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ABSTRACT 
The lysine succinylation is found as an important post-

translational modification where succinyle group is added to a 

lysine (K) residue of a protein molecule. It plays major role 

not only in regulating the cellular processes but also 

associated with some diseases. As a result, it requires an 

easiest way to detect succinylation modification in proteins. 

However, since the experimental technologies are costly and 

time-consuming, so it is quite hard to detect the succinylation 

modification timely at low cost to face the explosive growth 

of protein sequences in postgenomic age. In this context, an 

accurate computational method for predicting succinylation 

sites is an urgent issue which can be useful for drug 

development. In this study, a novel computational tool termed 

predSucc-Site has been developed to predict protein 

succinylation sites by (1) incorporating the sequence-coupled 

information into the general pseudo amino acid composition, 

(2) balancing the effect of skewed training dataset by 

Different Error Costs (DEC) method, and (3) constructing a 

predictor using support vector machine as classifier. The 

experimental result shows that the predSucc-Site predictor 

achieves an average AUC (area under curve) score of 0.97 in 

predicting lysine succinylation sites. All of the experimental 

results along with AUC of our system are found from the 

average of 5 complete runs of the 5-fold cross-validation and 

those results indicate significantly better performance of 

predSucc-Site than existing predictors. A user-friendly web 

server for the predSucc-Site is available at 

http://research.ru.ac.bd/predSucc-Site/ 
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1. INTRODUCTION 
The structural and functional diversities of proteins as well as 

plasticity and dynamics of living cells are significantly 

dominated by the post-translational modifications (PTMs) [1]. 

Not only that, PTMs are also responsible for expanding the 

genetic code and for regulating cellular physiology as well [2,  

3]. In general, the side chain of lysine plays the key role in 

increasing the complexity of PTM network [4]. The lysine 

residue in proteins can experience many types of PTMs, such 

as methylation, acetylation, biotinylation, ubiquitination, 

ubiquitin-like modifications, propionylation, and butyrylation, 

which lead to the remarkable complexity of PTM networks [4, 

5]. 

Succinylation is an emerging posttranslational modification 

where a succinyl group (-CO-CH2-CH2-CO-) is added to a 

lysine residue of a protein molecule [6] and it plays an 

potential role in regulating protein conformation, function and 

physicochemical properties [7]. As a result, the identification 

of lysine succinylation sites in proteins has become a vital 

question in cellular physiology and pathology, which in turns, 

helps in providing some valuable evidence for both 

biomedical research and drug development [5, 8]. 

However, the purely experimental technique to determine the 

exact modified sites of succinylated substrates is expensive as 

well as time-consuming, especially for large-scale datasets. In 

this context, it is highly demanded to use computational 

approaches to identify the succinylated sites effectively and 

accurately [7]. Therefore, recently various types of 

computational classifiers have been developed to identify 

succinylation sites through different types of machine learning 

algorithms [1, 4, 5, 6, 7, 8, 9, 10]. However, in order to meet 

the current demand to produce efficient high-throughput tools, 

additional effort are required to enrich the prediction quality 

[5, 8].  

In the development of computational classifier, one of the 

major challenges is to handle imbalance dataset problem [5], 

as it is found in most of the dataset of succinylation sites 

prediction, the number negative subset is much larger than the 

corresponding positive subset [5]. As the real world picture is 

that the non-succinylation sites are always the majority 

compared with the succinylation ones, so naturally the 

predictor should be biased to the non-succinylation sites. Here 

the problem is that, for this type of predictors may interpret 

many succinylation sites as non-succinylation sites [11, 12, 

13]. But, the information about the succinylation sites is 

mostly desired than non-succinylation sites. As a result, it is 

crucial to find an effective solution to balance this kind of bias 

consequence. 

