it is easy that the adaptation techniques 

(e.g., standard LMS algorithm) get stuck at one of the local 

minima and diverge away from the global optimum solution. 

The global minimum of the error surface is found in the LMS 

algorithm by traveling toward the negative direction of the 

error gradient. In the case of a multi-modal error surface, the 

LMS algorithm like the vast majority of the learning 

techniques may drive the filter into a local minimum. 

Moreover, the initial choice of the filter coefficients and the 

proper selection of the step size particularly determine the 

convergence behavior of the LMS algorithm [4].  

An evolutionary algorithm named Genetic Algorithm (GA) is 

presented for multi-modal error surface searching in IIR 

adaptive filtering [4]. Nevertheless, the high computational 

complexity and slow convergence are the main drawbacks of 

utilizing such an algorithm. Started by the benefits and 

deficiencies of the evolutionary algorithm and gradient 

descent algorithm, a novel integrated searching algorithm, 

namely, LMS-GA will be built up, where the GA searching 

algorithm is integrated with the standard LMS algorithm. The 

proposed LMS-GA algorithm has the attributes of simple 

implementation, global searching ability, rapid convergence, 

and less sensitivity to the parameters selection. 

Paper Findings. This paper proposes an evolutionary version 

of the LMS algorithm by combining it with Genetic 

Algorithm (GA), namely, LMS-GA for learning adaptive IIR 

digital filters coefficients using the gradient descent algorithm 

integrated with the evolutionary computations. The algorithm 

is designed in such a way that as soon as the adaptive IIR 

filter is found to have a sluggish convergence or to be trapped 

at a local minimum, the adaptive IIR digital filter parameters 

are updated in a random behavior to move away from the 

local minimum and possess a higher chance of traveling 

toward the global optimum solution.  

The current paper is structured as follows:  Section 2 presents 

the motivation to adopt the new LMS-GA learning algorithm 

for adaptation of IIR and FIR digital filters. Application of 

LMS algorithm on adaptive IIR digital filters is demonstrated 

in Section 3.  A concise overview of GA is introduced in 

Section 4. The main results are presented in Section 5, it 

includes the discussion of the effect of the colored input signal 

on the adaptation process and investigating the new LMS-GA 

learning technique with its application as a learning tool. The 

numerical results are contained in Section 6. Finally, the paper 
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is concluded in Section 7. 

2. MOTIVATION 
Usually, gradient descent algorithms can only do well locally; 

whereas GA is reasonably sluggish to "calibrate" the optimal 

solution once a fitting region in the searching space is found. 

Furthermore, The GA likewise necessitates calculating the 

values of the fitness function for all the chromosomes in the 

population which render it an algorithm with a high 

computational complexity. A novel learning technique for the 

adaptation of adaptive FIR and IIR filters will be presented to 

cope with the difficulties of GA and gradient descent 

techniques, namely, LMS-GA. This new learning tool 

incorporates the quintessence and features of both algorithms. 

3.  ADAPTIVE IIR FILTERING WITH 

LMS ALGORITHM 
The “adaptation” is that by which the weights are adjusted or 

adapted in response to a function of the error signal. When the 

weights are in the process of being adjusted, they, too, are a 

function of the input components and not just the output so 

that the latter is no longer a linear function of the input.   

Recursive filters like IIR with poles as well as zeros would 

offer the same advantages (resonance, sharper cut off, ...etc.) 

that non-recursive filter offers in time-invariant applications. 

The recursive filters have two main weakness points, they 

become unstable if the poles move outside the unit circle and 

their performance indices are generally non-quadratic and 

may even have a local minimum. The adaptive IIR filter may 

be represented by the following input-output difference 

equation, 

                         
   

 
                (1) 

where   ’s and   ’s are the coefficients of the IIR filter, and 

     and      are the input and output of the IIR filter 

respectively. The transfer function for the IIR filter is given 

by [1], 

     
    

    
 
      

        
  

     
        

   
     

   
   

       
   

   

 

Note that in (1) the current output sample is a function of the 

past output       , as well as the present and past input 

sample     ,  and       , respectively. The strength of the 

IIR filter comes from the flexibility the feedback arrangement 

provides. For example, an IIR filter normally requires fewer 

coefficients than FIR filter for the same set of specifications. 

