
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 20, October 2018

5

The Compatibility and Conflict between XP Method and Level

Two of CMMI-Dev1.2

Moath Husni
Information Technology

The World Islamic
Sciences and Education

University

Omar Tarawneh
Information Technology
Department, Al-Zahra
College for Women

Mejhem Al-
tarawneh

Ali Naimat
Information Technology

The World Islamic
Sciences and Education

University

ABSTRACT

Capability Maturity Model Integration for Development

Version 1.2 (CMMI-Dev1.2) is a common and popular model

for controlling project development process, improving

quality, and capacity evaluation. On the other side, eXtreme

Programming (XP) is the one of the most popular and

effective agile development method to be used for Small

Software Development Firms (SSDFs). Furthermore, XP is a

lightweight method that helps SSDFs in implementing the

Software Process Improvement (SPI) activities as it is the

more compatible method for SPI models and standards such

as CMMI-Dev1.2. This paper discusses the compatibility of

XP practices to the level two of CMMI-Dev1.2.

Keywords

CMMI-Dev1.2, XP Method

1. INTRODUCTION
The quality of software development processes has an

essential effect on the quality of the software product. As

such, software industry has realized that SPI models and

standards such as CMM, CMMI, SPICE, BOOTSRAP, ISO-

9000 series, and SPICE are very important in order to achieve

high quality software products [1] [2][29].

CMMI has become increasingly imperative to all aspects of

the software industry [3][4]. CMMI-Dev1.2 was developed

specifically to guide the software development companies’ for

improving their processes [5], and is the most compliant with

relevant SPI models and standards [6]. In addition, this model

is fruitful for describing the weaknesses of the development

processes in SSDFs that need instantaneously attention and

improvement, particularly with agile development methods

[3][6].

Agile methods are a lightweight development method that

concentrate on small team size companies[7][30][31]. XP is

the most popular and effective method in the development

side compared to other agile methods such as SCRUM

[8][9][30]. In this respect, Dyba and Dingsoyr [10] reported

that 79% of the empirical reports focused on the use of the XP

or SCRUM methods in general, where 76% of the reports

related to use of the XP and only 3% to SCRUM practices. In

addition, XP method can help SSDFs in the implementation of

SPI, and they believed that XP achieves SPI better than other

agile methods as it cover most of the Key Process Areas

(KPAs) in level two of CMMI, while SCRUM only conforms

to level one in CMMI [3] [11][31].

The overlaps and conflicts between XP method and the KPAs

of CMM/ CMMI (CMMs) had been discussed by several

researchers; however there are divergences in their results.

These divergences came from the different manners used in

alignments, where Koch [12], Paulk [13], and Omran [14]

used the main objective of each KPA as a main item to do the

alignment, while Martinsson [15], Elshafey and Galal-Edeen

[16], and Fritzsche and Keil [17] used the specific goals of

each KPA as main items to do the alignment. Therefore, there

is a lack of the comprehensive and systematic alignment of

XP practices to CMMs models [18].

This paper presents the comprehensive alignment of the XP

practices to the specific goals of the level two of CMMI-

Dev1.2 KPAs, taking into account the achievement of the

specific practices of each specific goal by the same or a

different way of CMMI-Dev1.2 to determine the coverage

goals of each KPA by XP

2. CMMI-Dev1.2
CMMs models cover the essential elements of effective

processes that use one or many disciplines to define the

improvement way from ad-hoc manners toward mature and

improved quality processes [19]. As shown in Figure1, CMM

for Software V1.1 (1993) is the first release of CMMs, while

CMMI-Dev1.3 is the newest release of CMMs, which was

developed to ensure consistency among all three models and

improve high maturity material in the previous generation of

CMMs models. In addition, Figure 1 shows that the CMMI is

a collection of previous CMMs models to demonstrate the

problem of using multiple CMMs. This had been done by

integrating CMMs into a single improvement framework to be

used by organizations in their pursuit of enterprise-wide

process improvement.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 20, October 2018

6

Fig 1. History of CMMs (adopted from [19]).