The current study was begun with an attempt to address the 

problems mentioned above and then tried to develop a more 

powerful predictor using support vector machine, called 

„predSucc-Site‟. In this predictor, the Different Error Costs 

(DEC) method [14, 15, 16] has been used to resolve the data 

imbalance issue. It should be noted here that the features used 

in that predictor are extracted by using vectorized sequence-

coupling model [17]. In the recent works, the performance of 

iSuc-PseAAC [18], SucPred[7], pSuc-Lys [8], and iSuc-

PseOpt [5]  on a large set of proteins has been studied in [5, 

8]. Therefore, in order to compare the performance of 

predSucc-Site with those systems (iSuc-PseAAC [18], 

SucPred[7], pSuc-Lys [8], iSuc-PseOpt [5]), we use the 

exactly same dataset employing the commonly used stratified 

5-fold cross-validation [8].   Since the information about the 

exact 5-way splits used in previous studies [8] is not available, 

so we have performed 5 complete runs of the 5-fold-

crossvalidation, where each complete run of 5-fold cross-

https://en.wikipedia.org/wiki/Posttranslational_modification
https://en.wikipedia.org/wiki/Succinic_acid
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validation uses a different 5-way splits. The use of multiple 

runs with different splits helps to validate the stability and the 

statistical significance of the results. Finally, the average 

results of all metrics found from this study has been reported. 

Our experimental results indicate that predSucc-Site achieves 

significantly better results than those found from other top 

systems (iSuc-PseAAC [18], SucPred [7], pSuc-Lys [8], iSuc-

PseOpt [5]).  

In order to launch a useful sequence-based statistical predictor 

for a biological system, the Chou's five-step rules should be 

followed [19, 5, 8] (i) construct or select a valid benchmark 

dataset to train and test the predictor, (ii) formulate the 

biological sequence samples with an effective mathematical 

expression that can truly reflect their intrinsic correlation with 

the target to be predicted, (iii) introduce or develop a powerful 

algorithm (or engine) to operate the prediction, (iv) properly 

perform cross-validation tests to objectively evaluate its 

anticipated accuracy, and (v) establish a user-friendly 

webserver that is accessible to the public.  

2. MATERIAL AND METHODS 

2.1 Benchmark Dataset 
pSuc-Lys‟s benchmark dataset set has been used in this study 

which was derived from the CPLM, a protein lysine 

modification database [8, 20]. CPLM contains 2521 lysine 

succinylation sites and 24128 non-succinylation sites 

determined from 896 proteins [20]. In pSuc-Lys, all of the 

corresponding protein sequences were derived from the 

UniProt [21] database.  In pSuc-Lys‟s work, (2𝜉 + 1)-tuple 

peptide window was used to collect peptide segment that had 

K at the center from these 896 proteins.  It should be 

mentioned here that if the upstream or downstream in a 

protein sequence is less than ξ or greater than L-ξ (L is the 

length of the protein sequence concerned) then the lacking 

amino acid has been filled with its mirrorimage in pSuc-Lys 

[8]. After applying some screening procedure based on some 

constraints on that dataset, for example, considering window 

size, <= 40% pairwise sequence identity to any other peptides, 

pSuc-Lys finally extracted a filtered training dataset. Detail 

description of screening procedure is explained in [8]. 

The final dataset of pSuc-Lys consisted of 1167 lysine 

succinylation sites and 3553 non-succinylation sites. It can be 

noted here that sliding window method was used to encode 

every lysine residue K of that dataset since succinylation only 

occurred in lysine residues K. According to [5, 8], window 

size has been selected as 31 (2*𝜉+1) in our study, where 𝜉=15. 

The detailed sequences for the 1167 samples in the positive 

subset (𝑆𝜉=15
+ ) and those for the 3553 samples in the negative 

subset (𝑆𝜉=15
− ) are available at online supplementary materials 

(http://research.ru.ac.bd/predSucc-Site/).   Thus, the 

benchmark dataset set S for the current study can be 

formulated as  

𝑆𝜉=15 = 𝑆𝜉=15
+ ∪ 𝑆𝜉=15

−    (1) 

2.2 Feature Extraction 
The appropriate features of protein sequences or samples 

plays very important roles for the prediction of succinylation 

site, as a result it draws the much attention of scientist that 

how to select the core and essential features of protein 

samples. Moreover, as most existing machine learning 

algorithm can handle only vector but not sequence sample, 

one of the critical problem in bioinformatics is how to extract 

vector from biological sequence with keeping considerable 

sequence characteristics. In order to avoid complete losing the 

sequence pattern information for protein, in this paper, the 

Chou's general PseAAC [19, 22] has been adopted to extract 

feature from peptide segment using sequence-coupling model 

[17, 23] which has been described briefly below. 

