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ABSTRACT
The current research work aims to propose an improved clump
splitting approach to classify breast cancer lesion based on extract-
ing shape features. Identifying the number of benign and malignant
nuclei in a given area of histopathological tissue is very important
for the automated grading system. This process becomes difficult
due to irregular size and shape of the nuclei leading to clump for-
mation. Therefore, a major challenge lies in accurately separating
these nuclei for further processing. Towards this end, there has been
a well-focused research on accurate identification and extraction of
nuclei based on concavity analysis. From exhaustive experimenta-
tions, it is observed that concavity based approaches pose several
limitations: like identifying the concave point pair and selecting
the valid split lines. Further, It is also observed from the litera-
ture that either region or edge based segmentation is the most com-
monly used method for segmenting nuclei. Experimental analysis
showed that under or over-segmentation is the common problem
with region-based methods. Since poor, unclear edges, noise and
other artefacts are inevitable in histopathological images, the edge
based method does not perform well. Therefore in this research
work, a combination of both edge and region-based nuclei seg-
mentation is proposed. The performance measure of the proposed
method is evaluated on a dataset consisting of 1820 histopatholog-
ical images. Further, in comparison with the existing methods, the
proposed method showed the improved accuracy of 86%. Also, it
is clearly seen from the ROC curve that the non-linear SVM out-
performs other classifying methods.
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1. INTRODUCTION
One of the recent articles on cancer statistics shows an alarming
rate of increase in cancer cases during 2015 [1]. There has been a
rough estimate of 1.6 million new cancer cases diagnosed and 0.6
million cancer deaths in the US, alone. In India, Breast cancer (BC)
is one of the major cause of morbidity and mortality in women.
Recent trends in [2] have shown a significant rise in the number

of BC patients, in India, especially in the younger age group. The
statistics show that nearly a quarter of all cancers cases in females
are BC. Therefore an early diagnosis and accurate cancer grading
help oncologists schedule a suitable treatment plan.

Traditionally, pathologists grade tissue slides by observing char-
acteristic changes at both the cellular and tissue level. Further,
important biomarkers are identified that best discriminate benign
from the malignant samples. Recently, several research groups
[3, 4, 5, 6] have identified gene expression biomarkers for grading
tissue samples. However, there are some issues related to gene
expression test: tests are not universally available for clinical prac-
tice, and the tests are expensive and time-consuming. Therefore,
traditional H&E stained tissue slide is still a gold standard for the
pathologists to accurately grade tissue samples. Unfortunately,
H&E stained tissue sample presents inter and intraobserver vari-
ability. Ref [7] suggest several factors that affect the pathologist
while grading. The important amongst them are the degree of
overlap among cells, poor contrast, and other artefacts like blood,
and mucus. Authors in their research work [8], identified staining
error that induces inter-observer variability. Also, they showed that
the variability agreement depends on the staining duration, stain
concentration, thickness of the tissue specimen, and staining done
on the same tissue specimen on different days in a week. Authors
in their research work [9] showed that the inter-observer variability
also depends on the experience of the pathologists.

Towards this end, several researchers [10, 11, 12, 13] have indicated
that digital image analysis is the most promising techniques for re-
ducing the variability. Further, the result from these articles shows
that image processing techniques aid in the accurate extraction of
important markers that help pathologists to grade accurately. Also,
a recent survey papers [14, 15] indicated important features that
help pathologists in identifying the extent of cancer progression.
Hence, extraction of the nuclei in the present work assumes impor-
tance. There exist a great challenge in identifying and extracting
nuclei owing to several factors like irregularly shaped nuclei, and
a high degree of clumping. The next section discusses the major
challenges in the nuclei segmentation.
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2. MAJOR CHALLENGES IN NUCLEI
SEGMENTATION

Identifying the number of cells in a given area of the histopatholog-
ical image is a standard process for the automated grading system.
An excellent review [16] of histopathological image analysis sug-
gests that nuclear segmentation poses a great challenge even though
several attempts have been made to solve it. Fig 1 clearly shows
the complexities present in the histopathological images. One of
the major challenges lies in the appearance of the nucleus. Poor
or missing edges are inevitable due to variability in the concentra-
tion of staining dyes across several pathological laboratories lead-
ing to clump formation. Since clumps are inevitable due to irreg-
ularly shaped cells there exist a great challenge in splitting these
clumps. There exist a dedicated research work on clump splitting
from histopathological images by various groups. Most important
and noted works are listed below.