Nowadays, CMMI becomes essential to software industry and

it is necessary to inspire practitioners to adopt this

model[3][4]. Accordingly, this model is common and widely

used for improving process capability all over the world.

Based on that, the confidence in CMMI increased as it has

broad explanations of how the several best practices suitable

to be used together [20][21]. In addition, this model conforms

with the other SPI models such as CMM, SPICE, and ISO

9000 [22] [23].

As shown in Figure 1, CMMI-Dev1.3 is the latest version of

the CMMI generations, however the KPAs of CMMI-Dev1.2

have been chosen in this paper because this version is

common and widely used for assessing and improving the

organizational maturity and process capability of most

software development firms in the world [3][24]. In addition,

CMMI-Dev1.3 is a new release and the usage of this version

is still uncommon and the KPAs of CMMI-Dev1.2 are

similar to level two of CMMI-Dev1.3 [19][22][25].

Furthermore, this paper focuses on level two of CMMI-

Dev1.2, where the KPAs of this level are similar to level two

of CMMI-Dev1.3 [19] [22].

CMMI-Dev1.2 level two considered the process as managed

if it fulfills the basic infrastructure that support the

development process. In addition, the managed process is a

well-planned process that executed in harmony with policy;

takes into account the resources, time and budget constraints

to gain the expected outputs[22].

3. XP METHOD
XP method is developed by Beck [7] and it is considered one

of the most popular agile method [26][30][31]. In addition,

this method is commonly used in the software industry to

reduce time and deal with high changing requirements

environment[27].

Even though both of XP and SCRUM methods are the two

popular and effective agile development methods [7] [28][30],

just XP is selected in this study, as it is considered more

compatible software development method for CMMI model

compared to SCRUM [17].

XP method has twelve practices to increase productivity and

maintaining quality. These practices are [7] [26]: Planning

game, Small releases, Metaphor, Simple design, Test-Driven

Development, Re-factoring, Pair programming, Collective

ownership, Continuous integration, Sustainable pace (40-hour

weeks), On-Site customer and Coding standards.

4. ALIGNING XP PRACTICES TO THE

KPAS OF CMMI-DEV1.2 (LEVEL TWO)
The specific goals of each CMMI-Dev1.2 KPAs were used in

this alignment as the main items to define the coverage ratio

of these goals by the XP practices. In this regard, the

descriptions of CMMI-Dev1.2 [22] and XP method [7] [26]

were used as main references to explain the compatibility and

conflict between XP practices and the KPAs of the CMMI-

Dev1.2 (level two).

In order to perform this alignment, it is pivotal to define the

suitable scales of supporting the XP practices to the KPAs.

Accordingly, three scales were chosen to do the alignment, as

several related studies used these scales such as [12] [13] [14].

These scales are:

 Largely Supported (L.S): the specific goals of the

KPA that largely supported by XP practices.

 Partially Supported (P.S): the specific goals of the

KPA that partially or implicitly supported by XP

practices.

 Not-Supported (N.S): the specific goals of the KPA

that are not applicable by XP practices.

Sections 4.1 to 4.7 show the alignment of the XP practices

with the KPAs of CMMI-Dev1.2 (level two).

4.1 Requirements Management (P.S)
This process area aims to manage the requirements and

identify conflicts between requirements and the project plan.

This KPA has one specific goal:

 S.G 1: Manage Requirements
This specific goal consists of five specific practices, which

are: (1) understand the requirements; (2) obtain commitment

to requirements; (3) manage requirements changes; (4)

maintain bidirectional traceability of requirements; and (5)

identify inconsistencies between project work and

requirements.

