
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 18, September 2018

19

Speeding Up Search in Singly Linked List

Sarvesh Rakesh Bhatnagar
NMIMS University

India

ABSTRACT
Different Search techniques were developed over the period,

each of them having certain advantages and disadvantages.

Improving the search techniques result in better performance thus

better efficiency. Data Structures can be improved by some

minor tweaks leading to improving the quality of data structure.

In Linked List, searching is slow due to sequential search

requirement, which can be improved by properly indexing the list

thus improving speed. There are various indexing methods such

as uniform indexing, Tree based indexing, dense indexing,

clustered indexing, etc. This paper focuses on the indexed based

searching using an additional lane linked list and equips a

method to incorporate different series such as squared series and

cubic series which further leads to speed enhancement as

compared with traditional indexing counterparts due to their

nature of increasing gaps between sequential indexes, which

reduces the dependency on the main linked list and increasing the

dependency on the lane linked list thus using the nature of series

more efficiently as the list size increases.

General Terms

Data Structures and Algorithms

Keywords

Speeding Up Linked List, Improvising Speed of Linked List,

Search techniques, Indexing in Linked List, Indexing techniques.

1. INTRODUCTION
Data Structure is an efficient way of organizing and storing data

so as to make it easy in accessing and retrieving the data or

making the data well organized to perform different operations

on it in a faster and efficient manner [1,2]. There are various data

structures available with different advantages and disadvantages.

A linked list is a linear node structure where each element is a

separate object [3]. Various types of Linked List include Singly

Linked List, Doubly Linked List and Circular Linked List. Each

of the variation having common disadvantage of additional

memory requirement due to usage of pointers which require

additional storage while other disadvantage being sequential

access to different nodes thus making them slower [4]. In

Sequential Search we have to go to each node in the linked list

wherein we check if the element on the node matches the

element we are searching for, this process needs to be done

exhaustively thus consuming a lot of time and computing

resources[5], at the same time while in array if the index of a

node is known, we can directly access the node without having to

sequentially search of it at every step, thus saving a lot of time

and resources, But along with the speed , Arrays come with a

heavy disadvantage of having a static size, i.e. the size of the

array cannot be changed after the execution of the program, thus

making arrays inefficient in applications wherein a dynamic

storage is required [6].

In Singly Linked List, suppose we have to search for an element

N-1, to look for that element, we will have to look at all the

elements from 1 to N-1 nodes taking up linear time [8,9]. To

reduce this time, we can use the concept of lanes, by creating a

linked list in sorted order of ID’s (Indexes) and making another

dynamically made linked list below it which will act as a table to

get the linked list in less time than we require to search an

element in a singly linked list. The linked list which will be

below our main linked list, we will call it as a lane linked list.

Although by addition of a new lane may end up increasing the

storage space required, but the cost due to that is minor as

compared to the speed gains.

Fig.1: Singly Linked List

Note: - All the coding done for comparison purpose is done in

CPP and with compiler – Apple’s LLVM Compiler.

2. AIM
Our main goal for this paper is to reduce the time taken to search

a particular index. We are trying to create a linked list in which

searching is faster than traditional linked list and keeping the

dynamic nature of the linked list intact. We want the resultant

linked list to be as simple as possible thus making the

implementation of it simpler. While doing so we will even try to

compare the method found with the traditional approaches

available.

3. CONCEPT OF LANES
We use lanes to visit and check minimum number of nodes,

when we use lanes, we skip nodes which lies in between the

current lane node and previous lane node as per our allotment.

When we skip some nodes, we skip the time required to check

the nodes which lie in between the current lane node and

previous lane node as per our allotment. When we skip some

nodes we skip the time required to check the nodes which lie

between the two nodes in the lane list. We already have Uniform

indexing method but in uniform indexing, the gap is uniform and

as the gap is uniform, the number of nodes in k increase at a

much higher rate as compared to the indexing using series such

as Squared series and Cubic series [7]. When we use lanes, the

main cost of time comes from the search in lane, then in the main

linked list. Hence if we shift our dependency to the lanes, and try

to gradually increase the gap between two consecutive lane

nodes we will be able to search at much more efficient rate than

normal method. For gradually increasing the gap in between the

lane, we are using two series mainly Squared series and Cubic

Series

3.1 Squared Series Lane Linked List

A Squared Series is series of where varies from 1 to K [7].

