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ABSTRACT
This paper aims to introduce a new metaheuristic : The Water-Tank
Fish Algorithm, modeled after the workings of the swim bladder in
fish, to non-deterministically compute the optima for numerical op-
timization problems. To balance the explorative-exploitative behav-
ior of a search, the proposed method uses a search localization rou-
tine which, after a general exploration, restricts the search to cer-
tain areas of the graph and intensifies it as the algorithm advances.
The proposed method is tested over 40 benchmark mathemati-
cal functions and the results were found to be very encouraging.
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1. INTRODUCTION
The conventional approach to solving problems by computers is
often found to be inadequate when solving real life problems, be
it due to the multimodality of the problem, non-flexible construc-
tion or due to the sheer vastness of the search space. Such con-
ditions render the conventional extensive search algorithms use-
less as the cost of finding the solution(s) in terms of CPU cycles
and time, using such algorithms is very high. On the other hand,
when similar problems are encountered in nature, the nature uses
novel algorithms that are a result of several millennia of evolu-
tion. The algorithms used by nature are usually very efficient and
outperform the algorithms designed by humans in terms of effi-
ciency, accuracy and reliability. The algorithms used by nature are
usually comprised of small agents that individually execute a very
small and simple part of the algorithm, but when the output of each
such agent is combined, the resulting output is often observed to
be prominent. Natural algorithms are usually simple implementa-
tions of physical, chemical or mathematical rules and laws in nature
and Nature Inspired Metaheuristics is a relatively new paradigm of
Computer Science that aims at understanding and modeling such
algorithms to create faster and more efficient ways for computers
to solve real life problems. This paper presents a nature inspired al-
gorithm, called the Water-Tank Fish Algorithm that simplifies and
speeds up the task of optimizing mathematical functions. This algo-
rithm is inspired from the working of the swim bladder in various
marine animals. The swim bladder is an organ found in most of

Fig. 1: Water Column. The verti-
cal axis depicts the height of the
Water Column as well as the in-
put parameter of f(x)

Fig. 2: Water Column with
’fishes’. The number associated
with each fish is its velocity. +1 is
upwards and -1 is downwards.

the aquatic animals which allows them to change their altitude in
water without much effort. The swim bladder is a basically a hol-
low pouch that contains air and allows the animal to change its size
by contracting muscles, thus changing the density of its own body.
Whenever there is a need for the animal to rise towards the surface,
the swim bladder is allowed to expand, hence greatly reducing the
density of the animal. Now, the buoyancy force acting on it pushes
the animal upwards and the animal is able to change its altitude
and go towards the surface with no or very little effort. Similarly,
whenever there is a need for the animal to descend towards the base
of the water body, the swim bladder is contracted, hence increasing
the density of the animal’s body and allowing gravity to bring it
closer to the base of the water body with no or very less effort.

2. WORKING
For the sake of simplicity, the Schwefel’s Function in 1 Dimension
was considered as the function to be minimized. Thus, the fitness
function f(x) becomes:

f(x) = −x · sin(
√
|x|)

We envision a vertical water column of unit density [Figure 1].
The height at each point in the water column corresponds to
a value of the input parameter of f(x). Next, intelligent ob-
jects, i.e. ’Fishes’ were added in the Water-Tank at random
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heights[Figure 2], each fish having a unit mass. The ’Fishes’ are
intelligent because like real life fishes, they can change the up-
ward(buoyant)/downward(weight) forces acting on them by chang-
ing their volume and thus attain an altitude of their choice in the
water column. Each fish is given a unit velocity but the direction of
the velocity(upwards or downwards) is randomized.
From here on, the algorithm runs independently. Each fish obtains
its fitness value by evaluating f(x) at its current height. Fitness
value for each fish is calculated and the minimum and the maxi-
mum fitness values for each iteration are found out. Next, based
on its own fitness value, the least and the greatest fitness values of
the previous iteration and its current velocity, each fish changes its
volume to a new value which gives the fish a new velocity. The
algorithm is designed in such a way that whenever the fish goes
from a better solution to a worse solution, its velocity increases.
Also, whenever the fish approaches a good solution, its velocity
decreases. This feature gives the algorithm a good control over the
Eplorative-Exploitative behaviour. After attaining a new velocity,
each fish travels with the new velocity for a fixed amount of time
′TransT ime′ (Translatoray Time) which is a tunable parameter.

3. THEORY AND DERIVATIONS
We know that the weight, or the downward force (Fw) and the
buoyant, or the upward force (Fb)acting on an object of mass m
and volume v immersed in a liquid of density ρ are

Fw = m · g

Fb = v · ρ · g

where g is the gravitational acceleration. The net force acting on
such an object would be the resultant of the gravitational and the
buoyant forces. Since the two forces act in opposite directions, the
resultant can be calculated by subtracting them.

