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ABSTRACT 

The performance of Metaheuristics in general and 

Evolutionary Algorithms (EA) in particular depends on good 

settings of algorithm parameter values, such as population 

size, mutation rate or crossover probability. To increase 

performance, researchers still try to find optimal settings. At 

present, researchers are adapting the parameter settings during 

an evolutionary run (parameter control). Thus, no hand tuning 

is needed upfront of an evolutionary run. In this paper we 

analyze algorithm performance when using adaptable 

algorithm parameters on Genetic Algorithms (GA) with multi-

chromosome representation. Most of the research in the field 

of EA has been done on a theoretical basis. Often the 

proposed solutions do not deliver what they promise, when 

applying them to complex problems of real-world. Thus, 

experimental studies on complex problems of real-world are 

needed to ascertain performance improvement of adaptive 

parameter control. This paper is an experimental study on 

such a complex optimization problem of real-world 

(dynamically coupled System of Systems). In our approach of 

parameter control new individuals are generated by adapting 

the mutation rate. Therefore, we calculate a dedicated 

mutation rate for each chromosome of the individual. This 

happens in relation to the fitness of each chromosome. We 

analyzed and have statistically proven the outperformance of 

our approach upfront with the De Jong’s (Sphere) and the 

Schwefel’s test function. In this paper, we are now applying 

our approach to a real world based complex optimization 

problem (nonstationary, dynamic, noisy), to prove the 

outperformance of our approach. Therefore, we made a 

performance comparison with non-adaptive GA, which 

demonstrates the superiority of the adaptive approach. More 

specifically, we use a stochastic simulation model of 

university hospital processes. Inpatient admission, outpatient 

admission and op-theater planning of elective patients must be 

optimized simultaneously, while emergencies occur. Every 

hospital area has its own objectives and constraints (dedicated 

systems). The number of patients and utilization of resources 

must be maximized in every hospital area, while waiting 

times, lead times and schedule variances must be minimized. 

In that, a system of systems can be seen. It is shown how our 

approach can be used to optimize such dynamically coupled 

system of systems (SoS) in an efficient way. 
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1. INTRODUCTION 
Since Genetic Algorithms (GAs) were introduced by Holland 

[1], GAs were increasingly used to solve optimization 

problems when exact, analytic methods are not available or 

cannot be applied. Since the early beginning researchers try to 

find optimal parameter settings for GA control parameters 

like, population size, crossover probability or mutation rate. 

By tuning these control parameters better solutions can be 

found in less time. Several researchers like De Jong [3] or 

Schaffer et al. [4] focused on finding optimal algorithm 

parameter settings. But the results are specific to the 

optimization problems of their test cases and cannot be 

generalized [5, p. 124 f.]. Finding the optimal values for 

specific problems or in general is a long-standing challenge in 

the field of Evolutionary Algorithms (EA). In the past 

parameter settings were tuned upfront the optimization run 

(evolutionary run). But tuning of GA control parameter 

upfront is very time consuming. At present researchers ar 

focusing on parameter control, which is adapting the control 

parameters during evolutionary run, to overcome the problem 

of upfront time-consuming hand tuning or using given 

parameter settings of other test cases. Parameter control is 

“still in its infancy, requiring fundamental research” [5, p. 

146], e.g. towards good control strategies. Thus, looking at 

GAs, it is necessary to focus on selected parameters to find 

effective ways of parameter control. It is difficult to ascertain 

witch parameter control strategy would improve performance 

[5, p. 63 f.]. EAs and also GAs are stochastic, non-linear 

algorithms. Formal proof is extremely difficult [2, p. 6]. A 

deeper understanding of how changes in GA parameters affect 

GA performance can be obtained by experimental studies, e.g. 

setting one parameter adaptive and keeping the other values 

fixed throughout the run. Most of the research in the field of 

EA has been done on a theoretical basis. Often the proposed 

solutions do not deliver what they promise, when applying 

them to complex problems of real-world. Thus, experimental 

studies on complex problems of real-world are needed to 

ascertain performance improvement of adaptive parameter 

control. This paper is an experimental study on such a 

http://www.ijcaonline.org/
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complex real-world optimization problem (dynamically 

coupled system of systems). At a glance, this paper is 

focusing on five issues: 

• adaptive parameter control 

• GA with multi-chromosomal representation, 

• real-word optimization problem (nonstationary, 

dynamic, noisy) 

• multi-objectives (multi-system optimization: 

dynamically coupled system of systems) 

• obtaining performance improvements 

In the following section II related work is given. In section III 

we describe a real-world case. Section IV points out the 

experimental design and specifies the test scenarios. In section 

V we present the results. Section VI summarizes the work and 

gives an outlook on future work that needs to be done. 