According to Chou's scheme, a peptide with lysine (K) located 

at its center can be generally expressed by 

𝑃𝜉 𝕂 = 𝑅−𝜉𝑅−(𝜉−1) ……𝑅−2𝑅−1𝕂 𝑅1𝑅2 …… . 𝑅+(𝜉−1)𝑅+𝜉        (2) 

where the center K represents “lysine”, the subscript ξ is an 

integer, 𝑅−𝜉  represents the ξ-th up stream amino acid residue 

from the center, the 𝑅+𝜉  represents the ξ-th downstream 

amino acid residue, and so forth.  

The (2𝜉 + 1)-tuple peptide sample 𝑃𝜉 𝕂  can be further 

classified into the following two categories:  

𝑃𝜉 𝕂 ∈  
𝑃𝜉

+ 𝕂 ,   if its center is a succinylation site 

𝑃𝜉
− 𝕂 ,                                               otherwise 

           (3) 

where 𝑃𝜉
+ 𝕂  denotes a true succinylation segment with 

lysine at its center, 𝑃𝜉
− 𝕂  a false succinylation segment with 

lysine at its center, and the symbol ∈ means “a member of” in 

the set theory. 

It is obvious from Eq. (2) that when 𝜉=15 the corresponding 

peptide contains  2𝜉 + 1 = 31 amino acid residues; that is, it 

can be reduced to 

𝑃𝜉 𝕂 = 𝑅1𝑅2 ……𝑅14𝑅15𝕂 𝑅16𝑅17 …… . 𝑅29𝑅30        (4) 

Thus, according to the general form of PseAAC [19], the 

samples in the positive subset 𝑆𝜉=15
+ and negative subset 

𝑆𝜉=15
− of Eq. (1) can be respectively formulated as 

𝑃+ =  𝜃1
+𝜃2

+ …𝜃𝑢
+ …𝜃𝜋

+ 𝑇    (5) 

and 

𝑃− =  𝜃1
−𝜃2

−…𝜃𝑢
−…𝜃𝜋

− 𝑇    (6) 

where 𝑇 is the transpose operator and 𝜋 is an integer to reflect 

the dimension of the PseAAC vector. The value of  𝜋, as well 

as the components 𝜃𝑢
+ and 𝜃𝑢

− (𝑢 = 1, 2,… ,… , 𝜋) therein, will 

depend on how to extract the desired information from the 

peptide samples in Eq. (4). In this study, to make 𝑃+ better 

reflect the intrinsic correlation with the lysine succinylation 

sites, the components in Eq. (5) are defined by the following 

sequence-coupling factors via the conditional probability 

approach as originally proposed in Refs. [17, 23] for 

predicting the HIV protease cleavage sites in proteins: 

𝜃𝑢
+ =

 
 
 
 
 

 
 
 
 
𝑝+(𝑅1 𝑅2) ,      𝑖𝑓 𝑢 = 1  

𝑝+(𝑅2 𝑅3) ,     𝑖𝑓 𝑢 = 2  
⋮                         ⋮

𝑝+(𝑅15),           𝑖𝑓 𝑢 = 15

𝑝+(𝑅16),           𝑖𝑓 𝑢 = 16
⋮                          ⋮

𝑝+(𝑅29 𝑅28) , 𝑖𝑓 𝑢 = 29

𝑝+(𝑅30 𝑅29) , 𝑖𝑓 𝑢 = 30

𝜋 = 30  (7) 

where 𝑝+(𝑅1 𝑅2)  is the conditional probability of amino acid 

𝑅1 occurring at the first position given that its right neighbor 

in the peptide sample (cf. Eq. (4)) is 𝑅2, 𝑝+(𝑅2 𝑅3)  is the 

conditional probability of amino acid 𝑅2 occurring at the 

second position  given that its right neighbor is 𝑅3, and so 

forth. Note that in the above equation only 𝑝+(𝑅15) and 

𝑝+(𝑅16) are of nonconditional probability given that the left 

neighbor of 𝑅15 and the rightneighbor of 𝑅16 are always K. 

All of these probability values can be easily derived from the 

http://research.ru.ac.bd/predSucc-Site/
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positive benchmark dataset given in Supporting Information 

S1 in the supplementary material as done in Ref. [23]. 

