
International Journal of Computer Applications (0975 – 8887) 

Volume 182 – No. 15, September 2018 

5 

Optimization Method to Reduce Matrices Multiplications 

in the Context of CUDA 

Arezoo Khatibi 
University of Kashan, Faculty of Computer Science 

Kashan, Iran (Corresponding Author) 
BLVD Ghotb Ravandi 6 Kilometers 

Omid Khatibi 
University of Vienna, Faculty of Mathematics 

Vienna, Austria 
Oskar morgenstern platz no 1, 1090 

 
 

ABSTRACT 

Parallel programming is an effective way to increase the 

speed of processing applications. It is carried out 

simultaneously by multiple processors rather than by a single 

processor. We compare the number of necessary calculations 

for multiplying the chain matrix in normal mode with the 

parallel mode. Since we used the famous parallel language 

named CUDA in our program, we will first present a brief 

description of the language and secondly, we explain essential 

mathematical notions and compare the performance of both 

programs.   
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1. INTRODUCTION 
In early computers, a processor called CPU had to do all 

calculations and administrative processes. After a while, 

experts designed a processor called GPU to delegate tasks to 

support the CPU. Thus, the graphics card (GPU or graphics 

processor that is installed on the card) with additional memory 

performs graphics operations and is connected to the 

computer's graphics power. The question is which system is 

more effective and on which component (the CPU or GPU ) 

should money be spent in order to develop a  more robust 

system? 

Since the current processor speed is high, and frequency 

(something that usually can be seen in newer Intel processors) 

does not significantly contribute to overall system efficiency, 

the costs to purchase a better processor seem unnecessary. On 

the other hand, for users of graphics, games, animation and 

three-dimensional software, a good graphics card is much 

more important than a CPU. Furthermore, a modern GPU 

designed to help the CPU with graphical calculations has the 

ability to work on all kinds of arithmetic operations. Another 

interesting point is that a GPU does not need a large cache 

(memory that can be embedded in the processor) and 

therefore, can process much faster than a CPU. This is true 

both in terms of graphical computing and for all routine and 

professional applications [1]. 

 The differences between a CPU and a GPU are that a CPU 

has a delay oriented core, large warehouses, advanced control, 

branch prediction, transport information, powerful ALUS and 

reduced latency. A GPU has an output oriented core, a small 

cache to increase memory ability, simple controls does not 

anticipate branches, and has no transit information. The 

common goal is to improve pipeline exploitation.  The 

purpose of a processor (CPU) is to improve the performance 

of single-threading. A multi-threading processor is used to 

hide latency. A GPU uses shared memory to reduce memory 

latency. In a CPU, workloads do not require a lot of memory 

access and  data is brought where as in the GPU there is a lot 

of memory access and the bandwidth is developed very well 

[2]. A GPU is a pile of parallel co-processors. The Kernel is 

composed of a grid from the thread blocks.  

 

Figure 1: Allocating DRAM and ALU to CPU and GPU 

2. RELATED WORKS 
Chittampally Vasanth Raja, Srinivas Balasubramanian and 

Prakash S aghavendra made a full study heterogeneous highly 

parallel implementation of matrix exponentiation using GPU 

[1]. In [2], the authors provided an interface and a general 

matrix routine Implementation for multiplying small matrices 

that were simultaneously processed on GPU. Their matrix size 

was less than 16. They introduced a distributed Cuda method 

and compared their work with Cuda. The authors of [3] 

compared the speed of the CPU and GPU on systems working 

with daylight, and provided a better algorithm than the CPU 

in GPU environments in OpenCL. [4] is about the hardware 

architecture of matrix multiplication on real multi-core 

systems. The authors considered the system data as data 

matrices and tried to find a better destination for temporary 

system data in multi-layer cashes. They compared their work 

with a method that considered the data as a block and 

improved the speed of the multi-core system with their 

proposed algorithm. They tested their work on matrix 

multiplication. In [5], the authors showed memory access 

patterns for execution and hit cache rates in the GPU kernels. 

They implemented their method details for matrices whose 

data sizes were larger than the GPU memory and showed the 

results for square matrices. [6]  compares two methods of 

balancing the load for matrix multiplication in multi-cores + 

GPU systems. The authors optimized the utilization of the 

combination of CPU and GPU libraries and attempted to 

reduce the runtime of these systems. [7]  focuses on OpenCL 

kernels and uses matrix multiplication as case study. The 

authors obtained a new method to automatically generate 

performance portable GPU code. 

3. MINIMIZING THE NUMBER OF 

MATRIX MULTIPLICATIONS 
For multiplying a chain of matrices we use the following 

dynamic algorithm: Calculate the minimum number of 

multiplications for A1 * A2, A2 * A3, ..., A(n-1)*An. Initially 

we calculate for two matrices and then for three matrices and 

so on, so that the optimum of multiplications for n matrices is 



International Journal of Computer Applications (0975 – 8887) 

Volume 182 – No. 15, September 2018 

6 

calculated and obtained through the recurrence relation in 

each previouse step [3]. 

M [I] [J] = minimum (M[i] [k] + M [k+1] [j] + d [i-
1]*d[k]*d[j], i<=k<=j-1). 