F = Fb − Fw

The net force on an object can also be denoted as the product of its
mass m and its acceleration a. Therefore,

m · a = v · ρ · g −m · g

For an object of unit mass submerged in a fluid of unit density, the
equation becomes

a = (v − 1) · g

Assuming this object was subjected to this acceleration for time
t and multiplying both sides by t, the following equation comes
forth:

a · t = (v − 1) · g · t

NewV elocity = CurrentV elocity + a · t

Using this equation in the context of the algorithm, for each fish
of unit mass in a column of water of unit density, the following
equation can be used to update the velocity of the fish.

NewV elocity = CurrentV elocity + (v − 1) · g · t

The term g · t is dimensionally equal to velocity. g is a constant,
and the algorithm is constructed to adjust the value of t such that
g · t becomes equal to the current velocity of the object.
Hence,

NewV elocity = CurrentV elocity+(v−1)·CurrentV elocity

⇒ NewV elocity = CurrentV elocity · v

The volume of the fish is an indicator of the fitness of the solu-
tion being represented by the current location of the fish. The fish
should slow down as it approaches a good solution to enable the
exploitation of that solution. Also, the velocity of a fish should in-
crease when it approaches a bad solution so that it can be skipped
quickly. Therefore, a relation between the fitness of a fish’s loca-
tion and the volume of that fish is established in such a way that
in a given iteration, the fittest fish will have a volume of 0 and the
most unfit fish will have a volume of 1. This can be further scaled
by multiplying it with any scalar value x which will multiply the
velocity of the least fit fish by x and set the velocity of the fittest
fish as 0 while scaling the velocity of all other fishes in this range.
To do this, the volume v of a fish j in the iteration i is defined as:

vji = x ·
maxfiti − FitnessFunction(Positionj)

maxfiti −minfiti
and arrive at the equation to update the velocity of a given fish j in
a given iteration i:

Vji = Uji · x ·
maxfiti − FitnessFunction(Positionj)

maxfiti −minfiti
where x is the scaling factor, Vji and Uji are respectively the new
and current velocities of the fish j and maxfiti and minfiti are
the outputs of the fitness function of the fittest and the least fit fish
respectively for a given iteration i.

4. ALGORITHM AND PARAMETERS
Following are the components and parameters that build up the al-
gorithm:

n is the number of fishes/candidates used per dimension, e.g. using
a value of n = 25 would cause the algorithm to run with 50
candidates when evaluating a function in two dimensions.

FitnessFunction() is the function that returns the relative fitness,
or goodness of a solution for the function to be optimized. For
example, in case of finding the maxima of a function, the fit-
ness function would be the same as the function to be optimized,
whereas to find the minima of a function, the fitness function
would be the reciprocal of the function to be optimized.

position of a candidate refers to the solution being represented by
that candidate.

k is a tunable parameter that determines the minimum non zero ve-
locity at which a fish can travel. Smaller the value of k, greater
is the search intensity in the exploitative phase. However, very
small values of k will slow down the convergence of the algo-
rithm. Good results were obtained for k ← 0.1

TransTime corresponds to the Step Size for the algorithm. Very
small values will slow down the convergence whereas large val-
ues may result in optimas getting skipped.

Dmax,Dmin are respectively the maximum and minimum val-
ues allowed for a given dimension. Any candidate going beyond
these values is reset to a valid position.

x is the scaling factor which determines by how many times the
velocity of each candidate increases or decreases. For example,
setting the value of 2 would cause the velocity of the least fit
candidate to double.

The proposed algorithm is as follows:
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Initialization:: Create a set of N randomly selected candidates
(fishes) and assign each one a unit velocity V in a
random direction.

foreach j ∈ N do
Fitnessj ← FitnessFunction(Positionj)

end
foreach iteration i do

maxfiti ← max(Fitness1, F itness2...F itnessN )
minfiti ← min(Fitness1, F itness2...F itnessN )
foreach j ∈ N do

Vj ← Vj ·x ·
maxfiti − FitnessFunction(Positionj)

maxfiti −minfiti
if (Vj 6= 0)and(|Vj | < k) then

Vj ← k · V̂j

end
foreach dimension D do

PositionjD ← PositionjD + VjD · TransT ime
if (PositionjD > Dmax)or(PositionjD < Dmin)
then

