A Literature Review on the Unified Power Flow Controller UPFC

Abstract

Power electronic controllers for a flexible ac transmission system (FACTS) can offer a greater control of power flow, secure loading and damping of power system oscillations. A unified power flow controller (UPFC) is a one of FACTS elements that can provide VAR compensation, line impedance control and phase angle shifting. The UPFC consist of two fully controlled inverters, series inverter is connected in series with the transmission line by series transformer, whereas parallel inverter is connected in parallel with the transmission line by parallel transformer. The real and reactive power flow in the transmission line can be controlled by changing the magnitude and phase angle of the injected voltage produced by the series inverter. The basic function of the parallel inverter is to supply the real power demanded by series inverter through the common dc link. The parallel inverter can also generate or absorb controllable reactive power. This paper offers and discusses most papers that used a UPFC to improving the active and reactive power flow of the power systems.

31. L. Gyugyi, C. Schauder, S. Williams, T. Rietman, D. Torgerson, and A. Edris, "The
flow controller using a d-q control system,” in Proc. 6th Int. AC and DC Power Transmission
12, No 4, p 1635, 1997.
34. X. Lombard and P. Therond, “Control of unified power flow controller: Comparison of
methods on the basis of a detailed numerical model,” IEEE Trans. Power Syst., Vol. 12, No. 2,
39. H. Fujita, Y. Watanabe, and H. Akagi, “Control and analysis of a unified power flow
40. Z. Huang, Y. Ni, C. Shen, F. Wu, S. Chen, and B. Zhang, “Application of unified power
flow controller in interconnected power systems-modeling, interface, control strategy, and case
41. S. Kannan, S. Jayaram, and M. M. A. Salama, “Design of a de-coupled controller for a
shunt converter: Control design and performance,” in Proc. 32nd North American Power Symp.,
Waterloo, ON, Canada, pp. 8–13, Oct. 2000.
42. Stéphane Gerbex, Rachid Cherkaoui, and Alain J. Germond, ” Optimal location of
control in loop transmission,” in Proceedings of IEEEIPES Transmission and Distribution
44. Kannan, S. Jayaram and M. Salama, “Real and reactive power coordination for a unified
including FACTS devices,” IET Trans. Gen., Transmission., Distribution., Vol.2, No. 6,
for congestion management considering voltage stability by means of MOPSO”, IEEE
stability enhancement by voltage-sourced converter-based FACTS controllers,” IEEE

Index Terms

Computer Science
Circuits and Systems

Keywords

FACTS Devices, UPFC, Voltage Stability, Power Flow Improvement.