Fig. 1: Complexities in nuclei segmentation

3. RELATED WORKS ON NUCLEI
SEGMENTATION AND CLUMP SPLITTING

A marker-controlled watershed [11] based nuclei segmentation was
proposed for breast cancer tissue images. Colour deconvolution
and morphological operators were used as pre-processing steps
to remove irrelevant objects from the tissue images. Kumar et
al [17] proposed a rule-based clump splitting. In their research
work, deep concave points were identified as the candidate for
clump splitting and a concave-concave alignment features were
identified for finding the correct split lines. Xiangzhi Bai et al
[18] proposed clump splitting based on concave points and fitting
ellipse. Wang et al [19] proposed clump splitting on binarized
imaged based on polygon approximation and concavities. Samma
et al [20] proposed clump splitting based on concave points. In
their research work, concave points are identified by combining
boundary and skeleton information. Wang and Hao [21] proposed
clump splitting based on polygon approximation and medial axis
transform. A Delaunays triangulation based overlapping nuclei was
proposed by Quan Wen et al [22]. Authors in their research work,
identify concave points based on maximum positive curvature
and a Delaunay triangulation method is used to construct the
potential split lines. Further, a rule-based edge selection algorithm
is developed to prune redundant edges.

It has been observed by experimental analysis on several
histopathological images that the method proposed by Quan Wen
et al [22] performs well in case of the simple split but fails when
there exist multiple splits in the clump. Qufa Zhong et al [23]
proposed a segmentation algorithm for splitting slender particles.
In their research work, a circular mask with orientation is used to
identify concave points. Further, concaveness is measured as the
ratio of arc length inside the object to the perimeter of the circular
mask. Hui Wang et al [24] proposed clump splitting via bottleneck
detection. In their research work, bottlenecks (concave points) are

identified by defining the cost function. Farhan et al [25] proposed
a novel clump splitting algorithm based on image intensity.

LaTorre et al [26] proposed a two-step binarization and clump
splitting based on identifying concave points. In their proposed
work, the authors have applied the watershed transform and
intensity gradient to identify the clumped cells. Further, concave
vertex graph is constructed to perform clump splitting. Zhe JI et
al [27] have proposed concavity based clump splitting on titanium
alloy. Recently, Wesley et al [28] proposed an automatic system
for counting cells. In their research work, automatic counting of
cells is achieved using Kmeans as initial segmentation followed
by ellipse fitting. W. Xiong et al [29] proposed clump splitting
and automatic quantification of the area in the blood smears.
Oliver Schmitt et al [30] proposed a morphological multi-scale
decomposition of clustered cells. An n-fold morphological open-
ing and closing operators are used to split the clumps. A new
approach towards clump separation was proposed by M. Veta
et al [11]. Foreground markers were extracted based on radial
symmetry transform. Finally, the watershed algorithm was used
for separating the clumped nuclei from the tissue image. In
another method proposed by Sonal Kothari et al [31, ?] proposed
concave points identification by ellipse fitting. Eric Cosatto et
al [32] proposed a classification of nuclei based on the analysis
of stain color after segmenting nuclei from the histopathological
images. Hui Kong et al [33] proposed clump splitting based
on the identification of concave points. Hussain Fatakdawala et
al [34] proposed Expectation Maximization approach towards
identifying and extracting the nuclei. In their work, authors have
proposed a heuristic method for splitting the overlapping objects.
Makkapati et al [35] proposed a geometric based clump splitting.
Hong Song et al [36] proposed concave based clump splitting. In
this work, authors have identified more common concave points
and an improved the watershed algorithm to identify less likely
concave points. Recently, Dhanya et al [37] proposed a newer
approach towards clump splitting of blood cells for detecting
malaria parasites. In this work, authors identify the concave points
based on estimating the major axis of the ellipse and navigating in
both directions until any notable changes are found at the boundary.

