
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 15, September 2018

5

Optimization Method to Reduce Matrices Multiplications

in the Context of CUDA

Arezoo Khatibi
University of Kashan, Faculty of Computer Science

Kashan, Iran (Corresponding Author)
BLVD Ghotb Ravandi 6 Kilometers

Omid Khatibi
University of Vienna, Faculty of Mathematics

Vienna, Austria
Oskar morgenstern platz no 1, 1090

ABSTRACT

Parallel programming is an effective way to increase the

speed of processing applications. It is carried out

simultaneously by multiple processors rather than by a single

processor. We compare the number of necessary calculations

for multiplying the chain matrix in normal mode with the

parallel mode. Since we used the famous parallel language

named CUDA in our program, we will first present a brief

description of the language and secondly, we explain essential

mathematical notions and compare the performance of both

programs.

Keywords

CUDA, GPU, Parallel programming

1. INTRODUCTION
In early computers, a processor called CPU had to do all

calculations and administrative processes. After a while,

experts designed a processor called GPU to delegate tasks to

support the CPU. Thus, the graphics card (GPU or graphics

processor that is installed on the card) with additional memory

performs graphics operations and is connected to the

computer's graphics power. The question is which system is

more effective and on which component (the CPU or GPU)

should money be spent in order to develop a more robust

system?

Since the current processor speed is high, and frequency

(something that usually can be seen in newer Intel processors)

does not significantly contribute to overall system efficiency,

the costs to purchase a better processor seem unnecessary. On

the other hand, for users of graphics, games, animation and

three-dimensional software, a good graphics card is much

more important than a CPU. Furthermore, a modern GPU

designed to help the CPU with graphical calculations has the

ability to work on all kinds of arithmetic operations. Another

interesting point is that a GPU does not need a large cache

(memory that can be embedded in the processor) and

therefore, can process much faster than a CPU. This is true

both in terms of graphical computing and for all routine and

professional applications [1].

 The differences between a CPU and a GPU are that a CPU

has a delay oriented core, large warehouses, advanced control,

branch prediction, transport information, powerful ALUS and

reduced latency. A GPU has an output oriented core, a small

cache to increase memory ability, simple controls does not

anticipate branches, and has no transit information. The

common goal is to improve pipeline exploitation. The

purpose of a processor (CPU) is to improve the performance

of single-threading. A multi-threading processor is used to

hide latency. A GPU uses shared memory to reduce memory

latency. In a CPU, workloads do not require a lot of memory

access and data is brought where as in the GPU there is a lot

of memory access and the bandwidth is developed very well

[2]. A GPU is a pile of parallel co-processors. The Kernel is

composed of a grid from the thread blocks.

Figure 1: Allocating DRAM and ALU to CPU and GPU

2. RELATED WORKS
Chittampally Vasanth Raja, Srinivas Balasubramanian and

Prakash S aghavendra made a full study heterogeneous highly

parallel implementation of matrix exponentiation using GPU

[1]. In [2], the authors provided an interface and a general

matrix routine Implementation for multiplying small matrices

that were simultaneously processed on GPU. Their matrix size

was less than 16. They introduced a distributed Cuda method

and compared their work with Cuda. The authors of [3]

compared the speed of the CPU and GPU on systems working

with daylight, and provided a better algorithm than the CPU

in GPU environments in OpenCL. [4] is about the hardware

architecture of matrix multiplication on real multi-core

systems. The authors considered the system data as data

matrices and tried to find a better destination for temporary

system data in multi-layer cashes. They compared their work

with a method that considered the data as a block and

improved the speed of the multi-core system with their

proposed algorithm. They tested their work on matrix

multiplication. In [5], the authors showed memory access

patterns for execution and hit cache rates in the GPU kernels.

They implemented their method details for matrices whose

data sizes were larger than the GPU memory and showed the

results for square matrices. [6] compares two methods of

balancing the load for matrix multiplication in multi-cores +

GPU systems. The authors optimized the utilization of the

combination of CPU and GPU libraries and attempted to

reduce the runtime of these systems. [7] focuses on OpenCL

kernels and uses matrix multiplication as case study. The

authors obtained a new method to automatically generate

performance portable GPU code.

