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ABSTRACT 

While implementing any machine learning algorithms it is 

good to have the descriptive knowledge of the dataset. In any 

dataset, in case having more than 90% of the data in target 

variable is from class 1 and the remaining data is from class 2. 

In such type of dataset, error evaluation metric accuracy is not 

going to help much. Having the unknown dataset with only 

class 1 itself gives more than 90% accuracy, which shows 

accuracy as evaluation metric should be ignored. Such a 

problem with highly skewed target outcome is known as an 

Imbalanced classification problem. There is a number of 

techniques to deal with imbalanced dataset. In this paper, we 

are interested to see how sampling techniques and XGBoost 

can be used while working with the Imbalanced dataset.   
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1. INTRODUCTION 
In manufacturing to detect defective products, failure of some 

computers in the computer center, fraud detection in the 

banking system these are the few problems which can be seen 

as an imbalanced classification problem. Almost every 

industry faces the similar types of problem. These problems 

can be solved if there is a method to deal with an imbalanced 

dataset and one of them is the sampling technique. Here using 

the Credit card fraud detection dataset from kaggle.com to 

implement the above idea in R. credit card fraud detection 

dataset contains 31 variables including target outcome and   

rows.  

2. VARIOUS METHODS TO DEAL 

WITH IMBALANCED DATASET 
Having a good amount of data without noise always helps the 

model to achieve better accuracy, so in case of an imbalanced 

dataset always look for additional data if possible. It might be 

helpful for skewed data. Also instead of accuracy other values 

like Precision, Recall, and F1 score, AUC etc. can also be 

used as error evaluation. Analyzing density estimation using 

normal distribution used in anomaly detection can also be a 

solution to an imbalanced dataset. K- Fold cross-validation 

can also be used before sampling technique. Even designing 

own model can also help. There are lots of other methods 

which can also be used, but here interested to work with only 

sampling technique. 

3. METHODLOGY 
The method are generally known as 'Sampling Techniques'. 

By and large, these techniques plan to adjust an imbalanced 

data into adjusted appropriation utilizing some component. 

The adjustment happens by modifying the span of unique 

informational collection and give a similar extent of adjust. 

These method have gained higher significance after numerous 

investigates have demonstrated that adjusted information 

brings about enhanced general arrangement execution 

contrasted with an imbalanced dataset. Thus, it's imperative to 

learn them.  

4. SAMPLING TECHNIQUES 
The following are the methods used to treat imbalanced 

datasets:  

 Undersampling  

 Oversampling  

 Engineered Data Generation  

 Cost-Sensitive Learning  

Will comprehend only first two 

4.1 UNDERSAMPLING 
This method works with greater part class. It diminishes the 

number of perceptions from larger class to make the 

informational index adjusted. This method is best to utilize 

when the informational index is enormous and lessening the 

quantity of preparing tests enhances runtime and capacity 

inconveniences. Undersampling techniques are of 2 types: 

Random and Informative. Random undersampling method 

haphazardly picks perceptions from larger class which are 

wiped out until the point that the informational index gets 

adjusted. Informative undersampling takes after a pre-

indicated choice foundation to expel the perceptions from 

greater part class.  

4.2 OVERSAMPLING 
This strategy works with minority class. It repeats the 

perceptions from minority class to adjust the information. It is 

otherwise called upsampling. Like undersampling, this 

strategy likewise can be separated into two sorts: Random 

Oversampling and informative Oversampling. Random 

oversampling adjusts the information by haphazardly 

oversampling the minority class. Informative oversampling 

utilizes a pre-determined model and artificially creates 

minority class perceptions. 

5. DECISION TREE 
A decision tree is a graphical portrayal of conceivable 

answers for a choice in light of specific conditions. It is 

known as a decision tree since it begins with a solitary 
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variable, which at that point diverges into various 

arrangements, much the same as a tree. A decision tree has 

three fundamental segments:  

Root node: The best most node is called Root node. It 

suggests the best indicator (free factor).  

Choice/Inward node: The node in which indicators (free 

factors) are tried and each branch speaks to a result of the test  

Leaf/Terminal node: It holds a class mark (classification) - 

Yes or No (Last Characterization Result).. 