There exist several studies on clump splitting for nuclei segmen-
tation. On carefully observing the works published by several re-
searchers we found that concavity based methods were widely used
for splitting the clumps. Further, there exists a great challenge in
identifying accurate concave points. Also, mapping the concave-
concave point pair also presents several issues. From the literature,
it is observed that clump slitting was performed on the binary image
overlooking the colour information present in the histopathological
image. In this research work, a mixture of Gaussian model is pro-
posed to estimate the co-variation of stain colour present at each
clump. An improved edge selection algorithm is proposed based
on identifying the centroid of each clumped object.

4. MATERIALS AND METHODS
This research work aims to extract nuclei and then separate clumps
based on a two-step approach. In the first step, we extract a region
of interest (nuclei) by pre-processing followed by post-processing.
In the next step, we separate the clumps based on improved clump
splitting method. The co-variance around the region of the potential
clump split lines are estimated to delineate valid split edges. Fur-
ther, least eigenvalues are computed from the covariance. A novel
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centroid detection method is proposed based on the ultimate mor-
phological erosion. Valid edges are selected based on the number
of centroids identified by the proposed method in each clump. The
complete workflow of the proposed method is shown in Fig 2.

Fig. 2: The proposed method for nuclei segmentation and classification

4.1 Pre processing
Pre-processing is an important step to extract nuclei (ROI) from
the histopathological images. Since the quality of image acquisi-
tion and staining procedure affects the segmentation accuracy pre-
processing the histopathological images before segmentation be-
comes inevitable.

Pre-processing from a histopathological image (HP image) in-
volves the following steps as shown in Fig 3. The RGB colour
model presents interdependencies between the colour channels.
Therefore we convert RGB to CIELab to remove such dependen-
cies. From our observations on several HP images, we found that
Luminance (L channel) preserves more characteristic details of the
cellular regions more than other channels. Noise present in the HP

Fig. 3: Pre-processing steps

images greatly influences the accuracy of extracting ROI. There ex-
ist several filtering techniques to remove noise but in this research
work, Weiner filtering method is used since it filters noise preserv-
ing the edges. Poor contrast and illumination are common prob-
lems in most of the HP images. Therefore, histopathological im-
ages are subjected to contrast enhancement before further process-
ing. LaTorre et al [26] have used contrast enhancement technique
(CLAHE) to remove the noise. On experimentation, we found that
CLAHE performed uniform contrast enhancement over the entire
image. But in the current research work, contrast enhancement is
done only if the contract for the particular pixel is less than some
predefined threshold. In this work, the mean contrast of all the HP
images is used as a threshold. Fig 4 shows the comparisons of con-
trast enhancement techniques.

(a) The proposed approach (b) CLAHE technique

Fig. 4: Comparison of Contrast Enhancement techniques

4.2 Extract Region of Interest (Nuclei)
Extracting ROI from HP images is an important and challeng-
ing task for high-level image interpretation and analysis. There
exist several segmentation algorithms in the literature to extract
ROI each having its own merits and demerits. Image segmenta-
tion methods can be grouped into three types: thresholding based
approach, edge-based, and cluster-based. Generally, the watershed
approach is the most popular segmentation method for extracting
ROI. On several experimentations, it is observed that the water-
shed algorithm works well when the blob (ROI) is simple and non-
clumped. Since clumping of cells in HP image is inevitable Water-
shed method resulted in poor extraction of ROI (Fig 5). The accu-
racy of Watershed method depends on identifying accurate seed
points called foreground markers. Due to noise and staining er-
rors Watershed approach finds false regional maxima as foreground
markers thus resulting in over-segmentation.