PositionjD ← Random(Dmax,Dmin)
end

end
Fitnessj ← FitnessFunction(Positionj)

end
if maxfiti < max(Fitness1, F itness2...F itnessN ) then

foreach j ∈ N do
if Fitnessj == maxfiti then

Vj ← k · ˆRandomV elocity
end

end
end

end
Algorithm 1: The Water-Tank Fish Algorithm

5. REUSLT AND CONCLUSION
The Algorithm was found to be working well for over 30 tested
benchmark functions and the results were found quite encourag-
ing. The results for these tests using the general hyperparameters
n = 25, x = 10, T ransT ime = 1, k = 0.5 and 1000 iterations
are present in [Table 1]. The selected hyperparameters resulted
in quick convergence of few functions, while non-convergence of
some others. Further research into enhancement of the algorithm
and improving the parameters may result in faster and better con-
vergence for optimization problems.
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Table 1. : 1000 Iterations of the algorithm with the hyperparameters n = 25, x = 10, T ransT ime = 1, k = 0.5

Function Dimensions Actual Solu-
tion

Actual Value Achieved Solution Achieved Value

Ackley 1 0 0 −0.0041227611 0.0173960556107257

Ackley 2 0, 0 0 −0.038455785, 0.068230381 0.378020967538511

Ackley 3 0, 0, 0 0 0.30507709, −0.076191935,
−0.43843236

3.04457159142419

Beale 2 3., 0.5 0 3.0571899, 0.51424233 0.000495481893369319

Booth 2 1., 3. 0 1.0163313, 2.9883048 0.000489463201684794

BukinN6 2 −10., 1. 0 −6.9029627, 3.4977471e− 06 0.217993018112742

DeJongsF1 1 1 0 0.00020047047 4.01884104549635E − 08

DeJongsF1 2 1, 1 0 0.026106869, −0.0039498456 0.000697169886649546

DeJongsF1 3 1, 1, 1 0 0.023770792, −2.0764046e−05,
−0.062884812

0.00451955064011924

DeJongsF2 2 1, 1 0 0.98409745, 0.9709178 0.00086297836283582

DeJongsF2 3 1, 1, 1 0 1.067836, 1.2363416, 1.5516065 1.03656871279967

DeJongsF3 1 −5.12 0 −5.1178172 0

DeJongsF3 2 −5.12,
−5.12

0 −5.0329518, −5.102256 0

DeJongsF3 3 −5.12,
−5.12,
−5.12

0 -5.057755, −4.738543,
−5.0960696

1

DeJongsF4 1 0. 0.528742973100137 −0.30920123 −1.33513214062436
DeJongsF4 2 0., 0. −1.27291194215612 −0.71223362, 0.43683808 −1.88493587494313
DeJongsF4 3 0.,0.,0. −1.43273398094344 0.15195432, 0.21170982,

−0.80820223
−2.96160371470233

DeJongsF5 2 −32.32,
−32.32

1 −32.053942, −31.892482 1.56953055398801E − 06

DeJongsF5 3 −32.32,
−32.32,
−32.32

1 −31.855933, −31.77467,
54.413737

0.000139833945166297

Easom 2 3.14159265,
3.14159265

−1 2.9583695, 3.1051145 −0.948904646806459

Eggholder 2 512.,
404.2319

−959.6407 480.97693, 431.51503 −956.562077488447

Ellipsoid 2 0., 0. 0 0.1676686, 0.0011329992 1.31179989211617

Ellipsoid 3 0., 0., 0. 0 −2.1879088, −0.10190603,
0.00016676634

15.1995941911551

FiveWellPotential 2 4.92, −9.89 −1.4616 −4.4899612, −9.9246877 −1.46325053815003
GoldsteinPrice 2 0., −1. 3 −0.0066038267, −0.99761103 3.01670837214381

Griewank 1 0. 0 0.010231296 −0.999947634581868
Griewank 2 0., 0. 0 0.0074102142, 0.30486179 −0.976804593186793
Griewank 3 0., 0., 0. 0 28.66145, −8.9204369,

−6.4127396
−0.548384003356077

HyperEllipsodic 1 0. 0 0.0003950471 1.56062213969636E−07
HyperEllipsodic 2 0., 0. 0 −0.027227885, 0.0021958663 0.000751001404451596

HyperEllipsodic 3 0., 0., 0. 0 0.18424519, 0.02916251,
−0.067178746

0.0491861461738183

Results continued in [Table 2].
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Table 2. : Contd.: 1000 Iterations of the algorithm with the hyperparameters n = 25, x = 10, T ransT ime = 1, k = 0.5