In XP it is well-know that requirements are collected using

user story cards that are written by customer, where each card

contains one feature. The programmers divide these features

into two tasks: (1) customer tasks: include the scope of the

project, features priority, composition of releases, releases

dates; and (2) programmer tasks: include features estimations,

technical consequences, process, and comprehensive

scheduling. Moreover, the understanding of these

requirements can be achieved by keeping the customer on-

site.

The customer involvement with the development team helps

in identifying the contents of each release. Therefore, iteration

to release enables the customer to identify and change

requirements, because small releases help to take the feedback

from the customer expectations and needs. In addition,

metaphor and user stories support the collaboration between

the customer and developers to check the status of the

requirements.

Small releases help to conduct the consistency between the

requirements and other work products. In addition, user

stories, functional test, and unit test help in detecting the

conflicts and the inconsistencies between the project work and

the requirements. However, traceability of the requirements is

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 20, October 2018

7

not largely supported by XP, because there is no data

repository in XP to save and trace story cards and make the

documentation up-to-date.

As concluded, the specific goal the requirement management

KPA is partially supported by some of XP practices such as

on-site customer, planning game, continuous integration,

metaphor, and small releases. However, XP does not support a

repository that save and trace user stories.

4.2 Project Planning (L.S)
This process area aims to create and maintain plans that define

all the project activities. This KPA consists of three specific

goals:

 S. G 1: Establish Estimates
This specific goal consists of four specific practices, which

are: (1) estimate the project scope; (2) estimate the product

and task attributes; (3) define project life cycle; and (4)

estimate the effort and cost.

In XP, the planning game practice makes the customer able to

select the features to be developed for the next release; then

the programmers will divide the features into tasks and

estimate them. The customer role is to define the project

scope and prioritize the features where the programmer’s

tasks concentrate more on: estimations of the features,

process, and time scheduling.

In addition, XP the development team involved in early

planning by estimating the effort needed to implement user

stories. Therefore, the estimated tasks are established and may

be updated during the process. Furthermore, the iteration to

release practice helps to increase the estimation precision.

 S. G 2: Develop a Project Plan
This specific goal consists of seven specific practices, which

are: (1) plan for budget and schedule; (2) identify project

risks; (3) plan for data management; (4) plan for project

resources; (5) plan for needed knowledge and skills; (6)

identify stakeholder involvement; and (7) establish the project

plan.

In XP exploration phase, the developers explore architectural

prototype and test the technology to be used in developing the

prototype. In addition, collective ownership practice

guarantees the involvement of all stakeholders that help in

increasing the commitment and obligation to the iteration

plans.

Based on the project plan, risks are defined, the team training

program is planned, and the involvement of all the team is

guaranteed. In addition, incremental XP life cycle helps the

developers to identify and manage risks efficiently.

Furthermore, the planning game practice is used for

establishing the project schedule, budget, and plan for each

iteration.

 S. G 3: Obtain Commitment to the Plan
This specific goal consists of three specific practices, which

are: (1) review project plans; (2) reconcile progress and

resource levels; and (3) assure plan commitment.

In XP, the commitment to the release and plans can be

attained by assuring the involvement of any team member

based on his\her role and responsibility. In addition, the

tracker traces and monitor the progress of each iteration and

evaluates whether it achieves the goal within the budget and

time constraints. Furthermore, the coach is responsible to

ensure that the project performed correctly by keeping the

development team implementing the selected features for the

actual iteration.

As concluded, the specific goals of the project planning KPA

are largely supported by some of XP practices such as

planning game, small releases, on-site customer, and

metaphor.

4.3 Project Monitoring and Control (L.S)
This process area aims to monitor the project’s progress and

take the suitable actions that keep the project’s performance

on the right path. This KPA consists of two specific goals:

 S. G 1: Monitor Project Against Plan
This specific goal consists of seven specific practices, which

are: (1) monitor project planning parameters; (2) monitor

commitments; (3) monitor risks; (4) monitor data

management; (5) monitor stakeholder involvement; (6) review

progress; and (7) review milestone.