2. RELATED WORK 
Early research by De Jong [3] or Schaffer et al. [4] focused on 

finding optimal algorithm parameter settings. These results 

are specific to the optimization problems of their test cases 

and cannot be generalized [5, p. 124 f.]. The parameter must 

be specified at the beginning and remain static during the 

evolutionary run. This is the commonly practiced approach 

called parameter tuning [12, p. 20]. It means to figure out the 

best values in preliminary runs. It is very time consuming and 

computationally expensive. 

The Evolutions Strategy (ES) by Rechenberg and Schwefel 

led to the development of adapting control parameter [9]-[11]. 

This forms an alternative, called parameter control, where 

parameter values are changed dynamically during runs [12, p. 

20]. Eiben, Hinterding & Michalewicz [6, p. 131] distinguish 

three types of parameter control (see Figure 1): 

Figure 1. Global taxonomy of parameter setting in EA’s 

[6, p. 129] 

 

Deterministic, as a blind deterministic rule, e.g. triggered by 

the process of time (number of generations). Adaptive 

parameter control, which incorporate feedback from the 

search process, like Rechenberg’s “1/5” success rule [10]. 

And self-adaptive, when using a meta-EA or by using EA that 

tunes itself to a given problem. It is typically done via a 

mechanism in which the algorithm parameter values are 

encoded as a control gene on individual genomes [2, p. 7]. 

Aldeida & Moser [40], De Jong [2], Eiben & Smit [36], 

Karafotias et al. [37] and Meyer-Nieberg & Beyer [35] are 

giving an overview of parameter control for EA. Today, 

parameter control is a standard component of many ES 

algorithms [2, p. 13]. Except of ES, for mutation step size 

adaption, none of the EAs are using adaption routinely in 

every day practice [2, p. 6]. Adapting control parameter 

during EA run, e.g. mutation rate, is also not common for 

Genetic Algorithms [2, p. 13]; [35, p. 48]. However it has 

been empirically and theoretically demonstrated that different 

values of parameters at different stages of the evolutionary 

process increase algorithm performance [12, p. 21, 41]; [5, p. 

58, 131], for example in [13]-[20], [38], [41], [43]. Fogarty 

[13] uses a deterministic rule and has shown that reducing 

mutation rate exponentially over time increases the 

performance of the GA. Hesser & Männer [14] obtained the 

result of Fogarty that mutation rate should be decreased 

during convergence. Fernandes et al. [38] introduced a 

method for GAs mutation rate control, based on the Sandpile 

Model. The Sandpile is a complex system operating at a 

critical state between chaos and order. The mutation intensity 

changes along the search process and also depends on the 

convergence stage of the algorithm. The approach of sandpile 

mutation must work on evaluated individuals that would 

require two cycles of evaluations per generation. To avoid 

this, Fernandes et al. use the fitness values of the parents of an 

individual to derive an expected normalized fitness. They say 

that Sandpile Mutation appears to be well suited for function 

optimization in dynamic environments. Grefenstette [15] uses 

an metalevel GA to find optimal values for six algorithm 

parameters, like crossover and mutation rate. An additional 

GA was used to identify optimal algorithm parameter values 

of another (subjected) GA. The idea of the meta-GA was 

revived by Yuan & Gallagher [43] on a hybrid approach with 

racing scheme. Bäck [16], [17] also uses self-adaption and 

handled mutation rate as temporal and individually differing 

parameter, which is incorporated into the genetic 

representation of the individuals. He confirmed that 

mechanism of self-adaptive mutation rate is advantageous for 

GAs performance. Bäck [16] sees this as a strong argument 

for general introduction of adaptive mutation rates to GAs. 

Smith [18] improved the scheme of Bäck, by using a fixed 

learning rate instead of also variate the rate of variation. 

Serpell & Smith [41] uses self-adaption to adapt the choice of 

mutation operator as well as the mutation rate for the chosen 

operator during runtime. Serpell & Smith showed that all the 

tested self-adaptive GAs provided comparable or better results 

to the best choice of non-adaptive GAs. But, they have seen 

an overhead at self-adaption in the time required to find the 

optimal mutation rate (costs of self-adaption). Further on, they 

imply that self-adaptation of the mutation rate takes 

precedence over the self-adaptation of the mutation operator. 

Just a little research is done on adapting algorithm parameters 

for GAs with multi-chromosome representations. It is a fact, 

that complex optimization problems of real-world usually 

have more than one objective and can be seen as system of 

systems, with each of the containing systems having its own 

characteristics. Therefore mu1ti-chromosome representations 

seem to be very suitable. They have been used in GAs to 

encode different aspects of the representation of a problem 

(solution) onto separate chromosomes. Thus, it is possible to 

decompose a problem (solution) into several simpler parts so 

that each part can be represented onto a separate chromosome. 

