
International Journal of Computer Applications (0975 – 8887)

Volume 182– No.12, August 2018

19

Imbalanced Data Classification using Sampling

Techniques and XGBoost

Priyanka Lahoti
Department of Mathematics

NIT Warangal
Telangana, India

Ajeet Kumar Rai
Department of Mathematics

NIT Warangal
Telangana, India

ABSTRACT

While implementing any machine learning algorithms it is

good to have the descriptive knowledge of the dataset. In any

dataset, in case having more than 90% of the data in target

variable is from class 1 and the remaining data is from class 2.

In such type of dataset, error evaluation metric accuracy is not

going to help much. Having the unknown dataset with only

class 1 itself gives more than 90% accuracy, which shows

accuracy as evaluation metric should be ignored. Such a

problem with highly skewed target outcome is known as an

Imbalanced classification problem. There is a number of

techniques to deal with imbalanced dataset. In this paper, we

are interested to see how sampling techniques and XGBoost

can be used while working with the Imbalanced dataset.

General Terms

Machine Learning, Data Mining, Classification Problem,

Sampling techniques, R programming

Keywords

Random Forest, XGBOOST, ROC curve, Anomaly detection,

ROSE

1. INTRODUCTION
In manufacturing to detect defective products, failure of some

computers in the computer center, fraud detection in the

banking system these are the few problems which can be seen

as an imbalanced classification problem. Almost every

industry faces the similar types of problem. These problems

can be solved if there is a method to deal with an imbalanced

dataset and one of them is the sampling technique. Here using

the Credit card fraud detection dataset from kaggle.com to

implement the above idea in R. credit card fraud detection

dataset contains 31 variables including target outcome and

rows.

2. VARIOUS METHODS TO DEAL

WITH IMBALANCED DATASET
Having a good amount of data without noise always helps the

model to achieve better accuracy, so in case of an imbalanced

dataset always look for additional data if possible. It might be

helpful for skewed data. Also instead of accuracy other values

like Precision, Recall, and F1 score, AUC etc. can also be

used as error evaluation. Analyzing density estimation using

normal distribution used in anomaly detection can also be a

solution to an imbalanced dataset. K- Fold cross-validation

can also be used before sampling technique. Even designing

own model can also help. There are lots of other methods

which can also be used, but here interested to work with only

sampling technique.

3. METHODLOGY
The method are generally known as 'Sampling Techniques'.

By and large, these techniques plan to adjust an imbalanced

data into adjusted appropriation utilizing some component.

The adjustment happens by modifying the span of unique

informational collection and give a similar extent of adjust.

These method have gained higher significance after numerous

investigates have demonstrated that adjusted information

brings about enhanced general arrangement execution

contrasted with an imbalanced dataset. Thus, it's imperative to

learn them.

4. SAMPLING TECHNIQUES
The following are the methods used to treat imbalanced

datasets:

 Undersampling

 Oversampling

 Engineered Data Generation

 Cost-Sensitive Learning

Will comprehend only first two

4.1 UNDERSAMPLING
This method works with greater part class. It diminishes the

number of perceptions from larger class to make the

informational index adjusted. This method is best to utilize

when the informational index is enormous and lessening the

quantity of preparing tests enhances runtime and capacity

inconveniences. Undersampling techniques are of 2 types:

Random and Informative. Random undersampling method

haphazardly picks perceptions from larger class which are

wiped out until the point that the informational index gets

adjusted. Informative undersampling takes after a pre-

indicated choice foundation to expel the perceptions from

greater part class.

4.2 OVERSAMPLING
This strategy works with minority class. It repeats the

perceptions from minority class to adjust the information. It is

otherwise called upsampling. Like undersampling, this

strategy likewise can be separated into two sorts: Random

Oversampling and informative Oversampling. Random

oversampling adjusts the information by haphazardly

oversampling the minority class. Informative oversampling

utilizes a pre-determined model and artificially creates

minority class perceptions.

5. DECISION TREE
A decision tree is a graphical portrayal of conceivable

answers for a choice in light of specific conditions. It is

known as a decision tree since it begins with a solitary

International Journal of Computer Applications (0975 – 8887)

Volume 182– No.12, August 2018

20

variable, which at that point diverges into various

arrangements, much the same as a tree. A decision tree has

three fundamental segments:

Root node: The best most node is called Root node. It

suggests the best indicator (free factor).

Choice/Inward node: The node in which indicators (free

factors) are tried and each branch speaks to a result of the test

Leaf/Terminal node: It holds a class mark (classification) -

Yes or No (Last Characterization Result)..

6. RANDOM FOREST
Random Forest is Ensemble Supervised Learning Technique

which uses divide and conquer to improve performance. A

number of week learners (Decision Trees) are used to make a

strong learner (Random Forest). It is used in both

Classification and Regression problem. Random Forest builds

n number of decision trees simultaneously. While building a

decision tree, it randomly select some features amongst the

total number of features. And while splitting, best feature is

used instead of most important feature .For each randomly

created decision tree, outcome for the target variable is

predicted and stored. Votes for each predicted target are

calculated and the one with high votes is final prediction of

Random Forest.