In XP method, The tracker monitors the schedule, traces the

estimates that have been created by the development team

and provides feedback to improve the future estimations.

Furthermore, the tracker is responsible for calculating project

performance metrics during the iteration. Spreadsheet tool is a

commonly used in XP projects for calculating metrics such as

estimates and actual achievements.

Using the big visual chart and calculating the project velocity

(the number of stories of a given size that developers can

implement in an iteration) support the commitments of the

stories during the small releases. Therefore, this commitment

process clarifies roles of the customer and the project team at

the tactical level, and makes the project flexible at the

strategic level. Thus, project’s progress data is collected by

the use of measures and the functional tests are performed to

check the milestones against the schedule.

XP method enables the coordination and collaboration with

relevant stakeholders by integrating developers, customer,

testers, and management, using “self-organizing cross-

functional team”. In addition, collective ownership practice

helps in integrating all the team members in the project work.

Furthermore, the intensive communications between the

customer and developers handle the changes that are needed

during the iteration, and this can be done with assistance from

the coach.

 S. G 2: Manage Corrective Action to

Closure
This specific goal consists of three specific practices, which

are: (1) analyze issues; (2) manage corrective action; and (3)

take corrective action.

Short iteration and regular commitments are fruitful for

monitoring and managing the project against the baseline, and

also offer opportunities to make the required modifications.

Therefore, the actions that should be taken in response to this

modification may affect the method used, and the

functionality. On the other hand, the communication between

the customer and the development team helps to declare the

modification and what information should be used to perform

it.

Coach is responsible to ensure that the programmers are

working in an efficient and effective way, and he solves

programmers' problems quickly. On the other hand, tracker

traces the iteration progress and evaluates that the goal is

achieved, and gives feedback on how accurate the team for

improving future estimations. As such, the tracker is

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 20, October 2018

8

responsible for informing the results of daily meetings to

check the output of each iteration against the plan.

Furthermore, the big visual chart also supports this specific

goal, where the project and stories of the small releases are

clearly stated. This visual chart is commonly created by the

customer and development team.

As concluded, the specific goals of the project monitoring and

control KPA are largely supported by some of XP practices

such as on-site customer, test-driven development, collective

ownership, and small releases.

4.4 Supplier Agreement Management (N.S)
This process area aims to manage the achievement of products

from suppliers using a formal agreement.

Several studies [14] [15] [17] stated that this KPA is not

supported by XP. In this respect, Fritzsche and Keil [17]

claimed that this KPA is not addressed by XP, as the

involving suppliers could be problematic; but they believe that

the XP can be improved to satisfy the goals of this process

area with keeping the agility of XP method. In addition,

Omran [14] stated that this KPA seems to consume

 significant resources from small teams.

Therefore, this KPA is not supported by XP and there is a

need to extend XP to meet this process area and keep the XP

agility values.

4.5 Measurement and Analysis (P.S)
This process area aims to establish a measurement capability

that satisfies the management information needs. This KPA

consists of two specific goals:

 S. G 1: Align Measurement and Analysis

Activities
This specific goal consists of four specific practices, which

are: (1) establish measurement objectives; (2) specify

measures; (3) specify data collection and storage procedures;

and (4) specify analysis procedures.

In XP, the project metric is recommended. Furthermore,

tracker defines the measurements and analysis procedures the

based on: (1) tracing the estimates that have been created by

the development team and he provides feedback to improve

future estimations, and the tracker is not advised to interrupt

the project frequently; and (2) tracing the progress of each

iteration and evaluates whether the goal can be achieved

within the time and resources constraints, or define the

changes that may require in the process.

 S. G 2: Provide Measurement Results
This specific goal consists of four specific practices, which

are: (1) collect, analyze, store measurement data and (2)

communicate results.