Newton’s and steepest descent methods are used for 

descending toward the minimum on the performance surface. 

Both require an estimation of the gradient in each iteration. 

The gradient estimation method is general because they are 

based on taking differences between estimated points on the 

performance surface, that is, the difference between estimates 

of the error     . In this section, another algorithm for 

descending on the performance surface will be used, known as 

Least Mean Square (LMS) algorithm and will be investigated 

on IIR digital filters. 

Usually, the is the filter coefficient vector       is updated for 

every sample as is the case when variations are to be tracked 

in an estimation process. When this is true,    . The LMS 

algorithm for adaptive FIR filter is summarized as follows: 
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where      is the desired signal,      is the filter output, 

  
     is the input signal vector,   

                
            ,                                 is 

the coefficient vector, n representing the time index, the 

superscript T denoting transpose operator and  the subscript N 

representing the dimension of a vector,   is the convergence 

factor that regulates the speed and the stability of the 

adaptation The convergence analysis for the LMS algorithm 

has been done in [1] and concluded that to achieve 

convergence the value of   is found as, 
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where      is the maximum eigenvalue of the ensemble or 

statistical autocorrelation matrix     of      given as, 

     
           

                           (4) 

which is a Toeplitz matrix. 

To develop an algorithm for the recursive IIR filter, let us 

define the time-varying vector       and the signal      as 

follows, 

                                                (5) 
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The error signal is defined as, 

                         
                       (7) 

This is quite similar to the non-recursive case of the adaptive 

FIR filter. The main difference being that      contains 

values of      as well as     . Letting                  
the gradient approximation can be used, 
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The derivatives in (8) present a special problem because      
is now a recursive function. Using (1) one can define 
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With the derivatives defined in this manner, yields 

                                       
       (11) 

Now the LMS algorithm is formulated as follows, 

                                  (12) 

With non-quadratic error surface, there is a convergence 

parameter   for each   and   and may vary with time. Using 

the current values of the  ‘s in (9) and (10), the LMS 

algorithm computation for recursive adaptive IIR filter as 

follows, 
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Fig 1: System identification configuration for the case of 

the colored input signal. 

4. GENETIC ALGORITHM (GA) 
GAs are an evolutionary optimization approach, they are 

especially appropriate for applications which are vast, 

nonlinear and potentially discrete in nature. In GA, a 

population of strings called chromosomes which represent the 

candidate solutions to an optimization problem is evolved to a 

better population. It is more common to state the objective of 

GA as the maximization of some utility or fitness function 

[20], [21] given by, 

       
 

      
                           (14) 

where      is the cost function to be minimized. In adaptive 

filtering, GA operates on a set of filter parameters (the 

population of chromosomes), in which a fitness values are 

specified to each individual chromosome. The cost function 

     in adaptive filtering is taken as the Mean Square Error 

(MSE) which is given  by [4] 

       
 
 

 

  
             

   
                                 (15) 

where    is the window size over which the errors will be 

accumulated;       is the estimated output associated with the 

j-th set of estimated parameters.  

5. THE MAIN RESULTS 

5.1 The Effect of Colored Signal On the 

Adaptation Process of LMS Algorithm 
Suppose that the input signal      is passed through a digital 

Low-Pass Filter (LPF), then, the output of the digital filter is 

applied to the adaptive system as shown in Fig. 1. To show 

the effect of the digital low pass filter on the adaptation 

process, let us discuss the difference between the input and 

the output signals of the digital filter. The input to the digital 

filter is shown in Fig. 2(a), where Fig. 2(b) shows the 

autocorrelation          , where                       , 

with              ,        . It can be observed from 

Fig. 2 that the input signal      is an impulse signal at each 

instant and is correlated with itself only and it is never 

correlated with other impulses. The output of the digital low 

pass filter is also a random signal as shown in Fig. 3.  