Each chromosome can use a different representation and its 

own set of reproduction operators. From our point of view this 

is needed to efficiently represent and optimize system of 

systems and also to find effective adaptive control strategies 

for algorithm parameters. 

Hinterding [19] used two chromosomes to investigate the 

effect of self-adaptive mutation rate. He used one 

Chromosome to represent the problem (solution) and the other 

one to represent the self-adaptive strategy. Hinterding showed 

that self-adaptation leads to better results, except for the easier 

problems run for shorter numbers of evaluations. He points 

out that this could be attributed to the fact that the self-

Parameter setting 

before the run during the run 

Parameter tuning Parameter control 

Deterministic Adaptive Self-adaptive 
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adaptive parameters were initialized with uniform random 

values, and the GA needs some time to evolve appropriate 

values for them. Hence, in that he has also seen the cost for 

using self-adaptation. But Hinterding says that the costs are 

out-weighed by the better results for the harder problems and 

remove the need to hand-tune the parameters that are adapted. 

Kühn et al. [20] introduced an approach of adaptive parameter 

control of mutation rate for GAs with multi-chromosome 

representation. The test suite was given by De Jong’s (Sphere) 

and Schwefel’s function. The optimization problem was 

divided into two parts and represented by two chromosomes. 

For example, at Schwefel’s function (SF) [10]: 

 

𝑓𝑆(𝑥⃗) =  ∑ −𝑥𝑖 ∗ sin (√|𝑥𝑖|

𝑛

𝑖=1

 

−500 ≤  𝑥𝑖 ≤ 500 

𝑛 ∈ 𝑁;  𝑥∗⃗⃗⃗⃗⃗ = (𝑥1,
∗  𝑥2

∗, 𝑥3
∗, … , 𝑥𝑛

∗ ) 

 

(1) 

 

The parts are (2, 3): 

 

 𝑓𝑆1
(𝑥1) = −𝑥1 ∗ sin (√|𝑥1|), 

 

 𝑓𝑆2
(𝑥2) = −𝑥2 ∗ sin (√|𝑥2|). 

(2) 
 

(3) 

 

There is one chromosome representing x1 and the other one 

x2. When generating new individuals by mutation, for each 

chromosome of the selected individual a dedicated mutation 

rate is calculated. Therefore, an additional fitness value for 

each chromosome (chromosome fitness) is calculated. This 

value is used to adapt the mutation rate to the fitness of each 

chromosome. Better fitness of a chromosome leads to lower 

mutation rate. Thus, the mutation rate can vary between the 

chromosomes of an individual and in every generation (over 

time). To calculate the specific mutation rate of a 

chromosome in relation to the chromosome fitness either a 

linear or an exponential function was used. While fitness is 

not that good, like at the beginning of the GA run, the 

resulting mutation rate is very high with 0.5 in maximum. The 

reason for this is seen in a better exploration of the search 

space at the beginning of a search process to efficient locate 

regions with good fitness values. Therefore, large mutation 

rates are needed [12, p. 21] [5, p. 131]. Later, when only fine 

tuning has to be done smaller mutation rates are required. 

While the fitness level is getting better over time, the mutation 

rate decreases to 0.001 in minimum. The test functions 

mentioned above were used to analyze the GA performance. 

GA runs with non-adaptive mutation rates of 0.001, 0.01, 

0.05, 0.1, 0.2 and 0.5 were compared to the approach of 

adaptive mutation rate. All other algorithm parameters 

remained the same during the run. Population size was set to 

20 individuals. Thus, a quite small population was chosen. 

The reason is that on complex optimization problems long run 

times may be expected when having a large population size. 

Less individuals might lead to less run time and computation 

expenses. Every individual consists of two binary coded 

chromosomes each representing half of the search space (resp. 

problem solution). Selection is done by roulette wheel. A 

normalization for the fitness values was done, according to the 

parent population. Single point crossover was used at every 

chromosome. Crossover probability was set to 0.60. At every 

variant of mutation rate 100.000 runs were performed using 

De Jong’s and Schwefel’s function. The GA run ended when 

a fitness level of 0.995 was reached. The number of 

generations it took to reach the defined fitness level was 

measured and statistically analyzed. The mean value for each 

variant was calculated. Kühn et al. [20] have shown for GA 

with multi-chromosome representations that adaptive 

mutation rate based on chromosome fitness leads to 

significant better GA Performance, compared to non-adaptive 

variants. It was shown that a linear function to calculate 

mutation rates performed much better than exponential. For 

linear mutation function the duration to reach a defined fitness 

level was decreased by at least 38 % compared to the best 

non-adaptive variant. In only one variant of Sphere function, 

the results are worse than in best non-adaptive run. The reason 

can be seen in the easy test function. The high mutation rate at 

the beginning leads to better exploration of the search space, 

what might not be needed at that easy (static) problem. That 

also corresponds to De Jong [2, p. 16], when he is saying non-

adaptive algorithm parameters “that have been pre-tuned for 

particular classes of problems will continue to outperform”. 