Similarly, the components in Eq. (6) are defined by 

𝜃𝑢
− =

 
 
 
 

 
 
 
𝑝−(𝑅1 𝑅2) ,      𝑖𝑓 𝑢 = 1  

𝑝−(𝑅1 𝑅2) ,     𝑖𝑓 𝑢 = 2  
⋮                         ⋮

𝑝−(𝑅15),           𝑖𝑓 𝑢 = 15
𝑝−(𝑅16),           𝑖𝑓 𝑢 = 16

⋮                          ⋮
𝑝−(𝑅29 𝑅28) , 𝑖𝑓 𝑢 = 29

𝑝−(𝑅30 𝑅29) , 𝑖𝑓 𝑢 = 30

𝜋 = 30  
 

(8) 

where the probability values are derived from the 

corresponding negative benchmark dataset as given in 

Supporting Information S2. 

Inspired by the concept of discriminant function that has been 

successfully used by many previous investigators to predict 

the specificity of GalNAc transferase [24], cysteine S-

nitrosylation sites [25], hydroxyproline and hydroxylysine 

[26], tight turns and their types [27], and nitrotyrosine sites 

[28], here we use the discriminant PseAAC vector to represent 

a peptide sample; that is, P of Eq. (4) is finally formulated as a 

30-D (30-dimensional) vector given by 

𝑃 =  𝜃1𝜃2 …𝜃𝑢 …𝜃30 
𝑇           (9) 

where 

𝜃𝑢 =  𝜃𝑢
+ − 𝜃𝑢

− ,   𝑢 = 1,2, … ,… ,30        (10) 

2.3 SVM Classification 
The modeling algorithm of SVM searches an optimal 

hyperplane with the maximum margin for separating two 

classes by finding a solution of the following constraint 

optimization problem [29, 30, 31]: 

maximizeα  αi −
1

2
  αiαjyi

n

j=1

yjk xi , xj 

n

i=1

n

i=1

 

Subject to:   

 yiαi = 0 n
i=1 , 0 ≤ αi ≤ C 

                  for all i = 1,2,3, …… , n                      (11) 

where xi ∈ Rp  and   yi ∈ {−1, +1} is the class label of xi , 1 ≤ 

i ≤ n. 

Finally, the discriminant function of SVM by involving the 

kernel function takes the following form 

                    f x =  αi𝑦𝑖k x, xi + bn
i                 (12) 

It noted here that a kernel function and its parameter have to 

be chosen to build a SVM classifier [29, 30, 31]. In this work, 

radial basis function kernel has been used to build SVM 

classifier which is defined below: 

𝐾 𝑥𝑖 , 𝑥𝑗  = exp⁡(−
 𝑥𝑖−𝑥𝑗 

2

2𝜎2
), 𝜎 is the width of the function. 

2.3.1 Imbalance Data Management for SVM  
Any dataset that shows an unequal distribution between its 

classes can be considered imbalanced dataset problem. 

Although SVMs work effectively with balanced datasets, they 

provide sub-optimal models with imbalanced datasets [14, 15, 

16].  In this paper, we have used a Different Error Costs 

(DEC) method to handle imbalance dataset problem for 

succinylation sites prediction. The Different Error Costs 

(DEC) method is a cost-sensitive learning solution proposed 

in [14] to overcome imbalance dataset problem in SVMs. In 

DEC method, the SVM soft margin objective function is 

modified to assign two misclassification costs, such that C+ is 

the misclassification cost for positive class examples, while C- 

is the misclassification cost for negative class examples.  The 

following equations give the cost for the positive and negative 

classes 

𝐶+ =
𝐶∗𝑁

2∗𝑁1
,  𝐶− =

𝐶∗𝑁

2∗𝑁2
     (13) 

where N is the total number of instances, 𝑁1 is the number of 

instances for positive class, and 𝑁2 is the number of negative 

class. 

2.4 Experimental Setting  
In statistical prediction, there are three commonly used 

methods to derive the metric values for a predictor:  the 

independent dataset test, subsampling (e.g., k-fold cross-

validation) test, and jackknife test [8, 32].  In this study, we 

have used cross validation methods to save the computational 

time.  As the information about the exact 5-way splits of 

dataset used in previous studies is not published [8], therefore, 

in order to validate the stability and the statistical significance 

of our results, we have repeated the 5-fold cross-validation for 

5 times. It can be mentioned here that in each 5-fold cross-

validation the given training samples are randomly partitioned 

into 5 mutually exclusive sets of approximately equal size and 

approximately equal class distribution. Finally, we have 

reported the average results of all metrics in this study.  