One of the important advantage of Random forest is, it avoids

over-fitting. Random forest can also be used to get variable

importance plot. Random forest works well with high

variance dataset.

7. XGBOOST
XGBoost uses Gradient tree boosting algorithm. It 1st creates

one decision tree and train it. Then it records the samples for

which tree makes wrong prediction. When the second tree is

created, it is trained so as to predict those samples which were

wrongly predicted by preceding tree and so on. Thus every

tree created has better accuracy than previous one.

What makes XGBoost better than Gradient Boosting is, along

with Training loss function in objective function, XGBoost

have one more term called Regularization term. This

regularization term prevents over-fitting of the model.

8. IMPLEMENTATION IN R
library(dplyr)

library(irr)

library(caret)

library(rpart)

library(rpart.plot)

library(ROCR)

library(randomForest)

#data prep

>creditcard<-read.csv("D:/creditcard.csv")

>summary(creditcard)

#There are no missing values and all variables are numeric

> table(creditcard$Class)

 0 1

284315 492

#This is highly imbalanced dataset, only 492 out of 284807

observations are fraud

#data partitioning

>set.seed(100)

>index <- sample(1:nrow(creditcard), nrow(creditcard)*0.7)

>training<- creditcard[index,]

>validation<- creditcard[-index,]

> table(training$Class)

 0 1

198998 366

Decision Tree

Apply decision tree model on training dataset

mod<-rpart(Class~.,data=training, method="class")

#Evaluation of model on validation dataset using area under

ROC curve

predicted <- predict(mod ,validation, type="prob")

area_under_curve<-auc(validation$Class, predicted[,2])

area_under_curve

Area under the curve: 0.89

#Random Forest

#Implementing Random forest on training dataset

>n <- names(training)

>rf.form <- as.formula(paste("Class ~", paste(n[!n %in%

"Class"], collapse = " + ")))

> trainset.rf <- randomForest(rf.form, training

,ntree=100,importance=T)

#Evaluation of model on validation dataset using area under

ROC curve

> predicted0<- predict(trainset.rf ,validation, type="prob")

> area_under_curve0<-auc(validation$Class, predicted0[,2])

> area_under_curve0

Area under the curve: 0.9181

This is imbalanced classification problem, so use function

ROSE from library ROSE for data balancing

> library(ROSE)

> training$Class<-as.factor(training$Class)

> data.rose <- ROSE(Class ~ ., data = training, seed =

100)$data

> table(data.rose$Class)

 0 1

99849 99515

Applying Decision Tree model on This balanced dataset

> mod1<-rpart(Class~.,data=data.rose, method="class")

#Accuracy on validation dataset

> predicted1 <- predict(mod1 ,validation, type="prob")

> area_under_curve1<-auc(validation$Class, predicted1[,2])

> area_under_curve1

Area under the curve: 0.9011

AUC value for decision tree is increased from 0.89 to

0.9011

Applying Random Forest model on This balanced data

International Journal of Computer Applications (0975 – 8887)

Volume 182– No.12, August 2018

21

> n <- names(data.rose)

> rf.form1 <- as.formula(paste("Class ~", paste(n[!n %in%

"Class"], collapse = " + ")))

> trainset.rf1 <-

randomForest(rf.form1,data.rose,ntree=100,importance=T)

#Accuracy on validation dataset

>predicted2<- predict(trainset.rf1 ,validation, type="prob")

> area_under_curve1<-auc(validation$Class, predicted2[,2])

> area_under_curve1

Area under the curve: 0.9224

AUC value for Random forest is increased from 0.9181 to

0.9224

#sampling

#We use function ovun.sample from library ROSE on

imbalanced training dataset and take sample of 10000

observations.

> library(ROSE)

> training$Class<-as.factor(training$Class)

> data_balanced_under <- ovun.sample(Class ~ ., data =

training, method = "both" ,N=10000 , seed = 300)$data

> table(data_balanced_under$Class)

 0 1

4894 5106

Applying Decision Tree model on sampled data

> mod2<-rpart(Class~.,data=data_balanced_under,

method="class")

#Accuracy on validation dataset

> predicted3 <- predict(mod2 ,validation, type="prob")

> area_under_curve3<-auc(validation$Class, predicted3[,2])

> area_under_curve3

Area under the curve: 0.9336

#AUC value on original dataset was 0.89 and is increased to

0.9336

Applying Random Forest on This sampled data

> n <- names(data_balanced_under)

> rf.form2<- as.formula(paste("Class ~", paste(n[!n %in%

"Class"], collapse = " + ")))

> trainset.rf2 <- randomForest(rf.form2,

data_balanced_under,ntree=500,importance=T)

#Accuracy on validation dataset

> predicted4 <- predict(trainset.rf2 ,validation, type="prob")

> area_under_curve4<-auc(validation$Class, predicted4[,2])

> area_under_curve4

Area under the curve: 0.9647

#AUC value on original dataset was 0.9181 and is increased

to 0.9647

#XGBoost

#Loading required libraries

>library(xgboost)