Kühn et al. say, that their approach needs to be wider tested, 

e.g. on complex optimization problems of real world. This 

will be done in the following. 

3. REAL WORLD CASE AND 

REPRESENTATION 
A complex problem of real-world can be seen as an 

optimization problem that can be found in real-world, with 

dynamic behavior, noisy and nonstationary conditions. Such a 

problem cannot be solved analytically. In complex real-world 

optimization problems, usually more than one objective needs 

to be optimized. Optimization problems consisting of several 

systems that are dynamically coupled and interacting with 

each other (system of systems) are increasing in number. In 

general, systems can be differentiated e.g. on different 

objectives, different resources, different constraints or even 

different languages that are spoken. Some researcher is 

merging these systems on a high level of abstraction to make 

optimization easier. That might end in solutions that do not 

have expected results, when applying them to the real-world. 

That is why there is the need and acuteness to figure out 

efficient ways to optimize complex optimization problems of 

real-world, in particular for dynamic, coupled system of 

systems. An example for that kind of complex optimization 

problems can be seen in the inpatient admission, outpatient 

admission and op-theater planning of elective cardiologic 

patients of a German university hospital, which must be 

optimized together (scheduling and sequencing) while 

emergencies occur. The number of patients treated should be 

maximized, patient waiting times and idle times of hospital 

resources should be minimized. Considered hospital entities 

are: outpatient department, two cardiological wards, three 

heart catheter laboratories (HCLs) as op-theaters, an electro-

physiological laboratory (op-theater), an electrocardiographic 

unit (ECG) and three echocardiographic units (ECHO). Each 

of these units can be seen as a system. They are dynamically 

coupled and each of them has their own objectives and 

constraints of planning scheduling and sequencing. Moreover, 

diverse uncertainties (noise) need to be considered, like 

patient’s health conditions, duration of examinations, lateness 

of patients, decisions made by physicians and emergencies 

that occur. On planning and optimization, downstream 

resources and dynamic of processes must be considered. 

Downstream resources are resources that patients went 

through after admission. None of the three university hospitals 

analyzed have noise conditions or downstream resources 

considered at admission planning. Even at op-theater planning 

no emergencies were considered. 

By now, no research is seen, considering this together [46]-

[50]. Also, no analytic way is seen as suitable to calculate an 



International Journal of Computer Applications (0975 – 8887)  

Volume *– No.*, October 2018 

44 

optimal solution. The reason can be the fact, that we think it is 

not possible to put all the objects to be planned, all 

constraints, all uncertainty and the dynamic behavior in a 

mathematic function. In case it is possible somehow, we are 

not able to say that the optimization function is continuously 

differentiable twice. Nor we do see a way to calculate every 

single possible solution of the search space. Knowing that 

there is a huge number of possible combinations and knowing 

that by the noise, later we will get different results every time, 

when testing a solution. 

To analyze or optimize highly dynamic processes as can be 

found within hospitals, a dynamic executable model is 

necessary. Further on a heuristic is needed to optimize it. We 

have tested a GA in Kühn at al. [53] and think it is suitable to 

the given optimization problem. Following this, we use the 

stochastic, executable simulation model developed by Kühn & 

Lippold [21] to optimize the hospital processes. The 

simulation model was built in MLDesigner as a discrete event 

model. Stochastic effects within the model are, e.g.: 

• unplanned patients (walk-in),  

• emergency patients from emergency department, 

• occurring of an emergency while a treatment is 

running or within bedtime on a ward,  

• unpunctuality of patients, 

• upfront unknown treatment plan, 

• variation in duration of treatments, 

• fault of medical devices. 

For purpose of modelling a database containing 2 years of 

collected real-world data (SAP IS-H*med extraction, 

empirical data collections) and process descriptions of all the 

related hospital processes were used. Hospital processes were 

automatically transformed and imported into the simulation 

model, following the approach of Kühn at al. [44]. The 

database of real data has been divided into two parts following 

Page [45, p.149]. The first part was only used for modelling 

and parameterizing the simulation model. The second part of 

real-world data was used to validate the simulation model. As 

a result, a validated, dynamic simulation model is developed, 

which includes all the mentioned constraints, uncertainties 

and given capacities of considered hospital resources. Now an 

optimization of admission planning, patient scheduling and 

sequencing can be done by simulation possible solutions. On 

evolution run, solutions will be created, tested and evolve, 

fitting to the environment. 