2.5 Measuring Metrics 
For measuring the success rates for this kind of classification, 

a set of four metrics is usually used in the literature: (i) overall 

accuracy or Acc, (ii) Mathew's correlation coefficient or 

MCC, (iii) sensitivity or Sn, and (iv) specificity or Sp [18, 33, 

34]. 

𝑆𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

𝑀𝐶𝐶 =
 𝑇𝑃 × 𝑇𝑁 − (𝐹𝑃 × 𝐹𝑁)

 (𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

(14) 

where TP (true positive) denotes the number of succinylated 

peptides correctly predicted, TN (true negative) the numbers 

non-succinylated peptides correctly predicted, FP (false 

positive) the non-succinylated incorrectly predicted as the 

succinylated peptides, and FN (false negative) the 

succinylated peptides incorrectly predicted as the non-

succinylated peptides. 

AUC (area under the curve) is also another indicator in 

practical application which will be calculated from ROC 

curve (receiver operating characteristic curve). It is instructive 

to point out that the metrics as defined in Eq. (14) are valid for 

single-label systems, for multi-label systems a set of more 

complicated metrics should be used [18]. 

3. RESULTS AND DISCUSSION 

3.1 Model Selection for SVM  
In order to generate highly performing SVM classifiers 

capable of dealing with real data an efficient model selection 

is required. In our experiment, grid-search technique has been 

used to find the best model for SVM.  For radial basis 

function (RBF) kernel based SVM, to find the parameter 
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value C (penalty term for soft margin) and σ (sigma), we have 

considered the value from 2-8 to 28 for C and from 2-8 to 28 for 

sigma as our searching space. Herein, the value of C will be 

used to find the misclassification cost of C+ and C- defined in 

equation (8). The selected C and sigma of 5 complete runs of 

the 5-fold cross-validation on the benchmark data set is shown 

in Table 1. Finally, we have averaged our results in order to 

ensure unbiased model selection. It should be mentioned that 

we have used C=2-3 and σ = 23 to trained the system for the 

web server, because most of the times, the best model is found 

for the value of C=2-3 and σ = 23. 

Table 1. Selected C and σ of 5 complete runs of 5-fold 

cross-validation for RBF kernel based SVM. 

No. of Completes 

Run 
C σ 

1st
 2-2 23 

2nd 2-3 23 

3rd 2-3 23 

4th 2-3 23 

5th 2-2 23 

 

3.2 Comparison with the Existing Methods 

The values of the four metrics (cf. Eq. (14)) obtained by the 

current predSucc-Site predictor are given in the Table 2. 

These values are the average result of 5 complete runs of 5-

fold cross-validation on the benchmark dataset given in 

Supporting information S1 and Supporting information S2. 

Moreover, standard deviations of each metrics of 5 complete 

runs of the 5-fold cross-validation are shown in parentheses. 

The Table 2 also includes the corresponding rates achieved by 

iSuc-PseAAC [18], SucPred[7], pSuc-Lys [8], and iSuc-

PseOpt [5],  the four existing predictors for identifying the 

lysine succinylation sites for the aforesaid dataset. It should be 

mentioned here that the performance of iSuc-PseAAC [18], 

SucPred[7], pSuc-Lys [8], iSuc-PseOpt [5] as shown in Table 

2 are noted from [5, 8]. 

It is obvious from the Table 2, predSucc-Site has performed 

remarkably better over iSuc-PseAAC,  SucPred, pSuc-Lys 

and iSuc-PseOpt while considering Acc, MCC, and Sn. It 

indicates that, the proposed new predictor has produced over 

all better accuracy, sensitivity, and stability. Although the 

achieved Sp by SucPred, pSuc-Lys and iSuc-PseOpt is higher 

than that by our predictor, the gap between its Sn and Sp is 

very large (48% for SucPred, 19% for pSuc-Lys, 27% for 

iSuc-PseOpt). Which implies that the results achieved by 

SucPred, pSuc-Lys and iSuc-PseOpt contain many false 

negative events [35] and hence its higher achieved Sp rate is 

problematic [8]. Since the information about the succinylation 

sites is mostly desired than non-succinylation sites [5, 8] from 

the biological point of view, predSucc-Site will be more 

preferable than such type of problematic predictors [8]. 