 

(a)  

 

(b) 

Fig 2: The input signal and  its autocorrelation, (a) the 

input signal       to the digital LPF, (b) the 

autocorrelation            of the input signal        where 

                      , with               ,   

     . 

 

Fig 3: The output of the digital low pass filter. 

The spectral characteristics of the random signal are obtained 

by computing the Fourier transform for the correlation 

          of the input signal     . The power spectral density 

of the input signal      is shown in Fig. 4, which is flat for 

all frequencies (White spectrum).  



International Journal of Computer Applications (0975 – 8887) 

Volume 182 – No. 11, August 2018 

34 

 

Fig 4: The power spectral density of the input signal x(n) 

It is seen from the demonstration of the LMS convergence 

that the algorithm convergence time   is determined as, 
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where    
    

 
,      and      are the minimum and 

maximum eigenvalues of the autocorrelation matrix     

respectively. The ratio of the maximum to minimum 

eigenvalue is called the eigenvalue disparity and determines 

the speed of convergence. The matrix     is given as 

 

    

 
 
 
 
 
 

 
  
       

  
                      

  
            

     
           

 
  
      

 
  
      

 

 
  
                    

 
  
                    

 

 
  
          

 
  
          
 

 

 

 

 
     

        

 
     

        

 

 
     

         
     

         
     

                 
       

       
 
 
 
 
 

               (17)

where                       , with              , 

       . It is seen from (16) that the convergence time is 

inversely proportional to   and depends only on the nature of 

the input sequence     . The physical interpretation of the 

eigenvalues of      can be illustrated by comparing them 

with the spectrum of the input signal     . It is a classical 

result of Toeplitz form theory that the eigenvalues are 

bounded by, 

      
   

          
   

                        (18) 

where        is the power spectral density of the input or the 

Fourier transform of the autocorrelation function            

(elements of the     matrix). As the order of the matrix, N, 

tends to infinity, 

 
           

   

           
   

                    (19) 

Given that the convergence time   can be expressed as in (16), 

one can infer that the spectra that with the ratio of the 

maximum to minimum spectrum is large results in sluggish 

convergence. Spectra with an eigenvalue disparity near unity 

(i.e., flat spectra) lead to rapid convergence. The conjecture 

about such results is that large correlation among the input 

samples is related to a large eigenvalue disparity, which in 

turn decelerates the convergence of the adaptation process of 

the FIR filter. 

Now, the effect of colored signal       on the convergence 

speed of adaptation process will be shown. The 

autocorrelation function   
  
       of the colored signal       

is shown in Fig. 5. 

 

 

Fig 5: The autocorrelation of the colored signal      . 

From Fig. 5, it can be  verified that the impulse       is more 

correlated with itself and less with other impulses. The 

spectral density of the input signal can be obtained by 

computing the Fourier transform of the autocorrelation 

function (the elements of      matrix) as shown in Fig. 6. So 

that the eigenvalue disparity 

                
   

      
   

   will be larger than the 

white signal. Therefore, the effect of the colored signal will 

result in slow convergence. 

 

Fig 6: The power spectral density of the digital filter 

output      . 

5.2 The Evolutionary LMS Algorithm 

(LMS-GA) 
As said earlier, GA is slow for tuning in adaptive filtering; 

while, the gradient-descent techniques behave well in local 

regions only. To overcome the difficulties of the GA and 

gradient-descent techniques, a novel technique for the 
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learning the adaptive FIR and IIR filters is proposed in this 

section which incorporates the quintessence and features of 

both algorithms. 