For the simulation model Severin [39] implemented a GA, 

with multi-chromosome representation. It appeared quite 

difficult for us to merge all planning parameters on one 

chromosome. Dividing the problem representation by units 

(systems) and planning focus on dedicated chromosomes 

makes it much easier for us to represent the different 

optimization objectives in an appropriate way. Further on, the 

chromosome structure differs on the specific planning focus. 

In detail, the chosen optimization problem is represented by 

15 chromosomes. 7 of these chromosomes are used for patient 

admission planning. For each hospital area that needs to be 

considered (e.g. outpatient department, wards, ECG, ECHO, 

HCLs), a dedicated chromosome (CZ01-CZ07) is used to plan 

the number of patients and day of treatment/admission (day of 

week). Table 1 shows the structure of these seven 

chromosomes. All of them are dynamic in length. So, the 

number of patients planned is represented by the length of the 

chromosome, which changes during the EA run. 

 

 

Table 1: Structure of chromosomes to plan number of 

patients and the day of admission (CZ01-CZ07) 

Pati

ent

_ID 

0

1 

0

2 

0

3 

0

4 

0

5 
… 

2

1 

2

2 

2

3 

2

4 
… 

Day 

of 

We

ek 

1 1 3 1 1 … 3 1 4 4 … 

 

Two of the mentioned 15 chromosomes are used to plan the 

appointment rules and start time of admission (opening time) 

for the outpatient department (CT01) and the considered 

wards (CT02). At these two chromosomes, optimization 

parameters are n1: number of patients at first appointment, ni: 

number of patients at each appointment; ai: time between two 

appointments, following Cayirli & Veral [46], and time of the 

first appointment (begin opening time). Table 2 shows the 

structure of these two chromosomes. 

 

Table 2: Structure of chromosomes for inpatient and 

outpatient admission (CT01+CT02) 

G

en 
𝑛1 𝑛𝑖 𝑎𝑖 

Mo_b

egin 

Tu_

begi

n 

We_b

egin 

Th_

begi

n 

Fr_b

egin 

va

lu

e 

1 1 
1

5 
450 510 510 510 570 

 

Planning purpose for ECGs, ECHOs and HCLs (op-theaters) 

is only the number of patients and day of appointment. The 

appointment times are assigned by an implemented 

appointment calendar within the hospital model, that is 

initiated with e.g. frequently planned maintenances and all the 

other times, when appointments cannot be made, to ensure 

that appointments do not overlap and will be made at valid 

times. In general appointments from calendar are given by 

first-come, first-appointment rule. This can vary in case a 

patient already has other appointments. Thereby a period of 

time is given (before and afterwards) within that no other 

appointment is made. 

The remaining six chromosomes are used to plan reservations 

upfront the admission and to plan sequencing and scheduling 

of patients in ECGs, ECHOs and OP-Theaters units. The 

following table 3 shows the structure of these six 

chromosomes. The intention is to make reservation to defined 

types of patients upfront the admission and to minimize 

patient waiting time at wards after admission. Because, a lot 

of times patients waiting on ward for treatment, while 

resources needed for treatment (like ECG, ECHO or HCL) 

were not available that soon after admission. 

 

Table 3: Structure of chromosomes for reservation 

planning in ECG, ECHOs and HCLs 

slot 

number 
01 02 03 04 … 18 19 … 

value 0 1 1 3 … 0 2 … 

 

The length of these chromosomes is defined by the number of 
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available time slots within the mentioned calendar in the 

simulation model. Each slot can be set to a value of 0 up to 3. 

Only the value is manipulated by the GA. A value of 0 is 

representing no reservation. Thus, all patients can make an 

appointment at this time slot. Values from 1 to 3 are 

reservations made upfront and dedicated to a defined group of 

patients, like patients on ward or outpatients. 

By differentiating in chromosomes, it was possible to easily 

implement the genetic operators independent and individually, 

in regard to the need of the different chromosome structure. 

That was much easier than having one operator to handle all 

cases and constraints at once, in a single chromosome 

representation. A huge difference between the chromosomes 

was to handle mutation and crossover operators on 

chromosomes representing the number of patients, that are 

varying in length. 

4. ADAPTING GA FOR PARAMETER 

CONTROL 
Looking at the algorithm performance, relating to the chosen 

complex real-world problem, parameter tuning does not 

appear practical. Testing one solution only takes 17 seconds. 

But testing 200 generations with a population of 30 

individuals and testing each solution 10 times (because of 

noise), it takes 11,8 days! for only one evolutionary run. Thus, 

preliminary runs are too much time consuming. That is why 

an adaptive control strategy is used in the following. 