A Squared Series Lane Linked List is a Linked List where in the

Lane, there is a node for every id (index) which belongs to the

squared series.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 18, September 2018

20

Fig.2: Squared Series Lane Linked List

3.2 CUBIC SERIES LANE LINKED LIST

A Cubic Series is series of where varies from 1 to K [7]. A

Cubic Series Lane Linked List is a Linked List where in the

Lane, there is a node for every id (index) which belongs to the

cubic series.

Fig.3: Cubic Series Lane Linked List

4. MATHEMATICAL PROOF

4.1 For Squared Series Lane Linked List
Let There be nodes in main linked list.

Let There be nodes in Lane Linked List.

Let us assume, we have

Let the gap between
 node and node be .

Fig.4: Squared Series Lane Linked List for Mathematical

Proof.
We have,

 -

Hence , term will take at most time for

normal linked list, and time for linked list using

squared series lane linked list, where term lies

between
 & .

Hence time taken to search by Squared series Lane Linked List

 time taken by Normal Linked List.

4.2 For Cubic Series Lane Linked List
Let There be nodes in Main Linked List.

Let There be nodes in Lane Linked List

Let us assume, we have .

Let the gap between
 node and node be .

Fig.5: Cubic Series Lane Linked List For Mathematical

Proof

We have,

Hence, term will take at most time for

normal linked list, and time for linked list using cubic

series lane linked list, where term lies between

& .

We know that,

Hence time taken to search by the Cubic Series Lane Linked List

 time taken by Normal Linked List.

5. PRACTICAL COMPARISIONS
Note that the practical comparisons will be done in XCODE, in

C++ language with the compiler Apple’s LLVM.

5.1 Normal Vs Squared Series Linked List
When an exhaustive search was done to measure the time taken

for each node, the point where the time taken increased for the

Square Series Lane Linked List was noted. The maximum time

taken turns out to be 2.734 milliseconds, where as in normal

linked list the time taken is 247.321 milliseconds corresponding

to the same node.

Fig.6: Normal Linked List vs Squared Series Lane Linked

List

Table 1.1: Normal Vs Squared Series Linked List

NODE ID TIME TAKEN

FOR NORMAL

LINKED LIST

(in ms)

TIME TAKEN

FOR SQUARED

SERIES LINKED

LIST (in ms)

1 0.02 0.019

198 0.023 0.025

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 18, September 2018

21

7293 0.056 0.039

148372 0.647 0.122

1283940 5.315 0.136

1650245 6.519 0.198

2369851 8.865 0.346

23861862 73.491 0.953

55453994 159.679 2.459

79537233 247.321 2.734

100000000 285.953 2.72

5.2 Normal vs Cubic Series Linked List

When an exhaustive search was done to measure the time taken

for each node, the point where the time taken increased for the

Cubic Series Lane Linked List was noted. The maximum time

taken turns out to be 1.814 milliseconds, where as in normal

linked list the time taken is 245.009 milliseconds at the same

point.

Table 1.2: Normal vs Cubic Series

NODE ID TIME TAKEN

FOR NORMAL

LINKED LIST

(in ms)

TIME TAKEN

FOR CUBIC

SERIES LINKED

LIST (in ms)

1 0.02 0.003

4793 0.023 0.025

140509 0.056 0.039

1224322 0.647 0.122

4814221 5.315 0.136

22634343 6.519 0.198

23861862 8.865 0.346

83848902 73.491 0.953

100000000 285.953 2.459

5.3 Normal vs Squared Series vs Mod 10

Indexed Linked List
Now that we saw how well our Squared Series performs in

comparison to normal linked list, we will now try to check the

same of mod 10 indexed linked list. Mod 10 indexed linked list is

there is a referring node at every 10th location of the linked list it

provides uniformity in accessing data.

Fig.8: Normal vs Squared Series vs Mod 10 Indexed Linked

List.

Table 1.3: Normal vs Squared Series vs Mod 10 Indexed

Linked List

NODE ID TIME

TAKEN

FOR

NORMAL

LINKED

LIST (in

ms)

TIME

TAKEN

FOR

SQUARED

SERIES

LINKED

LIST (in ms)

TIME

TAKEN

FOR MOD

10

INDEXED

LINKED

LIST(in ms)

1 0.02 0.019 0.019

198 0.023 0.025 0.019

7293 0.056 0.039 0.028

148372 0.647 0.122 0.543

1283940 5.315 0.136 4.549

1650245 6.519 0.198 5.543

2369851 8.865 0.346 7.881

23861862 73.491 0.953 69.917

55453994 159.679 2.459 144.611

79537233 247.321 2.734 232.697

100000000 285.953 2.72 275.857

5.4 Normal vs Cubic Series vs Mod 10

Indexed Linked List
Now that we saw how well our Cubic Series performs in

comparison to normal linked list, we will now try to check the

same of mod 10 indexed linked list in comparison to cubic series

lane linked list

Fig.7: Normal Linked List vs Cubic series Linked List.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 18, September 2018

22

.