6. RANDOM FOREST 
Random Forest is Ensemble Supervised Learning Technique 

which uses divide and conquer to improve performance. A 

number of week learners (Decision Trees) are used to make a 

strong learner (Random Forest). It is used in both 

Classification and Regression problem. Random Forest builds 

n number of decision trees simultaneously. While building a 

decision tree, it randomly select some features amongst the 

total number of features. And while splitting, best feature is 

used instead of most important feature .For each randomly 

created decision tree, outcome for the target variable is 

predicted and stored. Votes for each predicted target are 

calculated and the one with high votes is final prediction of 

Random Forest. 

One of the important advantage of Random forest is, it avoids 

over-fitting. Random forest can also be used to get variable 

importance plot. Random forest works well with high 

variance dataset. 

7. XGBOOST 
XGBoost uses Gradient tree boosting algorithm. It 1st creates 

one decision tree and train it. Then it records the samples for 

which tree makes wrong prediction. When the second tree is 

created, it is trained so as to predict those samples which were 

wrongly predicted by preceding tree and so on. Thus every 

tree created has better accuracy than previous one. 

What makes XGBoost better than Gradient Boosting is, along 

with Training loss function in objective function, XGBoost 

have one more term called Regularization term. This 

regularization term prevents over-fitting of the model. 

8. IMPLEMENTATION IN R 
library(dplyr) 

library(irr) 

library(caret) 

library(rpart) 

library(rpart.plot) 

library(ROCR) 

library(randomForest) 

 

#data prep 

>creditcard<-read.csv("D:/creditcard.csv") 

>summary(creditcard) 

 

#There are no missing values and all variables are numeric 

> table(creditcard$Class) 

 

     0      1  

284315    492  

 

#This is highly imbalanced dataset, only 492 out of 284807 

observations are fraud 

 

#data partitioning 

>set.seed(100) 

>index <- sample(1:nrow(creditcard), nrow(creditcard)*0.7) 

>training<- creditcard[index,] 

>validation<- creditcard[-index,] 

> table(training$Class) 

 

     0      1  

198998    366  

 

 

# Decision Tree 

# Apply decision tree model on training dataset 

mod<-rpart(Class~.,data=training, method="class") 

 

#Evaluation of model on validation dataset using area under 

ROC curve 

predicted <- predict(mod ,validation, type="prob") 

area_under_curve<-auc(validation$Class, predicted[,2]) 

area_under_curve 

Area under the curve: 0.89 

 

 

#Random Forest 

#Implementing Random forest on training dataset 

>n <- names(training) 

>rf.form <- as.formula(paste("Class ~", paste(n[!n %in% 

"Class"],           collapse   = " + "))) 

> trainset.rf <- randomForest(rf.form, training 

,ntree=100,importance=T) 

 

#Evaluation of model on validation dataset using area under 

ROC curve 

 

> predicted0<- predict(trainset.rf ,validation, type="prob") 

> area_under_curve0<-auc(validation$Class, predicted0[,2]) 

> area_under_curve0 

Area under the curve: 0.9181 

 

# This is imbalanced classification problem, so use function 

ROSE from library ROSE for data balancing 

 

> library(ROSE) 

> training$Class<-as.factor(training$Class) 

> data.rose <- ROSE(Class ~ ., data = training, seed = 

100)$data 

> table(data.rose$Class) 

    0     1  

99849 99515  

 

# Applying Decision Tree model on This balanced dataset 

 

> mod1<-rpart(Class~.,data=data.rose, method="class") 

 

#Accuracy on validation dataset 

> predicted1 <- predict(mod1 ,validation, type="prob") 

> area_under_curve1<-auc(validation$Class, predicted1[,2]) 

> area_under_curve1 

Area under the curve: 0.9011 

# AUC value for decision tree is increased from 0.89 to 

0.9011 

 

# Applying Random Forest model on This balanced data 
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> n <- names(data.rose) 

> rf.form1 <- as.formula(paste("Class ~", paste(n[!n %in% 

"Class"],         collapse = " + "))) 

> trainset.rf1 <- 

randomForest(rf.form1,data.rose,ntree=100,importance=T) 

 

#Accuracy on validation dataset 

>predicted2<- predict(trainset.rf1 ,validation, type="prob")              

> area_under_curve1<-auc(validation$Class, predicted2[,2]) 

> area_under_curve1 

Area under the curve: 0.9224 

# AUC value for Random forest is increased from 0.9181 to 

0.9224 

 

#sampling 

#We use function ovun.sample from library ROSE on 

imbalanced training dataset and take sample of 10000 

observations. 