The essential principle of our novel learning algorithm is to 

combine the evolutionary idea of GA into the gradient-descent 

technique in order to give an organized random searching 

amid the gradient-descent calculations.  The filter coefficients 

are represented as a chromosome with a list of real numbers in 

our proposed technique. The LMS algorithm is embedded in 

the mutation process of GA to discover the fastest shortcut 

path in adjusting the optimal solution through the learning 

process. Each time the LMS learning tool get caught in a local 

minimum, or the convergence of the LMS algorithm is slow 

(i.e., the gradient of the error is within a specific range), the 

GA is initiated by arbitrarily varying the estimated filter 

parameters values to obtain a new sets of filter coefficients. 

The proposed learning algorithm, namely, LMS-GA, chooses 

the filter among the new filters and the first one with the 

smallest MSE (best fitness value) as the new candidate to the 

next evolution. The above process will be done more and 

more if the convergence speed is detected to be sluggish at 

uniform intervals or the LMS algorithm stuck in one more 

local minimum. In the suggested learning technique, the 

parameters of the filter are varied during each evolution 

according to, 

                                  (20) 

where   is the permissible offset range for each evolution, m 

is the offsprings number  produced in the evolutions,    

denotes the i-th offsprings that are produced by the parents 

filter  ,  and      [-1, +1] is a random number. To pick the 

optimum filter to be the next candidate amongst the sets of 

new offsprings in the course of  each evolution, the MSE is 

calculated for each new filter (   ,      ) by (15) for 

block of time   . The filter with the smallest MSE will be 

selected as the next candidate for the subsequent phase of 

learning process. The behavior of the new proposed LMS-GA 

is represented by the flowchart shown in Fig. 7.  The ΔE(n) in 

the flowchart of Fig. 7 is the error gradient and defined as  

      
           

 
 

where   is the window size for estimation of     

The computational complexity of the LMS algorithm of the 

FIR filter for the case of the white input signal is found to be 

(2   multiplication per iteration, where   is the length of the 

FIR filter. While the computational complexity required for 

the IIR filter is equal to            where    is the 

backward length and   is the forward length of the IIR filter 

for the same order of both FIR and IIR filters (i.e.,     
 ). The computational complexity of the LMS algorithm of 

the FIR filter with colored the nput signal is given as     
  , where    is the length of the digital LPF. 

6. NUMERICAL RESULTS 

Consider 4-Tap adaptive FIR filter in channel equalization 

task and as a plant model for the purpose of system 

identification, 

                                    (21) 

The basic idea of the system identification using adaptive FIR 

filtering depends on matching the coefficients of the adaptive 

filter to that of the plant. The convergence factor   regulates 

the adaptation stability and convergence speed. The results of 

applying the standard LMS algorithm on adaptive  FIR filter 

to identify the parameters of (22) with different values of   

are shown in Table 1. 

A special class of input signal is generated to train the weights 

of the adaptive FIR filter, it consists of four level values (-3, -

1, +1, and +3) and governed by a uniformly generated random 

input         as shown in Fig. 8, e.g., if the random number  

is    , i.e., it is in the range [0, 0.25], then        , the 

same for other values of  . 

 

Fig 7:  Flowchart of the new learning (LMS - GA) 

algorithm 
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Table 1: Simulation results of FIR adaptation (White 

signal) 

Step 

size 

µ 

No. of 

iterations 

MSE 

/dB 

Adaptive filter 

coefficients 

C1 C2 C3 C4 

0.04 399 -167.200 0.03 0.24 0.54 0.8 

0.045 130 -166.250 0.03 0.24 0.54 0.8 

0.095 1911 -166.278 0.03 0.24 0.54 0.8 

 

Fig 8: Four levels input scheme used to train FIR and IIR 

adaptive filters. 

These four level input values generated using the scheme 

proposed in Fig. 8 are entered repeatedly into the input 

channel      of  Fig. 9 until a convergence is reached or 

maximum number of iterations are achieved.  

 

Fig 9:  System identification block diagram. 