>library(magrittr)

>library(Matrix)

#we need to make data such that it is used in xgboost model

#training and test dataset should be in xgb.DMatrix (xgboost’s

own datatype)

>train_label<-training[,"Class"]

>data.train<- xgb.DMatrix(as.matrix(training[,

colnames(training) != "Class"]), label = train_label)

>test_label<-validation[,"Class"]

>data.test<- xgb.DMatrix(as.matrix(validation[,

colnames(validation) != "Class"]), label = test_label)

#parameters

#Here problem is classification type so objective function will

be “binary:logistic”, #we set evaluation metric as auc. Then

train the model using xgb.train function

>n1<-length(unique(train_label))

>parameters<-

list("objective"="binary:logistic","eval_metric"="auc","numcl

ass"=n1)

>watchlist<-list(train= data.train, test= data.test)

>XGB_model<-xgb.train(params=parameters,

data=data.train, nrounds=500,

+ watchlist=watchlist)

##training and test error plot

> error<-data.frame(XGB_model$evaluation_log)

> plot(error$iter, error$train_auc ,col='blue')

##validation of model

>predicted5 = predict(bst_model, newdata =

as.matrix(validation[, colnames(validation) != "Class"],

ntreelimit = bst_model$bestInd)

>library(pROC)

>area_under_curve5 = roc(validation$Class, predicted5, plot

= TRUE, col = "blue")

>print(area_under_curve5)

Call:

roc.default(response = validation$Class, predictor =

predicted5, plot = TRUE, col = "blue")

International Journal of Computer Applications (0975 – 8887)

Volume 182– No.12, August 2018

22

Data: predicted5 in 85317 controls (validation$Class 0) < 126

cases (validation$Class 1).

Area under the curve: 0.9617

Table 1: Algorithms and Percentage of Accuracy

Algorithms Training 70%

Validation30%

Data balancing

using ROSE

function

Data balancing

using

ovun.sample
function

Decision

Tree

0.89 0.9011 0.9336

Random

Forest

0.9181 0.9224 0.9647

9. CONCLUSIONS
After doing preprocessing and modelling, results for decision

tree and random forest algorithm are presented in Table 1.

It can be inferred that on imbalanced dataset, before applying

algorithms such as decision tree or random forest, data

balancing should be done using sampling techniques, either

using ROSE function or ovun.sample function from ROSE

package to improve the accuracy and better performance of

model.

One can use XGBoost method on such imbalanced dataset for

better prediction and improved performance. Advantage of

XGBoost is we’re able to process ~12 million rows in a matter

of minutes

10. ACKNOWLEDGMENTS
My special thanks to my parents, Prof. J. V. Ramana Murthy

Sir and my friends who encouraged me to write this paper.

11. REFERENCES
[1] Cochran, W.G. (1977). Sampling Techniques. New

York: Wiley.

[2] Richard G. Lyons, How Fast Must You Sample? , Test

and Measurement World, November, 1988, pp. 47-57.

[3] N. V. Chawla, D. A. Cieslak, L. O. Hall, and A. Joshi,

“Automatically countering imbalance and its empirical

relationship to cost,” Data Mining and Knowledge

Discovery, vol. 17, no. 2, pp. 225–252, 2008.

[4] H. Han, W. Y. Wang, and B. H. Mao, “Borderline-smote:

A new over-sampling method in imbalanced data sets

learning,” in Advances in Intelligent Computing, (Hefei,

China), vol. 3644, pp. 878–887, Springer-Verlag, 2005.

[5] N. Japkowicz “Learning from imbalanced data sets: A

comparison of various strategies,” in AAAI Workshop

on Learning from Imbalanced Data Sets, (Austin, Texas),

vol. 68, AAAI Press, 2000.

[6] Almuallim H., An Efficient Algorithm for Optimal

Pruning of Decision Trees. Artificial Intelligence 83(2):

347-362, 1996.

[7] Breiman L., Friedman J., Olshen R., and Stone C..

Classification and Regression Trees. Wadsworth Int.

Group, 1984

[8] Trevor Hastie, Rob Tibshirani, Jerome Friedman (2009)

“Statistical Learning” (Springer).

[9] Leo Breiman (2001) “Random Forests” Machine

Learning, 45, 5-32.

[10] Bradley, A.P., 1997. The use of the area under the ROC

curve in the evaluation of machine learning algorithms.

Pattern Recogn. 30 (7), 1145–1159

[11] Saitta, L., Neri, F., 1998. Learning in the ‘‘real world’’.

Mach. Learning 30, 133–163.

[12] Egan, J.P., 1975. Signal detection theory and ROC

analysis, Series in Cognition and Perception. Academic

Press, New York.

[13] Zhou, Z.-H. (2012). Ensemble Methods: Foundations and

Algorithms. Chapman & Hall/CRC, 1st edition.

[14] Schapire, R. E., and Freund, Y. (2012). Boosting:

Foundations and Algorithms. The MIT Press.

IJCATM : www.ijcaonline.org