In XP, the tracker collects the project’s progress data by

estimating the project velocity, and he develops the

programmers feedback by asking and listening to what they

are doing currently. Consequently, the intensive

communications between the development team and the

customer can help to transfer the important data to

measurement results to be used from the team members. In

addition, functional test is used to check the milestones

against the schedule. Furthermore, the tracker uses wall charts

to convey the results of analyzing the measurement data.

As concluded, the measurement and analysis KPA specific

goals are partially supported by on-site customer and test

driven development practices. However, XP does not support

a data repository to save and retrieve the measurement data.

4.6 Process and Product Quality Assurance

(P.S)
This process area aims to provide an objective insight into

processes and associated work products for the staff and

management. This KPA consists of two specific goals:

 S. G 1. Objectively Evaluate Processes and

Work Products
This specific goal consists of two specific practices, which

are: (1) objectively evaluate processes; and (2) objectively

evaluate work products and services.

The planning for quality assurance’s activities is clearly

satisfied by pair programming, continuous integration, and

test driven development practices. In addition, the regular

programming sessions focus on the quality. Furthermore,

Coach is responsible for guiding the team to perform XP

method in the right way. Accordingly, the quality issues can

be easily resolved by XP team and customer.

 S. G 2: Provide Objective Insight
This specific goal consists of two specific practices, which

are: (1) communicate and ensure resolution of noncompliance

issues; and (2) establish records.

The customer can assure the correctness of the systems when

all functional tests are performed successfully. Consequently,

the application to be developed is evolving iteratively in

parallel with performing the quality assurance activities. In

addition, quality assurance results are commonly presented in

a graphical way to be used by the project team such as the

results of test-failures of each release.

As concluded, the specific goals of the process and product

quality assurance KPA are partially supported by some of XP

practices such as continuous integration, test driven

development, and pair programming practices. However, XP
method does not support an evaluation of the quality of

processes, products and services against the applicable

process descriptions. In addition, there are no strict and clear

guidelines for resolving issues and for creating records that

related to the activities of quality assurance.

4.7 Configuration Management (L.S)
This process area aims to establish and maintain the software

product integrity using configuration identification, control,

status accounting, and audits. This KPA consists of three

specific goals:

 S. G 1: Establish Baselines
This specific goal consists of three specific practices, which

are: (1) identify configuration items; (2) establish a

configuration management system; and (3) create or release

baselines.

Code, design, tests and requirements are considered the steps

of configuration in XP. In addition, the iteration to releases

give a strong baselines mechanism and careful version control

of the code and other release components. Furthermore, the

using of a configuration management system is covered by

continuous integration, collective ownership, and small

releases. Moreover, the release baselines are always

established using the functional tests and at the end of each

iteration.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 20, October 2018

9

 S. G 2. Track and Control Changes
This specific goal consists of two specific practices, which

are: (1) track change requests; and (2) control configuration

items.

Pair programming, tests, and on-site customer feedback are

used for tracking and controlling the changes. Moreover, re-

factoring practice pushes the program source code in the

direction of a larger baseline, with more classes and methods

in common.

 S. G 3: Establish Integrity
This specific goal consists of two specific practices, which

are: (1) establish configuration management records; and (2)

perform configuration audits.

The continuous integration practice increases the project

velocity to reach the production state, where the changes that

have been made by a pair of programmers should not affect

other component that were developed by another pair of

programmers. In addition, coding standard practice keeps the

code consistent and easy to read, which makes the

development team able to understand all the code chunks to

be developed as the basis for the collective ownership

practice. Therefore, the code developed based on the coding

standard practice that means it has specific descriptions. On

the other hand, pair programming, pair programming, on-site

customer and test driven development practices are informally

used for performing the auditng.

As concluded, the specific goals of the configuration

management KPA are largely supported by some of XP

practices such as planning game, continuous integration, re-

factoring, on-site customer, test-driven development, coding

standard, collective ownership, and small releases.