Table 2:  Simulation results of FIR adaptation (Colored 

signal) 

Step size 

µ 

No. of 

iterations 

MSE 

/dB 

Adaptive filter coefficients 

C1 C2 C3 C4 
0.9 2320 -135.591 0.03 0.24 0.54 0.8 

3 358 -163.131 0.03 0.24 0.54 0.8 

4 362 -173.604 0.03 0.24 0.54 0.8 

 

Concerning the adaptive IIR filter, the error surface is 

generally a multi-modal against filter parameters. The 

adaptation techniques for the case of adaptive IIR filter can 

easily get stuck at a local minimum and escape away from the 

global minimum. Some of the adaptive IIR filter coefficients 

will be matched with that of the plant and the other will be 

constant at certain values, which means that these coefficients 

are stuck at local minima. The following 1st order transfer 

function      is used to represent the plant, 

     
   

        
                (22) 

The results of the system identification using IIR adaptive 

filtering are shown in Table 3. As can be seen, that the best 

value of    was found to be 0.06 with mean square error of  -

143.939 dB. The IIR error surface here is a special case as it is 

an uni-modal (local minimum does not exists) and having a 

global optimum only. However, the practical problem still 

exists here which is the pole of the adaptive filter may move 

outside of the unit circle resulting in an unstable system. To 

solve this problem, a certain criterion is used, it states when 

the magnitude of the pole exceeds unity, its magnitude is 

limited to be less than one. The learning curves for different 

values of   are shown in Fig. 10. 

Table 3: Simulation of adaptive IIR filter (white signal) 

Step size 

µ 

No. of 

iterations 

MSE /dB Adaptive filter 

coefficients 

a b 

0.04 142 -157.373 -0.2 0.6 

0.06 63 -143.939 -0.2 0.6 

0.1 134 -174.030 -0.2 0.6 

 

Table 1 demonstrates the optimum value of    that 

corresponds to less number of iterations which is found to be 

(0.045). For the case of the coloured input signal, the same 

input produced using the scheme of Fig. 8 is applied on the 

input channel of Fig. 1, it can be concluded that the  spectra  

with   the   ratio   of   the   maximum   to minimum spectrum 

is large results in sluggish convergence. Spectra with an 

eigenvalue disparity near unity (i.e., flat spectra) lead to rapid 

convergence. The digital filter of Fig. 1 used in this simulation 

is of 8-Tap FIR LPF type given as, 

                                      

                                            

While the plant dynamics is given in (22). Different  ’s have 
been used in coloured input signal case study with the results 

given in Table 2. It is noted that the optimum value of   that 

corresponds to the less number of iterations is found to be 

3.The best value of   is found with MSE of -163.131 dB. 

The new LMS-GA learning tool can be applied to the system 

identification shown in Fig. 9 with FIR adaptive filter instead 

of IIR. Then, with windows size 8 and offsprings m =5 and 

offset D = 0.02, one can see that the pure LMS algorithm is 

faster than the new learning algorithm. The reason is that the 

LMS-GA is a random technique which is applied to multi-

modal error surface. In the case of unimodal error surface ( as 

the case of FIR adaptive filter), the pure LMS algorithm is the 

better choice than other algorithms. For the sake of 

comparison study, the LMS-GA learning tool can be applied 

to the same configuration of adaptive system identification 

shown in Fig. 9 with the results listed in Table 4. 
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(a) 

 

(b) 

 

(c) 

Fig 10.  The learnings curves for the case of IIR adaptive filter, (a)       , (b)       , (c)      . 
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Table 4: Simulation results of both standard LMS and 

LMS-GA algorithms 

 

Standard LMS 

algorithm with 

optimum  µ 

LMS-GA  

with optimum  µ 

No. of iterations 130 336 

MSE (dB) -166.250 -173.604 

F
il

te
r 

C
o

ef
fi

ci
en

ts
 C1 0.03 0.03 

C2 0.24 0.24 

C3 0.54 0.54 

C4 0.8 0.8 

 