Fig. 5: Extraction of Region of interest (ROI) using Watershed method

In this work, the cluster-based approach is used for extracting ROI.
Authors in their research work40 have suggested that hard cluster-
ing method works well on noise-free images. Recently, Adhikari et
al [38] have proposed soft clustering methods for image segmenta-
tion task. From the experimental analysis on several histopathologi-
cal images, it is evident that Fuzzy C Means (FCM) performs better
segmentation for natural images but fails to accurately extract ROI
from HP images due to poor contrast, and nonhomogeneous colour
intensities present in the histopathological images. Therefore in this
research work, spatial information along with pixel intensities are
considered for nuclei segmentation. From the works by Adhikari
et al [38], Spatial Fuzzy C means(SFCM) were used for MRI seg-
mentation. in this research work, SFCM is used for nuclei segmen-
tation. The SFCM method has two steps: In the first step, traditional
FCM is used to iteratively assigns memberships to each pixel based
on the similarity measure. In the next step, the spatial function is
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computed that maps the membership values to spatial coordinates.
(Using equation 1)

Jm =

n∑
i=1

c∑
j=1

(µi,j)
m||xi − cj ||2 (1)

Where m is any real number greater than 1, xi is the ith d-
dimensional data, µi,j is the the membership function and Fuzzy
centroid cj
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1
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It is well known that the accuracy of the clustering depends on the
prior knowledge of the number of clusters. Further, It is difficult to
assess the accurate number of clusters present in Histopathological
images. Recently, Yang, Shuling, et al [39] have introduced differ-
ent cluster validity index. In this research work, we have used the
partition coefficient, partition entropy, Xie-Beni index, and the sum
of squared error are used for validating the number of clusters. Fig
6 shows the cluster validity measure. It can be clearly seen in Fig 6
that, entropy, and the sum of squared error increase beyond cluster
index k=3. Hence, in the current research work, we have fixed the
cluster to 3.

Fig. 6: Cluster validity measure

4.3 Post processing
The binary image after segmentation is still far from quantifying
the features of a single cell due to clumping of cells. The binarized
image contains small objects (noise) that must be removed before
further processing. Due to improper staining, the binarized image
at certain regions will be hollow. Thus creating multiple false re-
gions. Recently, Hui Kong et al [40] proposed a method to differ-
entiate the clumped cells and non-clumped cells. Given a connected
region, Ri authors find the radial symmetry centre ri and geomet-
rical centre gi. The connected region is identified as clump if the
ratio of ri / gi is greater than some threshold. On several exper-
imentations, it is found that fixing a threshold was very difficult.
In this research work, an improved approach towards pruning un-
wanted regions from the histopathological image is proposed. Lets
consider S= {o1, o2, , on} to be a set of N connected objects. Let A

= {a1, a2, , an} be the set of areas of each object of interest. The
connected component (cc) is deemed to be clump if the area of cc
is greater than the average area of all the connected components in
an image. Histopathological images after segmentation have rough
boundaries. These irregularities make it difficult to identify valid
concave points. In this research work, a simple low pass filter is
used to smooth the boundary points. Fig 8 shows the process of
binarization and contour smoothing done on sample histopatholog-
ical image.

Fig. 7: Extract Region of Interest from HP image: The first image shows the
original image, the next image shows the binarized version of the original
image, and the last image shows the contours identified after morphological
operations and boundary smoothing

4.4 Concavity Analysis
Detection of the valid concave points is a main step for separating
the overlapping nuclei. In this direction there are many research
articles on identifying concave points. On experimentations with
several histopathological images with varying shapes, it is found
that curvature-based method identifies shallow concave points with
many invalid (convex) points. Further, convex hull based approach
identifies only deep concave points missing out shallow concave
points. In this research work, an ensemble of curvature and convex
hull approach is proposed to extract all the concave points

Extracting Shallow concave points
The shallow concave points are extracted based on the curvature
along the boundaries of the connected regions. The theoretically
suggestions made by Attneave tells that information gain is mostly
found in the regions of high curvature. Further, Jacob Feldman [41]
proposed signed curvature extending Attneaves claim. The exper-
imental analysis shows that for any connected region with closed
boundary, negative curvature signifies concave regions and positive
curvature signifies convex regions. There several methods to iden-
tify the curvature of a 2D curve. In this research work, we have
applied the second order derivative as proposed by Hermann et al
[42] to estimate the curvature of a point on a curve.

k =
2(α1β2 − α2β1)√

α2
1 + β2

1

(2)