As a result of this alignment, the following can be concluded:

 Three KPAs that largely supported by XP are: (1)

project planning; (2) project monitoring and control;

and (3) configuration management.

 Three KPAs that partially supported by XP are: (1)

requirement management; (2) measurement and

analysis; and (3) process and product quality

assurance.

 One KPA is not-supported by XP namely, supplier

agreement management.

5. THE SIMILARITIES AND

DIFFERENCES OF THIS ALIGNMENT

WITH THE RELATED STUDIES
Several studies [14] [16] [17] discussed to identify what the

CMMI-Dev1.2 KPAs that can be covered by XP. In

conducting the coverage of XP practices to the CMMI-Dev1.2

KPAs by these studies, five scales were used by Fritzsche and

Keil [17], while three scales were used by Omran [14], and

Elshafey and Galal-Edeen [16].

As shown in Table 1, the descriptions of the used scales by

the related studies focus on common three scales, which are:

(1) Largely Support (L.S): XP practices largely support the

specific goals of the KPA; (2) Partially Support (P.S): XP

practices partially support the specific goals of the KPA; and

(3) Not-Support (N.S): XP practices do not support or are not

applicable for the specific goals of the KPA. Based on these

common three levels, Table 2 unites the different scales used

by these studies into common three scales used in doing the

alignment of this paper. Accordingly, Table 3 shows the

alignment results of the three studies based on the common

three scales.

Table 1. Scales of other studies in coverage XP practices to

CMMI-Dev1.2 KPAs

Related

Studies
 Scale of Comparison

 [17] Conflicting (–): XP practices cannot

cover the process area’s components

 Not addressed (0): XP practices do not

cover the process area’s components.

 Partially supported (+): XP practices

satisfy some of the process area’s

components.

 Supported (++): XP practices satisfy most

of the process area’s components.

 Largely supported (+++): XP practices

satisfy the major part of the process

area’s components.

 [14] (++): process area is largely addressed by

XP practices.

 (+): process area is partially addressed

by XP practices.

 (--): process area is not addressed by XP

practices.

 [16] Supported (S): when most parts of the

process area is supported by XP practices

that will help enhance or accelerate its

implementation.

 Partially Supported (P.S): when only a

small part of the process area is covered

by an XP practice, it can't help

implementing this process area on its own

other non XP practices will be needed.

 Not-Supported (N.S): when process area

is not addressed by XP method.

Table 2. Unification the used scales of other studies in

three scales

Common Scales Related Studies

[17] [14] [16]

Largely Supported

(L.S): XP practices

largely support the

specific goals of the

KPA.

(+++) (++) Supported

Partially Supported

(P.S): XP practices

partially support the

specific goals of the

KPA.

(++)

OR

(+)

(+) Partially

Supported

Not- Supported (N.S):

XP practices do not

support or are not

applicable for the

specific goals of the

KPA.

(-)

OR

(0)

(--) Not-

Supported

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 20, October 2018

10

Table 3. Coverage results of XP practices to CMMI-

Dev1.2 KPAs of the related studies.

CMMI-Dev1.2 KPAs

(Level-Two)

Related Studies Alignment of

this Study

[17] [14] [16]

Project Planning L.S L.S L.S L.S

Project Monitoring and

Control
L.S L.S L.S L.S

Supplier Agreement

Management

N.S N.S N.S N.S

Requirement

Management
L.S L.S L.S P.S

Measurement and

Analysis
P.S L.S P.S P.S

Process and Product

Quality assurance
P.S P.S N.S P.S

Configuration

Management
L.S P.S P.S L.S

As shown in Table 3, the following can be concluded:

 Three KPAs have the same results in this study

compared to other related studies. These KPAs are

project planning, project monitoring and control,

and supplier agreement management.

 Four KPAs have the different results in this study

compared to other related studies. These KPAs are

requirement management, measurement and

analysis, process and product quality assurance, and

configuration management.