3. MINIMIZING THE NUMBER OF

MATRIX MULTIPLICATIONS
For multiplying a chain of matrices we use the following

dynamic algorithm: Calculate the minimum number of

multiplications for A1 * A2, A2 * A3, ..., A(n-1)*An. Initially

we calculate for two matrices and then for three matrices and

so on, so that the optimum of multiplications for n matrices is

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 15, September 2018

6

calculated and obtained through the recurrence relation in

each previouse step [3].

M [I] [J] = minimum (M[i] [k] + M [k+1] [j] + d [i-
1]*d[k]*d[j], i<=k<=j-1).

The above process is stored as the diagonal (with column

indices greater than row indices) in a matrix named M and d is

an array of length n + 1 that maintains the dimensions of the

matrix. The matrix structure, which consist of height, width

and matrix dimensions is used in the program code and *

element is a pointer to the matrix. Members are stored as

rows in the matrix:

M (row, col) =*(M.element +row*M.width+col)

So the elements of the matrix diagonal will be counted by the

following code:

for (int dia=1; dia < m.width-1;

dia++)

for (int i=1; i<=m.width-dia; i++) {

 int j=i+dia;

 *(m.element+i*m.width+j)

=*(m.element+i*m.width+i) +

*(m.element

 + (i+1)*m.width+j) +

(d.element+i-1) *(d.element+i)*

*(d.element+j);

 for (int k=i+1; k<=j; k++)

*(m.element+i*m.width+j)=(*(m.element

+i*m.width+j))<=(*(m.element+i*m.widt

h+k)

 +

*(m.element+(k+1)*m.width+j)+

(d.element+i-1) *(d.element+k)*

*(d.element+j))?

 *(m.element+i*m.width+j) :*(

m.element+i*m.width+k) + *(m.element+

(k+1)*m.width+j)

 + *(d.element+i-1)*

(d.element+k) *(d.element+j);

}

The result of the last diagonal is the solution to the problem.

Algorithm execution time is $o(n^3)$. To use the above

algorithm in parallel algorithm using CUDA first, we mapped

conventional memory (dedicated matrices) in the host to the

memory of graphics processors (device), which is stored in

the form of a grid and blocks as follows:

Figure 2: Grid

The number of blocks in the grid will be determined and

introduced by Dim3 grid (3, 2). The threads of each block are

processed by a graphics processor that can specify thread

numbers in each block. Dim3 block (3, 2), we want diagonal

elements to be calculated in parallel mode in a single step, for

this purpose we write a global function as follows:.

__global__ void test(matrix D,matrix

M,int DIA){

 Int col = blockIdx.x

*blockDim.x+threadIdx.x;

 Int

row=blockIdx.y*blockDim.y+threadIdx.y

;

If (row>0 && col>0 && col-row ==

DIA) {

 Int temp =M.element

[row*M.width+row] +

 M.element

[(row+1)*M.width+col] +D.element

[row-1]

*D.element [row]*D.element [col];

M.element [row*M.width+col] =temp;

For (int k=row+1; k<col; k++)

M.element[row*M.width+col]=(M.element

[row*M.width+col])<=(M.element[row*M.

width+k]

+M.element[(k+1)*M.width+col]+D.eleme

nt[row-

1]*D.element[k]*D.element[col])?

(M.element[row*M.width+col):(M.elemen

t[row*M.width+k]

+M.element[(k+1)*M.width+col]

+D.element[row-

1]*D.element[k]*D.element[col]);

}

}

As shown in the above function condition,

(if (row>0 && col>0 && col-row==DIA))

Each time you start the function above, elements located on

the DIA diagonal are run by the graphics processors

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 15, September 2018

7

simultaneously. After mapping the host memory to the device

in the body of the program the above function will be called to

calculate the elements of any diagonal (with sending size of

the block and grid).