Eiben [5, p. 145] sees the research community to converge on 

the idea that: “successful parameter control must take into 

account two types of information regarding the evolutionary 

search: data about fitness and population diversity.” Mutation 

rate can be seen as a control mechanism to preserve diversity 

of the population. Moreover, the mutation rate seems to be a 

very sensitive parameter with high impact on efficiency of 

GA [35, p. 59]; [4, p. 59]; [10, p. 7]; [7, p. 228]. That is why 

this paper is focusing on the mutation rate in the following. 

When adapting the GA, the approach of Kühn et al. [20] is 

used. Both the mutation rate (diversity) and data about fitness 

are considered in this approach (see details in the former 

section 2). 

As already explained, this approach includes at every 

generation an additional fitness rating for each chromosome. 

When optimizing system of systems, it appears quite difficult 

to merge all optimization objectives into one objective 

function. By having an additional chromosome fitness, 

chromosome specific objectives can be applied to the 

corresponding chromosomes and later on main objectives to 

the individual. Thus, a hierarchy of objectives is given. First a 

dedicated fitness function for each of the 15 chromosomes 

needs to be defined, based on the constraints and objectives of 

the dedicated planning purpose. Here are some examples, 

showing the way it was to be handled. All of the mentioned 

key figures are calculated excluding settling time. 

CZ01: Planning purpose is the number of patients and the 

admission day (day of week) for the outpatient department. 

• The number of outpatients admitted a day in the 

outpatient department (mean per week) has to be 

maximized. 

𝑡𝐹𝑃1 = 𝑚𝑖𝑛 (1.0;
𝑂𝑢𝑡𝑃𝑎𝑡

𝑊𝑒𝑒𝑘𝑠 ∗ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠𝑚𝑎𝑥
) 

• Lead times (Length of stay) of outpatients admitted in 

the outpatient department (mean per patient) has to be 

maximized. 

𝑡𝐹𝑃2 = max (0.0; 1 −
𝑂𝑢𝑡𝐿𝑜𝑆

𝑂𝑢𝑡𝑃𝑎𝑡 ∗ 𝑂𝑢𝑡𝐿𝑜𝑆𝑚𝑎𝑥
)  

• Number of outpatients admitted in the outpatient 

department, that have not finished by end of day 

(mean per Week) has to be minimized.  

𝑡𝐹𝑃3 = max (0.0; 1 − 2 ∗ 𝑂𝑢𝑡𝑃𝑎𝑡𝑖𝑛𝑐

∗
𝑂𝑢𝑡𝐿𝑜𝑆𝑚𝑒𝑎𝑛

𝑊𝑒𝑒𝑘𝑠 ∗ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠𝑚𝑎𝑥
) 

 

OutPat :  outpatient admitted in the outpatient department 

Weeks: number of weeks simulated  

Patientsmax: Maximum number of Patients per week possible 

OutLoS:  patient length of stay in the outpatient department 

OutLoSmax: Maximum OutLoS possible 

OutPatinc:  number of patients in the outpatient department 

that have not left at the end of day 

 

The three key figures (tFP1-tFP3) mentioned above are equal 

weighted in the chromosome fitness function. 

 

𝐹𝐶𝑍01 =  
𝑡𝐹𝑃1 + 𝑡𝐹𝑃2 + 𝑡𝐹𝑃3

3
 

CZ02: Planning purpose is the number of patients and day of 

admission (day of week) for inpatients on ward 1. 

• The number of inpatients admitted at ward 1 a day 

(mean per week) has to be maximized.  

• Waiting time of inpatients admitted for a bed on ward 

(mean per patient) has to be minimized. 

• Number of patients admitted, that do not have a bed 

on ward at the end of the day (mean per week) have to 

be minimized. 

The three key figures mentioned are equal weighted in the 

chromosome fitness function. 

CT01: Planning purpose is the appointment rule for outpatient 

department and period of time where appointments are made 

for each day of the week. 

• Waiting time of outpatient admitted in the outpatient 

department till first contact (after admission) (mean 

per patient) has to be minimized. 

• Lead time of outpatient admitted in the outpatient 

department till discharge from hospital (mean per 

patient) has to be minimized. 

• Number of outpatients admitted in the outpatient 

department, that have not finished at end of day (mean 

per week) has to be minimized. 

The three key figures mentioned are equally weighted in the 

chromosome fitness function. 

Out of these figures the dedicated additional fitness for each 

chromosome is calculated. This fitness rating is only used to 

calculate the specific mutation rate for each chromosome of 

an individual when generating new individuals. 

To calculate the specific mutation rate, a linear function is 

used, which Kühn et al. [20] have seen as the best choice. The 

mutation rate can vary between 0.5 in maximum and 0.001 in 

minimum. This was chosen here, without any testing upfront. 