6. CONCLUSION
CMMI-Dev1.2 was created especially for the software firms

in order to improve their development and management

processes. XP is the most well-known and common agile

method. This paper aimed to align XP practices to the KPAs

of CMMI-Dev1.2 (level two). In this alignment, three scales

were used to represent the coverage ratio of supporting XP

practices to the specific goals of each CMMI-Dev1.2 KPAs.

These scales are largely supported, partially supported, and

not-supported. The results of this alignment so that (1) three

KPAs were largely supported by XP practices, namely:

project planning, project monitoring and control, and

configuration management; (2) three KPAs were partially

supported by XP practices which are: requirement

management, measurement and analysis, and process and

product quality assurance; and (3) one KPA was not-

supported by XP practices which is supplier agreement

management KPA.

In addition, this paper discussed the similarities and

differences between the alignment’s results of this study

compared to other related studies. This comparison shows that

three KPAs of CMMI-Dev1.2 (level two) have the same

results in this study compared to other related studies, while

the last four KPAs have different results in this study

compared to other related studies.

7. REFERENCES
[1] D. Bae, “Panel: Software Process Improvement for Small

Organizations”, in the 31st Annual International

Computer Software and Applications Conference, 2007,

pp. 1-5.

[2] M. N. Khokhar, K. Zeshan, K., & J. Aamir, “Literature

review on the software process improvement factors in

the small organizations”, in the 4th International

Conference on New Trends in Information Science and

Service Science (NISS), 2010, pp. 592 – 598.

[3] M. Pikkarainen, “Towards a framework for improving

software development process mediated with CMMI

goals and agile practices, Academic Dissertation,

Faculty of Science, Department of Information

Processing Science, University of Oulu, Finland, 2008.

[4] F. H. Alshammari, R. Ahmad, “The effect of geographical

region on the duration of CMMI-based software process

improvement initiatives: An empirical study”, in the 2nd

International Conference on Software Technology and

Engineering (ICSTE), 2010, pp. V2-97-V2-100.

[5] T. Galinac, “Analysis of Quality Management in Modern

European Software Development”, Electronic form only:

NE Eng. Rev, Vol. 28, No. 2, 2008, pp. 65-76.

[6] I. Garcia, C. Pacheco, and J. Calvo-Manzano, "Using a

web-based tool to define and implement software process

improvement initiatives in a small industrial setting",

Software, IET, vol. 4, NO 4, 2010, pp. 237-251.

[7] K. Beck, Extreme programming explained: embrace

change: 3th End.Reading, Mass, addition-Wesley.

Boston, 2000.

[8] J. A. H. Alegra and M. C. Bastarrica, "Implementing

CMMI using a Combination of Agile Methods", CLEI

ELECTRONIC JOURNAL, Vol. 9, No 1, 2006, pp. 1-

15.

[9] L. Zoysa, “Software Quality Assurance in Agile and

Waterfall Software Development Methodologies: A Gap

Analysis”, Ph.D. thesis, School of Computing,

University of COLOMBO, Sri Lanka, 2011.

[10] T. Dyba, & Dingsøyr,

“Empirical studies of agile software

 development: A systematic review”, Information and

Software Technology, Vol. 50, No. 9-10, 2008, pp. 833-

859.

[11] E. Erharuyi, “Combining eXtreme Programming with

ISO 9000: 2000 to Improve Nigerian Software

Development Processes”, M.S. thesis, School of

Engineering, Blekinge Institute of Technology, Sweden,

2007.

[12] A. S. Koch,”CMM-compliant XP”, paper retrieved on 20

Aug. 2012, from

http://www.askprocess.com/Articles/CMM-XP.pdf.

[13] M. Paulk, “Extreme Programming from a CMM

Perspective”. IEEE Software, Vol. 18, No. 6, 2001, pp.

19-26.