The above process is stored as the diagonal ( with column 

indices greater than row indices) in a matrix named M and d is 

an array of length n + 1  that maintains the dimensions of the 

matrix. The matrix structure, which consist of height, width 

and matrix dimensions  is used in the program code and  * 

element is a pointer to the matrix.  Members are stored as 

rows in the matrix:  

M (row, col) =*(M.element +row*M.width+col) 

So the elements of the matrix diagonal will be counted by the 

following code:  

for (int dia=1; dia < m.width-1; 

dia++) 

for (int i=1; i<=m.width-dia; i++) { 

       int j=i+dia; 

       *(m.element+i*m.width+j) 

=*(m.element+i*m.width+i) + 

*(m.element 

       + (i+1)*m.width+j) + 

*(d.element+i-1)* *(d.element+i)* 

*(d.element+j); 

        

       for (int k=i+1; k<=j; k++) 

       

*(m.element+i*m.width+j)=(*(m.element

+i*m.width+j))<=(*(m.element+i*m.widt

h+k) 

       + 

*(m.element+(k+1)*m.width+j)+ 

*(d.element+i-1)* *(d.element+k)* 

*(d.element+j))?  

       *(m.element+i*m.width+j) :*( 

m.element+i*m.width+k) + *(m.element+ 

(k+1)*m.width+j)  

       + *(d.element+i-1)* 

*(d.element+k)* *(d.element+j); 

        

} 

The result of the last diagonal is the solution to the problem. 

Algorithm execution time is $o(n^3)$. To use the above 

algorithm in parallel algorithm using CUDA first, we mapped 

conventional memory (dedicated matrices) in the host to the 

memory of graphics processors (device), which is stored in 

the form of a grid and blocks as follows: 

Figure 2: Grid 

The number of blocks in the grid will be determined and  

introduced by Dim3 grid (3, 2). The threads of each block are 

processed by a graphics processor that can specify thread 

numbers in each block. Dim3 block (3, 2), we want  diagonal 

elements to be calculated in parallel mode in a single step, for 

this purpose we write a global function as follows:. 

__global__ void test(matrix D,matrix 

M,int DIA ){ 

          Int col = blockIdx.x 

*blockDim.x+threadIdx.x; 

          Int 

row=blockIdx.y*blockDim.y+threadIdx.y

; 

If (row>0 && col>0  && col-row == 

DIA) { 

    Int temp =M.element 

[row*M.width+row] + 

       M.element 

[(row+1)*M.width+col] +D.element 

[row-1] 

*D.element [row]*D.element [col]; 

M.element [row*M.width+col] =temp; 

For (int k=row+1; k<col; k++) 

M.element[row*M.width+col]=(M.element

[row*M.width+col])<=(M.element[row*M.

width+k] 

+M.element[(k+1)*M.width+col]+D.eleme

nt[row-

1]*D.element[k]*D.element[col])? 

(M.element[row*M.width+col):(M.elemen

t[row*M.width+k] 

+M.element[(k+1)*M.width+col] 

+D.element[row-

1]*D.element[k]*D.element[col]);          

} 

} 

As shown in the above function condition,  

(if (row>0 && col>0 && col-row==DIA)) 

Each time you start the function above, elements located on 

the DIA diagonal are run by the graphics processors 
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simultaneously. After mapping the host memory to the device 

in the body of the program the above function will be called to 

calculate the elements of any diagonal (with sending size of 

the block and grid).  

For (int dia=1; dia<h_d.width-2; 

dia++) 

            Test<<<grid,block>>>(d_d,d_m,dia); 

The size of the block and  grid are considered as follows:  

Dim3 block (10, 40); 

Dim3 block (10, 40); 

Dim3 grid (h_m.width/10) +1, (h_m.width/40) 

+1); 

After the values of the diagonal were calculated by this 

function, the result is copied from the device to the host. 

cudaMemcpy(h_m.element,d_m.element,si

zem,cudaMemcpyDeviceToHost); 

cudaMemcpy(h_d.element,d_d.element,size,c

udaMemcpyDeviceToHost); 

4. ANALYSIS  
Table 1: Execution Time of series and parallel programs 

with different matrices 

A total of 

matrices 

Time of the 

series program 

with CPU 

intel(R) 

core(TM) i7-

4710HQ-2.5GHZ 

Time of the parallel 

application with 

NVIDIA,GEFORCE

,GTX850M 

100 3.086 4.047 

200 27.791 5.269 

500 10.367 8.287 

800 8.791 31.512 

1200 12.339 7.862 

1500 9.864 6.288 

 

 

Figure 3: Comparison of the average execution time 

between series and parallel programs 

The time unit in table 1 is millisecond. The research was 

conducted using a computer with CPU 2500 and 8 core.  To 

date, we have not seen an article that optimized multiplication 

matrices, so we were unable to compare our work with that of 

other researchers. In this paper, we tried to reduce the number 

of matrices multiplications using parallel programming with 

CUDA language. In the experiment, the number of matrices is 

200, the number of matrices multiplications in parallel state is 

very optimized then we have a huge speed up for both the 

series program and parallel application.  When the number of 

matrices is 800, parallel programming is not able to optimize 

the number of matrices multiplications and the opposite result 

occurred-a significant slow down in both the time of the series 

program and of the parallel application.  This shows that the 

optimization of the multipliers is not entirely useful, and in 

the six cases, one case has failed.  

5. CONCLUSION  
Speed up is a calculated by the time of the sequential program 

divided by the time of the parallel program. 

In the case of n=100, both programs find the answer very fast 

and in less than a second.  The largest n that our serial 

program is able to manage is 420, whereas the parallel 

program finds the answer until n = 649 in less than 5 seconds. 

Perhaps by finding a more suitable block and grid size a better 

result can be achieved. Matrices are one of the mathematical 

objects used in computer graphic programs, computer 

networks, and electrical modelling. We saved time and 

complexity by optimizing the multiplication of matrices and 

in fact, we increased the speed of programs using 

multiplication matrices. 
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