Moreover, it can be noted here that, the programs such as 

BLAST and FASTA have been widely used in genomic and 

proteomic analysis or prediction based on similarity search 

[36]. But, unfortunately these programs are helpless while 

facing sequences having low similarities, especially, when 

more and more orphan genes are discovered. Therefore, in the 

case of orphan genes or low-similar proteins, it is urgent to 

develop a statistical predictive model. From this biological 

viewpoint, this study is very meaningful and important [36]. 

Table 2. A comparison of the proposed predictor with the 

existing methods 
Method Acc(%) MCC Sn(%) Sp(%) AUC 

iSuc-

PseAAC 

79.98 0.4370 50.63  89.68 0.7823 

SucPred 85.32 0.5710 49.13 97.17 0.8933 

pSuc-Lys 90.83 0.7695 76.79 95.97 0.9325 

iSuc-

PseOpt** 

87.86 0.7193 69.38 96.86 0.9475 

predSucc-

Site 

92.00 

(±0.07) 

0.8029 

(±0.0023) 

93.42 

(±0.35) 

91.47 

(±0.04) 

0.9788 

(±0.0001) 

** Taken the best result of iSuc-PseOpt from Table 1 of [5]  

However, in order to make a more consistent comparison of 

our  predSucc-Site  with SucPred, pSuc-Lys and iSuc-PseOpt 

in the case of specificity metric, two thresholds of specificity 

95% and 97% have been taken into consideration  and values 

of other metrics of predSucc-Site at those level of specificities 

have been calculated too. In this case, to find out the 

performance of predSucc-Site, a single time run of the 5-fold 

cross-validation by considering C=2-3 and σ = 23 has been 

used. It can be noted here that class discrimination value of 

SVM classifier have been found -0.26 and -0.48 for 95% and 

97% specificity respectively. All of the findings of predSucc-

Site by considering these two thresholds of specificity are 

shown in Table 3. From Table 2 and 3, it is clear that 

predSucc-Site has also produced better results than other 

predictors in those two thresholds levels of specificity. 

Table 3. Values of Acc, MCC, and Sn of predSucc-Site for 

Two different levels of Specificity 

Sp (%) Acc (%) MCC Sn (%) 

95.16 93.54 0.8285 88.60 

97.02  93.39 0.8186 82.35 

 

The area under the ROC curve is called AUC (area under the 

curve). The greater the AUC value is, the better the predictor 

will be [37, 38]. As we can see from Table 2, the value of 

AUC clearly indicates that the proposed predictor is better 

than iSuc-PseAAC [18], SucPred[7], pSuc-Lys [8], and iSuc-

PseOpt [5].  Therefore, it is projected that predSucc-Site may 

become a useful and higher throughput tool in succinylation 

sites prediction.   

3.3 Protocol Guide 
To attract more users especially for the convenience of 

experimental scientists [39, 40] and enhance the value of 

practical application, a user-friendly web-server for 

mLysPTMpred has been established at 

http://research.ru.ac.bd/predSucc-Site/.  In order to get the 

predicted result, users are required to submit protein sequence 

through the input text box in our site. The input sequence 

should follow the FASTA format. An example of a sequence 

of FASTA format is available under example button in our 

published site. Moreover, in order to get batch prediction, 

users are required to enter desired batch input file in the 

FASTA format. Noted that, the benchmark dataset used to 

train and test the predSucc-Site predictor are available under 

Supporting Information button. 

 

 

http://research.ru.ac.bd/predSucc-Site/
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4. CONCLUSION 
In this article, we have designed a simple and efficient 

predictor predSucc-Site for predicting succinylation sites. 

Experimental results show that our method is very promising 

and can be a useful tool for prediction of succinylation sites. 

The predSucc-Site has achieved remarkably higher success 

rates in comparison with the existing predictors in this area. In 

addition to it, we have established a user-friendly web server 

and provided a step-by-step guide for convenience of the 

experimental scientists. It provides as easier way to obtain the 

desired results without knowing the mathematical details. We 

have projected that the predSucc-Site will become a very 

efficient and higher throughput tool for predicting of protein 

succinylation sites. 
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