[14] A. Omran, “AGILE CMMI from SMEs perspective” in

the 3rd International Conference on Information &

Communication Technologies: from Theory to

Applications (ICTTA 2008), 2008, pp. 1-8.

[15] J. Martinsson, “Maturing Extreme Programming Through

the CMM”, M.S. thesis, Department of Computer

Science, Lund University, Lund, Sweden, 2002.

[16] L. A. Elshafey, & G. Galal-Edeen, “Combining CMMI

and Agile Methods”, In the 6th International Conference

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5480449
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5480449
http://www.askprocess.com/Articles/CMM-XP.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 20, October 2018

11

 on Informatics and Systems (INFOS2008), 2008, pp. SE-

27- SE-39.

[17] M. Fritzsche, and P. Keil, “Agile Methods and CMMI:

Compatibility or Conflict?,” e-Informatica Software

Engineering Journal, Vol. 1, No. 1, 2007, pp. 9-26.

[18] M. Pikkarainen & M. Annukka, “An Approach for Using

CMMI in Agile Software Development Assessments:

Experiences from Three Case Studies”, in the SPICE

2006 conference, 2010, pp. 1-11.

[19] C. P. Team, “CMMI for Development (CMMI-DEV):

Version 1.3”, Technical Report, CMU/SEI-2010-TR-

033, Software Engineering Institute, Carnegie Mellon

University, USA, 2010.

[20] M. Bush, & D. Dunaway, CMMI (R) Assessments:

Motivating Positive Change (Sei Series in Software

Engineering): Addison-Wesley Professional. Murray,

KY, U.S.A. 2005.

[21] D. Goldenson, and D. Gibson, “Demonstrating the

impact and benefits of CMMI: an update and preliminary

results”, CMU/SEI-2003-SR-009, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, 2003.

[22] C. P. Team, “CMMI for Development, version 1.2”,

Technical Report, CMU/SEI-2006-TR-008, Software

Engineering Institute, Carnegie Mellon University, USA,

2006.

[23] P. Mongkolnam, U. Silparcha, N. Waraporn, & V.

Vanijja, “A Push for Software Process Improvement in

Thailand”, in the 16th Asia-Pacific Software Engineering

Conference, 2009, pp. 475-481.

[24] D. Mishra, and A. Mishra, “Software process

improvement in SMEs: A comparative view”, Computer

Science and Information Systems, Vol. 6, No. 1, 2009,

pp. 111-140.

[25] A. B. M. Isawi, “Software Development Process

Improvement for Small Palestinian Software

Development”, M.S. thesis, Faculty of Graduate Studies,

An-Najah National University, Nablus, Palestine, 2011.

[26] R. Jeffries, A. Anderson, & C. Hendrickson, Extreme

Programming Installed: Addison-Wesley. Boston, 2002.

[27] K. S. Devesh, S. C. Durg, & S. Raghuraj, “Square

Model-A Proposed Software Process Model for BPO

based Software Applications”, International Journal of

Computer Applications, Vol. 13. No.7, 2011, pp. 33-36.

[28] P. Abrahamsson, O. Salo, J. Ronkainen, & J. Warsta,

“Agile software development methods”, Technical

Report, Espoo: VTT Publications 478, Technical

Research Centre of Finland, Finland, 2002.

[29] Fuggetta A, Di Nitto E. “Software process”.

InProceedings of the on Future of Software Engineering

2014 May 31, pp. 1-12). ACM.

[30] M.Altarawneh, "Monitoring oriented agile based web

applications development methodology for small

software firms in Jordan." PhD thesis,School of

computing, Universiti Utara Malaysia, 2016.

[31] E. Kouzari, V. C. Gerogiannis, I. Stamelos, and G.

Kakarontzas, "Critical success factors and barriers for

lightweight software process improvement in agile

development: A literature review," 10th International

Joint Conf. on Software Technologies (ICSOFT), vol. 1,

pp. 1-9, July 2015.

IJCATM : www.ijcaonline.org