For (int dia=1; dia<h_d.width-2;

dia++)

 Test<<<grid,block>>>(d_d,d_m,dia);

The size of the block and grid are considered as follows:

Dim3 block (10, 40);

Dim3 block (10, 40);

Dim3 grid (h_m.width/10) +1, (h_m.width/40)

+1);

After the values of the diagonal were calculated by this

function, the result is copied from the device to the host.

cudaMemcpy(h_m.element,d_m.element,si

zem,cudaMemcpyDeviceToHost);

cudaMemcpy(h_d.element,d_d.element,size,c

udaMemcpyDeviceToHost);

4. ANALYSIS
Table 1: Execution Time of series and parallel programs

with different matrices

A total of

matrices

Time of the

series program

with CPU

intel(R)

core(TM) i7-

4710HQ-2.5GHZ

Time of the parallel

application with

NVIDIA,GEFORCE

,GTX850M

100 3.086 4.047

200 27.791 5.269

500 10.367 8.287

800 8.791 31.512

1200 12.339 7.862

1500 9.864 6.288

Figure 3: Comparison of the average execution time

between series and parallel programs

The time unit in table 1 is millisecond. The research was

conducted using a computer with CPU 2500 and 8 core. To

date, we have not seen an article that optimized multiplication

matrices, so we were unable to compare our work with that of

other researchers. In this paper, we tried to reduce the number

of matrices multiplications using parallel programming with

CUDA language. In the experiment, the number of matrices is

200, the number of matrices multiplications in parallel state is

very optimized then we have a huge speed up for both the

series program and parallel application. When the number of

matrices is 800, parallel programming is not able to optimize

the number of matrices multiplications and the opposite result

occurred-a significant slow down in both the time of the series

program and of the parallel application. This shows that the

optimization of the multipliers is not entirely useful, and in

the six cases, one case has failed.

5. CONCLUSION
Speed up is a calculated by the time of the sequential program

divided by the time of the parallel program.

In the case of n=100, both programs find the answer very fast

and in less than a second. The largest n that our serial

program is able to manage is 420, whereas the parallel

program finds the answer until n = 649 in less than 5 seconds.

Perhaps by finding a more suitable block and grid size a better

result can be achieved. Matrices are one of the mathematical

objects used in computer graphic programs, computer

networks, and electrical modelling. We saved time and

complexity by optimizing the multiplication of matrices and

in fact, we increased the speed of programs using

multiplication matrices.

6. REFERENCES
[1] Chittampally Vasanth Raja, Srinivas Balasubramanian,

Prakash S aghavendra. 2012. Heterogeneous Highly

Parallel Implementation of Matrix Exponentiation Using

GPU. International Journal of Distributed and Parallel

Systems (IJDPS), 3(2).

[2] Chetan Jhurani, Paul Mullowney. 2015. A GEMM

Interface and Implementation on NVIDIA GPUs for

Multiple Small Matrices. Parallel Distrib. Comput. 75,

133-140.

[3] Wangda Zuo, Andrew McNeil, Michael Wetter and

Eleanor S. ee. 2014. Acceleration of The Matrix

Multiplication of Radiance Three Phase Daylighting

Simulations with Parallel Computing on Heterogeneous

Hardware of Personal Computer. Journal Of Building

Performance Simulation, 7(2), 152-160.

[4] Minwoo Kim, Won Woo Ro. 2014. Architectural

Investigation of Matrix Data Layout on Multicore

Processors. Future Generation Computer Systems, 37,

64-75.

[5] Kazuya Matsumotoa, Naohito Nakasato, Tomoya Sakai,

Hideki Yahagi, Stanislav G. Sedukhin. 2011. Multi-level

Optimization of Matrix Multiplication for GPU-equipped

Systems GPU-equipped SystemsInterfaces. Procedia

Computer Science, 4, 342-351.

[6] Luis-Pedro Garc´ıa, Javier Cuenca and Domingo

Gim´enez. 2015. On Optimization Techniques for the

Matrix Multiplication on Hybrid CPU+GPU Platforms

Annals of Multicore and GPU Programming, 2(1).

[7] Toomas Remmelg, Thibaut Lutz, Michel Steuwer,

Christophe Dubach. 2011. Proceedings of the 9th Annual

Workshop on general purpose processing using graphics

processing unit, 12 March 2016, pp.22-31.

IJCATM : www.ijcaonline.org