The proposed LMS-GA learning tool is exploited to learn an 

adaptive IIR filter to recover the performance of the gradient 

descent technique (e.g., the LMS algorithm) with multi-modal 

error surface. To compare the new LMS-GA learning tool 

with the standard LMS algorithm, the window size δ must be 

determined for estimation of ∆E  and the Gradient Threshold 

(GT), these can be calculated from the learning curve of the 

pure LMS algorithm as follows, window size τ is calculated as 

being the number of iterations between the first iteration and 

the iteration at which the learning curve fluctuate with a small 

variations. GT is calculated by determining the maximum and 

minimum values of these fluctuations. Now, GT can be 

determined as, GT=(max.swing-min.swing)/ δ. If these two 

parameters are calculated, one can apply the procedure of the 

new learning algorithm of Fig. 7 on adaptive IIR filter of a 

unimodal error surface as in (23). It can be concluded that the 

new learning algorithm will converge to the same MSE (the 

same MSE the pure LMS reached to it) but with a fewer 

number of iterations as shown in Fig. 11. 

 

Fig 11: The convergence performance of the  LMS-GA 

tool for adaptive  IIR filter. 

7. CONCLUSIONS 
In this work, adaptive algorithms are adopted to learn the 

parameters of the digital FIR and IIR filters such that the error 

signal is minimized. These algorithms are the standard LMS 

algorithm and the LMS-GA one.  The numerical instabilities 

inherent in other adaptive techniques do not exist in the 

standard LMS algorithm. Moreover, prior information of the 

signal statistics is not required, i.e., the autocorrelation and 

cross-correlation matrices. The LMS algorithm produces only 

estimated adaptive filter coefficients. These estimated 

coefficients match that of the plant progressively through the 

time as the coefficients are changed and the adaptive filter 

learns the signal characteristics, then identify the underlying 

plant. Due to the multimodality of the error surface of 

adaptive IIR filters, a new learning algorithm, namely, LMS-

GA is proposed in this paper which integrates the genetic 

searching methodology LMS algorithm and speeds up the 

adaptation procedure and offers universal searching ability. 

Besides, the LMS-GA preserved the characteristics and the 

simplicity of the standard LMS learning algorithm and it 

entails comparatively fewer computations and had a fast 

convergence rate as compared to the standard GA. The 

numerical simulations evidently elucidated that the LMS-GA 

outperforms the standard LMS in terms of the capability to 

determine the global optimum solution and the faster 

convergence rate to this solution. 

8. REFERENCES 
[1] S. D. S. Bernard Widrow, 1985. Adaptive Signal 

Processing. Prentice-Hall. 

[2] J. C. S. and J. V. J. Gerardo Avalos. 2011. Applications 

of Adaptive Filtering. in Adaptive Filtering Applications, 

Lino Garcia Morales, Ed. InTech, pp. 1–20. 

[3] M. Shams Esfand Abadi, H. Mesgarani, and S. M. 

Khademiyan. 2017. The wavelet transform-domain LMS 

adaptive filter employing dynamic selection of subband-

coefficients. Digit. Signal Process., vol. 69, pp. 94–105, 

2017. 

[4] C. Y. C. S.C. Ng, S.H. Leung. 1996. The Genetic Search 

Approach: A new Learning Algorithm for Adaptive IIR 

Filtering. IEEE Signal Process. Mag., vol. 13, no. 6, pp. 

38–46. 

[5] S. M. Kumpati S. Narendra. 1997. Neural Networks for 

System Identification.  IFAC System Identification, Vol. 

30, No. 11, pp. 735–742. 

[6] D. R. Santosh Kumar Behera. 2014. System 

Identification Using Recurrent Neural Network. Int. J. 

Adv. Res. Electr. Electron. Instrum. Eng., Vol. 3, No. 3, 

pp. 8111–8117. 

[7] H. Jaeger. 2003. Adaptive nonlinear system 

identification with echo state networks. Advances in 

Neural Information Processing Systems, pp. 593–600. 