Fig.9: Normal vs Cubic Series Vs Mod 10 Indexed Linked

List

Table 1.4: Normal vs Cubic Series Vs Mod 10 Indexed

Linked List

NODE ID TIME

TAKEN

FOR

NORMAL

LINKED

LIST (in

ms)

TIME

TAKEN

FOR CUBIC

SERIES

LINKED

LIST (in ms)

TIME

TAKEN

FOR MOD

10

INDEXED

LINKED

LIST(in ms)

1 0.02 0.003 0.019

4793 0.023 0.025 0.022

140509 0.056 0.039 0.063

1224322 0.647 0.122 0.465

4814221 5.315 0.136 4.347

22634343 6.519 0.198 6.224

23861862 8.865 0.346 7.054

83848902 73.491 0.953 69.065

100000000 285.953 2.459 275.857

5.5 Fibonacci vs Squared Series
When an exhaustive search was done to measure the time taken

at each node, the maximum time taken for Fibonacci series

indexed linked list was found out to be 98.324ms at node

89876374. Now we will compare the Fibonacci indexed lane

with squared series indexed linked list.

Fig.10: Fibonacci Vs Squared Series

Table 1.5: Fibonacci vs Squared series.

NODE ID TIME TAKEN

FOR

FIBONACCI

SERIES LINKED

LIST (in ms)

TIME TAKEN

FOR SQUARED

SERIES LINKED

LIST (in ms)

1 0.004 0.019

198 0.004 0.025

7293 0.01 0.039

148372 0.196 0.122

1283940 0.912 0.136

1650245 2.217 0.198

2369851 2.245 0.346

23861862 12.321 0.953

55453994 6.277 2.459

79537233 80.703 2.734

100000000 43.726 2.72

5.6 Fibonacci vs Cubic Series
Now, we will compare the Fibonacci series indexed linked list

with the Cubic Series linked list.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 18, September 2018

23

Fig.11: Fibonacci Vs Cubic Series

Table 1.6: Fibonacci Vs Cubic Series

NODE ID TIME TAKEN

FOR

FIBONACCI

SERIES LINKED

LIST (in ms)

TIME TAKEN

FOR CUBIC

SERIES LINKED

LIST (in ms)

1 0.004 0.003

4793 0.01 0.025

140509 0.162 0.039

1224322 0.325 0.122

4814221 5.105 0.136

22634343 5.784 0.198

23861862 7.893 0.346

83848902 65.843 0.953

100000000 43.726 2.459

6. ANALYSIS OF THE STRUCTURE
In Squared Series and Cubic Series Lane linked list, we are using

Squared series and cubic series, in both the series the number of

nodes at lane are less, but the actual time taken to search changes

dependency as we move farther from the initial point. At first the

time taken is dependent upon the lane nodes we are travelling in,

but as the number of nodes increase, the gap between them

increases, at some point this gap becomes high and the

dependency of the time taken to search a particular node shifts

towards the gap between the consecutive lane nodes. This point

is too far away from the initial point and by then we have

skipped a lot of nodes. Hence overall time taken is much less

than in normal linked list.

One can argue that it is possible to find the optimal uniform

distance wherein indexing should be done, but it should also be

noted that the process for finding the optimal uniform distance is

time consuming in itself, and on addition to that since we are

expecting the dynamic nature to the list, the re-calculation of

uniform distance is needed. Thereby adding additional overhead.

Let us look at the best case and worst case time complexity for

the Squared Series Linked List and Cubic Series Linked List.

Best Case for Squared series linked list: -

O(1)

Best Case for Cubic series linked list: -

O(1)

Worst Case for Squared series linked list: -

O(K + g)

Where K is number of nodes in lane linked list and g is the gap

between N and
.

Worst Case for Cubic series linked list: -

O(K + g)

Where K is number of nodes in lane linked list and g is the gap

between N and
.