α1 =
Xi −Xprev

2
α2 =

Xi +Xprev

2
−Xnex

β1 =
Yi − Yprev

2
β2 =

Yi + Yprev

2
− Ynex

In our work, potential concave points are identified by consider-
ing the local minimums of the negative curvature. The curvature
at a point (Xi, Yi) is estimated using equation 2. Where (Xi, Yi)
corresponds to ith boundary point and (Xnex, Ynex), (Xpre, Ypre)
corresponds to the next and previous boundary points respectively.
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Extracting Deep concave points
The extraction of deep concave points are done based on the convex
hull approach. Equation 3 is used to identify and extract concave
regions. In this approach we find the maximum distance from the
convex Hull to the concave regions to extract deep concave points.

Bdistk =
‖Biy − (Sh

i ∗ Bix)−B(Sh
i ∗A)‖√

1 + (Sh
i )2

(3)

where, Bdistk represents distance map from all the k boundary
point, (Bix, Biy) represent the co-ordinates of boundary points,
(A,B) represents the convex hull points and shi represent the slope
of convex hull.

4.5 Edge Pruning
In this step we identify the valid concave pair. Since the accurate
number of splits present in each of the clumps are not known in ad-
vance it becomes difficult to identify the accurate concave pair. In
this research work, concave point paring is done based on the De-
launay Triangulation method proposed by Quan et al [22]. There
exist redundant edges after Delaunays Triangulation. Redundant
edges can be grouped into two classes. Edges outside the clumps,
and edges that do not make a pair. We propose an algorithm to
identify and prune redundant edges.

Remove edges that are outside the clump
Let suppose that P = {p1, p2, p3, , pk} be the set of k edge points
and V = {v1, v2, vj} be the set of vertex points from Delaunays
Triangulation. An edge Pi is retained if every interpolated point
between (vi, vj) lies within the scope of the boundary.

Remove edges that do not make a pair
The concavity depth and saliency feature proposed by Kumar et al
[17] finds concave pairs. But there exist a possibility of grouping
concave points on the same region. In this research work, an im-
proved edge pruning algorithm is proposed. A complete algorithm
for edge pruning is shown below.

4.6 Clump splitting and edge selection based on
Gaussian mixture model

After edges are pruned, valid edges are selected based on estimat-
ing the parameters of the Gaussian mixture model from each of the
potential edge. In this work, a circular mask of fixed radius r=10 is
used to extract the colour pixels from every potential edge. Covari-
ance and mean are estimated using equation 5. From an exhaustive
empirical study on several clumps from different histopathological
images, valid split edges are selected based on the lowest eigenval-
ues of the covariance matrix. Since there exists no apriori knowl-
edge on the number of clumps present in each of the occluded ob-
ject of interest, we propose a novel method of edge selection based
on centroid detection. In this research work, ultimate morphologi-
cal erosion is applied to each blob. Ultimate erosion of a blob b is
expressed as the union of regional maxima of the distance function
of b. The ultimate erosion finds the set of possible centroids for each
clumped objects. In this research work, valid centroids are identi-
fied by applying the k-means algorithm. The proposed method for
centroid detection is shown in algorithm 5.

N(x|µ,Σ) =
1

2π|Σ|1/2
exp−1

2
(x− µ)T Σ−1(x− µ) (4)

5. DATASET & NUCLEI FEATURES
To illustrate the methodology of nuclei segmentation and classifica-
tion, histopathological images from the Pathological Anatomy and
Cytopathology, Parana, Brazil [43] is considered. This dataset con-
sists of 9,109 microscopic images of breast tumour tissue collected
from 82 patients using different magnifying factors (40X, 100X,
200X, and 400X). The dataset presents 2,480 benign and 5,429 ma-
lignant images with 700 X 460 resolution, RGB with 8-bit depth
in each channel. Since the ground truth data was not available, a
small subset containing 1820 samples with 400x magnification out
of which 588 were benign and rest were malignant are considered.