0.5 seems the maximum mutation rate we can imagine, that 

not ends up in random search, and 0.001 is the minimum 

chosen mutation rate found in the literature. The control 

(4) 

(5) 

(6) 

(7) 
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strategy is adjusting the mutation rate within these borders by 

itself, relating to the chromosome fitness. When the 

chromosome fitness increases, the mutation rate decreases. 

So, at the end of an evolution run the mutation rate should be 

low. But, it seems possible that one or more chromosomes 

might end up with high mutation rates. A reason can be, e.g. 

that just very view patient admissions are planned. This might 

lead to bad fitness rating for single chromosomes even though 

it is the best solution in the overall view. To prevent high 

mutation rates at chromosomes, especially at the end of 

optimization run and to make sure that the minimum mutation 

rate of 0.001 will be reached at the end of a given run length, 

the approach of Kühn et al. [20] was expanded by 

implementing an additional deterministic rule. That lowers the 

maximum possible mutation rate over time.  

So far, just the additional chromosome fitness and how to 

calculate the chromosome specific mutation rates out of it was 

explained. Selection is done based on the individual fitness, 

by fitness proportional selection (roulette-wheel). To measure 

the quality of an individual (solution) a cost function is 

implemented, calculating an earnings-cost value for each 

individual.  

𝐸𝐶(𝑖) =  ∑ (𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖) − ∑ (𝐶𝑜𝑠𝑡𝑠𝑖
𝑛
𝑖=1 );  𝑛

𝑖=1 𝑛 ∈ 𝑁    (8) 

The resulting value is representing the main optimization 

objectives. Earnings are calculated as follows:  

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 =  InPat ∗ 60 + HCL ∗ 500 + OutPat
∗ 60 + ECG ∗ 30 + ECHO ∗ 40 

 

InPat :  number of elective patient admission at ward 

OutPat:  number of outpatient admission at ward at ward 

HCL:  number of HCL procedures carried out 

ECG:  number of ECG examinations carried out at patients 

from outpatient department 

ECHO:  number of ECHO examinations carried out at 

patients from outpatient department 

ECG and ECHO are not considered as earnings for inpatients, 

following the given fact in the hospitals. 

Costs are calculated as follows:  

𝐶𝑜𝑠𝑡𝑠 =  DIV(WT/15) ∗ −2 + WT ∗ 1 + InLoS ∗ 1 
+  OutLoS ∗ 1 + OutPat𝑖𝑛𝑐 ∗ 50 
+ InPat𝑖𝑛𝑐 ∗ 50 + HCL𝑇𝑆 ∗ 100 

WT:  patients waiting time at all during the whole stay 

InLoS: inpatients length of stay at all in days  

OutLoS:  outpatient length of stay at all in hours  

OutPatinc: number of patients in the outpatient department that 

have not left at the end of day 

InPatinc:  number of patients on ward waiting for a bed over 

night after admission 

HCLTS:  number of procedures in HCL, that have not been 

carried out at day planned  

The resulting value has to be maximized. To calculate the 

individual fitness out of the earnings-cost value a ranking 

followed by a linear fitness assignment (linear ranking) was 

used. The sorted list of individuals is ranked, while the best 

individual is getting rank 1. The fitness F is calculated in 

regard to the rank i and population size n by: 

𝐹(𝑖) =
2 ∗ (𝑛 + 1 − 𝑖)

𝑛 ∗ (𝑛 + 1)
 

For optimization purpose the dynamic simulation model 

provided was extended to an optimization model, with 

attached GA. Before any of the experiments described in the 

following were done, an extensive final validation was done. 

5. EXPERIMENTAL DESIGN 
To optimize the chosen problem of real-world and to analyze 

the effects of the adaptive mutation rate, several test scenarios 

were defined. The optimization follows in a loop, as shown in 

Figure 2. The loop will be done as long as the optimization 

algorithm (GA) is running. The run length of GA is defined 

by the number of generations to be calculated. 

 
Figure 2. General sequence of actions for the genetic 

algorithm (based on [52, p. 9]) 

 

Following Kühn et al. [20] after selection either 

recombination OR mutation will be carried out to create new 

individuals. The reason is, when doing recombination first, in 

that moment a new individual is created and the upfront 

calculated chromosome fitness nor the calculated mutation 

rate fits to that new created individual. Furthermore, either 

recombination or mutation is performed for reproduction, to 

validate the Approach of Kühn et al. [20] on the chosen 

complex real-world problem.  

The experimental design is based on two test scenarios (see 

Table 4). In scenario 1 the mutation rate (pm) is non-adaptive 

during the optimization run and the same for every 

chromosome. Each variant of mutation rate in scenario 1 and 

2 will be tested in separate evolutionary runs on a crossover 

probability (pc) of 0.60 and 0.75, following De Jong [3] and 

Schaffer et al. [4]. For every variant, the run length of 200, 

225 and 250 generations will be tested. In some runs during 

implementing and testing the GA, it was seen that this is a 

suitable range of run lengths. Over all, this leads to 54 

optimization runs in scenario 1 (6 runs for each variant) and 6 

runs in scenario 2. For every test scenario, the optimization 

model and all of its parameters will be kept unchanged, except 

the parameters shown in table 4. 