 

> library(ROSE) 

> training$Class<-as.factor(training$Class) 

> data_balanced_under <- ovun.sample(Class ~ ., data = 

training, method = "both" ,N=10000 , seed = 300)$data 

> table(data_balanced_under$Class) 

   0    1  

4894 5106  

 

# Applying Decision Tree model on sampled data 

> mod2<-rpart(Class~.,data=data_balanced_under, 

method="class") 

 

#Accuracy on validation dataset 

> predicted3 <- predict(mod2 ,validation, type="prob") 

> area_under_curve3<-auc(validation$Class, predicted3[,2]) 

> area_under_curve3 

Area under the curve: 0.9336 

#AUC value on original dataset was 0.89 and is increased to 

0.9336 

 

# Applying Random Forest on This sampled data 

> n <- names(data_balanced_under) 

> rf.form2<- as.formula(paste("Class ~", paste(n[!n %in% 

"Class"], collapse = " + "))) 

> trainset.rf2 <- randomForest(rf.form2, 

data_balanced_under,ntree=500,importance=T) 

 

#Accuracy on validation dataset 

> predicted4 <- predict(trainset.rf2 ,validation, type="prob") 

> area_under_curve4<-auc(validation$Class, predicted4[,2]) 

> area_under_curve4 

Area under the curve: 0.9647 

#AUC value on original dataset was 0.9181 and is increased 

to 0.9647 

#XGBoost 

#Loading required libraries 

>library(xgboost) 

>library(magrittr) 

>library(Matrix) 

 

#we need to make data such that it is used in xgboost model 

#training and test dataset should be in xgb.DMatrix (xgboost’s 

own datatype) 

 

>train_label<-training[,"Class"] 

>data.train<- xgb.DMatrix(as.matrix(training[, 

colnames(training) != "Class"]), label = train_label) 

>test_label<-validation[,"Class"] 

>data.test<- xgb.DMatrix(as.matrix(validation[, 

colnames(validation) != "Class"]), label = test_label) 

 

#parameters 

#Here problem is classification type so objective function will 

be “binary:logistic”, #we set evaluation metric as auc. Then 

train the model using xgb.train function 

 

>n1<-length(unique(train_label)) 

>parameters<-

list("objective"="binary:logistic","eval_metric"="auc","numcl

ass"=n1) 

>watchlist<-list(train= data.train, test= data.test) 

 

>XGB_model<-xgb.train(params=parameters,   

data=data.train,   nrounds=500, 

+                      watchlist=watchlist) 

 

 

##training and test error plot 

 

> error<-data.frame(XGB_model$evaluation_log) 

> plot(error$iter, error$train_auc ,col='blue') 

 

##validation of model 

 

>predicted5 = predict(bst_model, newdata = 

as.matrix(validation[, colnames(validation) != "Class"], 

ntreelimit = bst_model$bestInd) 

>library(pROC) 

>area_under_curve5 = roc(validation$Class, predicted5, plot 

= TRUE, col = "blue") 

 

>print(area_under_curve5) 

Call: 

roc.default(response = validation$Class, predictor = 

predicted5,     plot = TRUE, col = "blue") 
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Data: predicted5 in 85317 controls (validation$Class 0) < 126 

cases (validation$Class 1). 

Area under the curve: 0.9617 

Table 1: Algorithms and Percentage of Accuracy 

Algorithms Training 70% 

Validation30% 

Data balancing 

using ROSE 

function 

Data balancing 

using 

ovun.sample 
function  

Decision 

Tree 

0.89 0.9011 0.9336 

Random 

Forest 

0.9181 0.9224 0.9647 

 

9. CONCLUSIONS 
After doing preprocessing and modelling, results for decision 

tree and random forest algorithm are presented in Table 1. 

It can be inferred that on imbalanced dataset, before applying 

algorithms such as decision tree or random forest, data 

balancing should be done using sampling techniques, either 

using ROSE function or ovun.sample function from ROSE 

package to improve the accuracy and better performance of 

model. 

One can use XGBoost method on such imbalanced dataset for 

better prediction and improved performance. Advantage of 

XGBoost is we’re able to process ~12 million rows in a matter 

of minutes 
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