In order to perform the classification, nuclei features are extracted
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Table 1. : Shape Features

Type Features
cellular features Area, Major axis, Minoraxis, Eccentricity Orientation

Equi-diameter, Solidity, Extent Shape Concave Area
Perimeter, Filled Area Concave point ratio.

from the segmented image. The classifier uses these features in pre-
dicting the class for an unknown sample. Irshad et al [16] presented
a survey on different feature extraction methods available for the
histopathological image. Recently, Rekha et al and Cherath et al
[44, 45] proposed a modified scoring system for breast cancer grad-
ing. Authors in their research works have suggested six morpholog-
ical features like cellular pleomorphism, cellular arrangement, my-
oepithelial cells, anisonucleosis, nucleoli, and chromatin clumping.
Pathologists observe these feature for grading the tissue sample. In
this direction, the current research focuses on identifying morpho-
logical changes at the cellular level. Therefore, a total of 48 features
are extracted from the ROI by considering the mean, standard devi-
ation, minimum and maximum for all the shape features shown in
Table 1.

6. RESULTS & DISCUSSION
In this section, an exhaustive experimental analysis of segmentation
and classification of histopathological images is presented. Fig 8
shows the qualitative results of segmentation and clump splitting
while Table 2 shows the classification accuracy.

Qualitative analysis of classifiers
The performance of the classifier is measured based on shape fea-
tures extracted after nuclei segmentation. In this research, 1820
histopathological images were considered for segmenting nuclei.
In comparison with the existing method [46], the method presented
in this research work performed well in accurately delineating all
the nuclei. The results show improvements in the F-measure, from
0.65 to 0.70. From the table 2, it is evident that the performance
of SVM is better compared to other classifiers. Fig 9. Shows the
ROC curve of the three classifiers. It can be clearly seen that the
false positive rate (FPR) for SVM is better compared to another
classifier. Also, the SVM model outperformed all others methods
in classifying benign and malignant nucleus.

7. CONCLUSION
In this research work, an improved clump splitting approach to clas-
sifying breast cancer nuclei based on extracting nuclear features
is presented. Identifying the morphological changes in the nuclei,
given the histopathological images is of greatest importance in pre-
dicting the progression of a breast tumour and hence, the present
study assumes importance. Segmentation of breast cancer nuclei
poses a great challenge owing to irregular size, shape, and non-
homogenous pixel intensity present in the nuclei. Even though there
exists a well-studied research on nuclei segmentation by several re-
searchers yet, the existing methods lack in accurately extracting
the nuclei. From the qualitative and quantitative analysis, it is clear
that the proposed clump splitting method performed well on sep-
arating several nontrivial clumps present in the histopathological
images. To validate the performance of nuclei segmentation, shape
features are extracted from the segmented nuclei for classification.
The proposed method was evaluated on 1820 images. In compar-
ison to the existing method, the proposed method showed an im-

Fig. 8: Qualitative nuclei segmentation: The first column shows the original
image, the next column shows the binarized version of the original image
based on the improved clump splitting, and the last column shows the nuclei
segmentation, and clump splitting based on hardy et al [46] and Farhan et
al [25]

proved accuracy of 86% in classifying benign vs malignant tissue
images. Also, the proposed method showed an improved F-measure
of 0.7 in comparison to 0.65 for the existing method.
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Table 2. : Quantitative performance measure of different classifiers

Method Classifier Acc Sen Spe F-m MCC AUC

SVM 0.825 0.825 0.825 0.638 0.85 0.825

hardy et al [46] KNN 0.795 0.788 0.802 0.580 0.795 0.795

and Farhan et al [25] TB 0.831 0.833 0.826 0.650 0.833 0.831

SVM 0.863 0.895 0.823 0.708 0.858 0.859

Proposed Method KNN 0.842 0.816 0.876 0.674 0.845 0.846

TB 0.850 0.879 0.815 0.683 0.846 0.847

Acc- accuracy, Sen- sensitivity, Spe- specificity, F-m- F-measure, AUC-
Area under the curve, MCC-Matthews correlation coefficient, SVM - Sup-
port vector machine, KNN - K nearest neighbour, TB - Tree Bagger

Fig. 9: Receiver operating characteristics (ROC) for different classifiers on
the test data
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