7. ALGORITHMS

SEARCH ALGORITHM PSEUDOCODE FOR SQUARED

SERIES LINKED LIST AND CUBIC SERIES LINKED LIST:

holdLane = tempLane;

WHILE (tempLane != NULL) {

 tempID = tempLane.ID

 IF(tempID >= idToBeFound)

 {

 BREAK

 }

 ELSE

 {

 holdLane = tempLane;

 tempLane = tempLane.NEXT

 }

}

temp = holdLane.TOP

WHILE (temp != NULL)

{

 newTempId = temp.ID

 IF(newTempId == idToBeFound)

 {

 idFound = true

 BREAK

 }

 temp = temp.NEXT

}

SEARCH ALGORITHM PSEUDOCODE USED FOR SINGLY

LINKED LIST :

WHILE(temp != NULL) {

 IF(temp.ID == idToBeFound)

 {

 idFound = true

 BREAK

 }

 temp = temp.NEXT

}

EXPLAINATION:

SQUARED AND CUBIC SERIES LINKED LIST:

We look in the lane for the id which is to be searched, and keep

trailing the previous lane node if we encounter a lane with higher

id , we start searching the main list until we encounter the ID. In

simple terms, we perform two searches, one in the lane linked list

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 18, September 2018

24

and other in the main linked list. In lane linked list we only try to
find the point from which we will need to search ahead in the

main linked list and then we search normally from that point in

the main linked list.

SINGLY LINKED LIST:

In Singly Linked list, we search and compare every id with the id

to be found in a single list till we encounter the id to be found or

the last node, whichever comes first.

8. ADVANTAGES AND DISADVANTAGES

8.1 Advantages of using Squared Series and

Cubic Series Lane Linked List
1) Fast Access to the Index to be searched.

2) Less Memory Consumption than other Indexing

methods such as Uniform indexing.

3) Easy Implementation, can be used in a lot of

applications which uses linked list as their base for

better performance.

4) Significantly Faster than Normal Linked List.

8.2 Disadvantages of using Squared Series

and Cubic Series Lane Linked List
1) We lose identity when searching using indexed node.

i.e. we enumerate the nodes by giving ids.

2) Extra Space Required than Normal Linked List.

3) Data Redundancy, Same id is to be stored in lane

linked list and main linked list.

9. APPLICATIONS
1) Can be used in colleges to store student details along

with unique identification number.

2) Can be used for storing employee details in large

organization, for quick access and retrieval.

3) Can be used for storing network data by enumerating

nodes as ids.

4) Can be used in Library Management Systems.

5) Can be used as a new data structure in itself where in

we have fast access with dynamic storage.

10. CONCLUSION AND FUTURE WORK
We have presented a new data structure for reducing the time

cost to search a node in linked list by employing series as an

indexing method thus helping to reduce the dependency on main

linked list thereby reducing the effective time taken to search a

node. We give empirical evidence that run-time performance is

significantly improved as compared to traditional search methods

and indexing methods as well.

Future work can be done by testing various series available, and

even trying to use series which is in Arithmetic sequence or

Geometric sequence.

11. REFERENCES
[1] Cormen, Thomas H.; Charles E. Leiserson; Ronald L.

Rivest; Clifford Stein(2003). Introduction to Algorithms.

MIT Press. pp. 205-213 & 501-505. ISBN 0-262-03293-7.

[2] H. Sahni and A. Freed, Fundamentals of Data Structures in

C 2nd edition, ch. 4, pp 190-195.

[3] “Defination of a linked list”. National Institute of Standards

and Technology.

[4] Antonakos, James L.; Mansfield, Kenneth C., Jr.

(1999). Practical Data Structures Using C/C++. Prentice-

Hall. pp. 165–190. ISBN 0-13-280843-9.

[5] Knuth, Donald (1977). “Section 6.1: Sequential

Searching,". Sorting and Searching. The Art of Computer

Programming. 3 (3rd ed.). Addison-Wesley. pp. 396–408.

ISBN 0-201-89685-0.

[6] David R. Richardson (2002), The Book on Data Structures.

iUniverse, 112 pages. ISBN 0-595-24039-9, ISBN 978-0-

595-24039-5.

[7] Conway, J. H. and Guy, R. K. The Book of Numbers. New

York: Springer-Verlag, pp. 30-32, 1996. ISBN 0-387-

97993-X

[8] Sipser, Michael (2006). Introduction to the Theory of

Computation. Course Technology Inc. ISBN 0-619-21764-

2.

[9] Sedgewick, R. and Wayne K(2011). Algorithms 4th ed.

p.186. Pearson Education, Inc.

IJCATM : www.ijcaonline.org