Function Dimensions Actual Solu-
tion

Actual Value Achieved Solution Achieved Value

KTablet 1 0. 0 −2.7289275e−05 7.44704544989876E−06
KTablet 2 0., 0. 0 0.01962894, −0.047150401 26.0845558155429

KTablet 3 0., 0., 0. 0 −0.10278668, 0.13527152,
−0.040414348

304.968049188932

LeviN13 2 1., 1. 0 1.0075451, 0.98653553 0.00528870401921487

Matyas 2 0., 0. 0 0.0049347138, 0.022676404 8.63156348112673E−05
McCormick 2 −0.54719,

−1.54719
−1.9133 −0.54840606, −1.5419619 −1.91317439925728

Michalewicz 1 0. −1.8013 2.2029037 −0.801303410044765
Michalewicz 2 0., 0. −1.8013 2.1981633, 1.5796817 −1.79772835592603
Michalewicz 3 0., 0., 0. −1.8013 2.2046798, 1.550115, 1.3266738 −2.643960498653
Perm 1 1. 0 0.99933761 1.75503152427629E−06
Perm 2 1., 0.5 0 0.406144, 0.89923009 0.000132629882782494

Perm 3 1., 0.5,
0.33333333

0 0.98623339, 0.50819539,
0.34634396

0.00443758260776505

Rastrigin 1 0. 0 0.00021282932 8.98643010506777E−06
Rastrigin 2 0., 0. 0 −0.0069979604, 0.0017523451 0.010323190049673

Rastrigin 3 0., 0., 0. 0 0.002305865, −1.0046031,
−1.0246121

2.18362787257742

Rosenbrock 2 1, 1 0 1.0731988, 1.1482807 0.0065655954547213

Rosenbrock 3 1, 1, 1 0 0.83562784, 0.76274611,
0.6346623

0.778610998763602

SchafferN2 2 0., 0. 0 −0.046018115, −0.22775235 0.00252708305809375

SchafferN4 2 0., 1.25313 0 −1.4193211, 0.71794606 0.295307238796496

Schwefel 1 420.9687 0 420.97716 2.16514255998168E−05
Schwefel 2 420.9687,

420.9687

0 422.54418, 420.74158 0.319875263381392

Schwefel 3 420.9687,
420.9687,
420.9687

0 425.31271, 419.62471,
424.77234

4.43754593819933

Shuberts 2 0., 0. −186.7309 821.66643, −333.81308 −186.62074289197
SixHumpCamel 2 −0.0898,

0.7126
−1.0316 1.2459454, −0.7818169 0.0624144850676566

Sphere 1 1 0 −1.778093e−05 3.16161467982839E−10
Sphere 2 1, 1 0 −0.005790638, 0.0029694072 4.23488678610381E−05
Sphere 3 1, 1, 1 0 0.13125962, −0.015673727,

0.13781636
0.0364681025243178

StyblinskiTang 1 −2.903534 −39.166165 −2.9035779 −39.1661656704192
StyblinskiTang 2 −2.903534,

−2.903534
−78.33233 −2.8969658, −2.9074079 −78.3313272406072

StyblinskiTang 3 −2.903534,
−2.903534,
−2.903534

−117.498495 −2.9031452, −2.9732501,
−2.853447

−117.36981973155

SumOfDifferentPower 1 0. 0 8.4117504e−05 7.07575447890102E−09
SumOfDifferentPower 2 0., 0. 0 0.0023639078, −0.0029248747 5.61308204456128E−06
SumOfDifferentPower 3 0., 0., 0. 0 −0.0026558266, 0.025841037,

−0.030436675
2.51672057430445E−05

ThreeHumpCamel 2 0., 0. 0 0.013057004, 0.0097548151 0.000563465279028625

WeightedSphere 1 0. 0 6.2633257e−05 3.92292489471659E−09
WeightedSphere 2 0., 0. 0 −0.0081266527, 0.017223001 0.00065930599773335

WeightedSphere 3 0., 0., 0. 0 0.11946413, 0.07209701,
−0.05483658

0.033688788036058

XinSheYang 1 0. 0 −0.00011601051 0.00011601051198272

XinSheYang 2 0., 0. 0 −0.03294053, −0.003498247 0.0363988141133762

XinSheYang 3 0., 0., 0. 0 −1.171776, 1.1550501,
1.1780393

0.186041116065492

Zakharov 1 0. 0 −0.00011924896 1.77753940659359E−08
Zakharov 2 0., 0. 0 −0.012220399, 0.018454652 0.00064232107700958

Zakharov 3 0., 0., 0. 0 −0.11657572, 0.22446684,
−0.13483264

0.0834578370437009
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