[8] W. Zhang. 2007. System Identification Based on a 

Generalized ADALINE Neural Network. American 

Control Conference (ACC), 2007, Vol. 11, No. 1, pp. 

4792–4797. 

[9] Ibraheem. Kasim  Ibraheem. 2017. System Identification 

of Thermal Process using Elman Neural Networks with 

No Prior Knowledge of System Dynamics. Int. J. 

Comput. Appl., Vol. 161, No. 11, pp. 38–46. 

[10] V. Katari, S. Malireddi, S. K. S. Bendapudi, and G. 

Panda. 2008. Adaptive nonlinear system identification 

using comprehensive learning PSO. 3rd International 

Symposium on Communications, Control and Signal 

Processing( ISCCSP), pp. 434–439. 

[11] A. C. Sinha, Rashmi. 2017. Adaptive Filtering Via Wind 

Driven Optimization Technique. 3rd IEEE International 

Conference on Computational Intelligence and 

Communication Technolog (CICT), pp. 1–5. 

[12] Q. L. Qian Zhang, Sa Wu. 2015. A PSO identification 

algorithm for temperature adaptive adjustment system. 

IEEE International Conference on Industrial Engineering 



International Journal of Computer Applications (0975 – 8887) 

Volume 182 – No. 11, August 2018 

39 

and Engineering Management (IEEM), Singapore, 

Singapore, pp. 752–755. 

[13] J. Zhang and P. Xia. 2017. An improved PSO algorithm 

for parameter identification of nonlinear dynamic 

hysteretic models,” J. Sound Vib., vol. 389, pp. 153–167. 

[14] A. Sarangi, S. K. Sarangi, M. Mukherjee, and S. P. 

Panigrahi. 2015. System identification by Crazy-cat 

swarm optimization.  2015 International Conference on 

Microwave, Optical and Communication Engineering 

(ICMOCE), pp. 439–442. 

[15]  K. K. A.-M. Thamer M. Jamel. 2012. Simple Variable 

Step Size LMS Algorithm for Adaptive Identification of 

IIR Filtering System. 5th International Conference on 

Communications, Computers and Applications (MIC-

CCA), Istanbul, Turkey, pp. 23–28. 

[16] S. A. Ghauri and M. F. Sohail. 2013. System 

identification using LMS, NLMS and RLS.  Proceeding - 

IEEE Student Conference on Research and 

Development, (SCOReD), no. December, pp. 65–69. 

[17] L. Lu and H. Zhao. 2015. A novel convex combination 

of LMS adaptive filter for system identification. 12th  

International Conference on Signal Processing 

Proceedings (ICSP), Hangzhou, China pp. 225–229. 

[18] R. Yu, Y. Song, and M. Nambiar. 2014. Fast system 

identification using prominent subspace LMS. Digit. 

Signal Process. A Rev. J., Vol. 27, No. 1, pp. 44–56,. 

[19] F. Titel and K. Belarbi. 2013. Identification of Dynamic 

systems using a Genetic Algorithm-based Fuzzy Wavelet 

Neural Network approach,” in Proceedings of the 3rd  

International Conference on Systems and Control, 2013, 

pp. 6–11. 

 [20] Alyaa. A. AL-Husainy, Ibraheem Kasim Ibraheem. 2014. 

Application of an Evolutionary Optimization Technique 

to Routing in Mobile Wireless Networks Application of 

an Evolutionary Optimization Technique to Routing in 

Mobile Wireless Network. Int. J. Comput. Appl., Vol. 

99, No. 7, pp. 24–31,. 

[21] Ibraheem. K. Ibraheem and Alyaa. A. AL-Husainy. 

2015.  Design of a Double-objective QoS Routing in 

Dynamic Wireless Networks using Evolutionary 

Adaptive Genetic Algorithm. Int. J. Adv. Res. Comput. 

Commun. Eng., Vol. 4, No. 9, pp. 156–165. 

 

 

IJCATM : www.ijcaonline.org 