 

Table 4: Test scenarios with variants 

Mutation rate 

(pm) 

Crossover 

probability 

(pc) 

Number of 

generations 

(run length) 

non-adaptive mutation 

rates 

0.001, 0.005, 0.01, 0.02, 

0.03, 0.05, 0.1, 0.2, 0.5 

0.60 
200 

225 

0.75 
250 

adaptive mutation rate 

based on chromosome 
0.60 

200 

225 

Generate start 

population  

Start of search 

quantifying „fitness“  

of individuals 
best individual 

(quit search) 
yes 

no 

new 

population 

created? 
End of search 

Recombination 

 

target value  

(number of gernerations 

reached? 

no 

yes 

create new  

population 

Selection 

Mutation 

calculate mutation 

Rate for each 

chromosome 

or 

(9) 

(10) 

(11) 
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fitness 

(0.5 – 0.001) 0.75 
250 

The initial population is set up by random and contains 30 

individuals. Elitism is not used (non-overlapping generations). 

As De Jong [2, p. 11] said, the “more ‘elitist’ a selection 

algorithm is, the more an EA behaves like a local search 

procedure (i.e., a hill climber, […]) and is less likely to 

converge to a global optimum”. The fitness value is calculated 

with a linear ranking function and selection is done by roulette 

wheel strategy (see section 4). Crossover is done by one-point 

crossover at each chromosome. Pierrot & Hinterding [28, p. 

144] have shown for multi-chromosome representations, that 

mutating only one chromosome did not give good results. 

They recommend to mutate one variable per chromosome 

instead of the average of one mutated variable per 

chromosome.  

For every optimization run, at the end of the defined run time 

(number of Generations), the best Earning-Cost-Value (EC) 

reached is stored (as GA Performance). To minimize the 

stochastic influence each individual (solution) is tested 10 

times with differing sequence of random numbers. The mean 

value is used, following [27, p. 117]. Based on this, scenario 1 

and 2 are compared with each other. De Jong [2, p. 6] says 

that comparing non-adaptive parameter settings to one with 

adaptive settings is unfair since the non-adaptive settings were 

established via some preliminary parameter tuning runs. 

Keeping that in mind, the scenario 1 is compared to scenario 2 

based on the GA performance. 

For simulation purpose, MLDesigner v. 3.0 was used as 

simulation system. Each optimization run needs approx. 12 

days in cpu time (Fujitsu Primergy TX200 S5, 2 x Intel® 

XEON® E5570 2,93 GHz Quad Core, 32 GB RAM). Because 

of that much optimization runs to be tested (~640 days in CPU 

time), a pool of 9 machines was used. 

6. EXPERIMENTAL RESULTS 
The two test scenarios were simulated and the effects on GA 

performance are measured. The following Table 5 shows the 

mean optimization results over all, Figure 3 visualizes the 

results.  

Table 5: Resulting earnings-cost-value of scenarios 1 + 2 

scenario 
mutation 

rate 

earnings-cost-value 

(CR 0.6 and CR 0.75) 

N = 60 

best worst mean 

scenario 1: 

non-adaptive 

mutation rate 

 

0.001 172,180 165,919 168,564.33 

0.005 196,337 165,815 184,423.83 

0.01 197,022 186,331 191,381.33 

0.02 197,298 182,547 192,411.67 

0.03 195,335 184,506 189,080.67 

0.05 194,076 180,315 188,458.50 

0.1 191,464 174,176 181,274.50 

0.2 185,164 168,802 177,164.50 

0.5 176,703 161,731 168,458.33 

scenario 2: 

adaptive 

mutation rate 

0.5 – 0.001 198,272 188,250 192,503.83 

 

 

Figure 3. Resulting earnings-cost-value of scenarios 1 + 2 

 

It is distinguished in the way mutation is done (scenario 1+2) 

and between the mutation rates applied. Each variant consists 

of 6 evolutionary runs (60 overall). At this moment, it is not 

distinguished by the crossover probabilities tested, so both 

variants of cross-over probability tested are included. 

In both scenarios, it was aimed to maximize the earning-cost 

value (EC). In scenario 1, using non-adaptive mutation rates, 

the best mean result was 192,412 and was reached when 

applying a mutation rate of 0.02 (see Table 5). For scenario 2 

with adaptive mutation rate, it is close to the same, with best 

mean value of 192,504 (see Table 5). On a significance level 

of 0.05, there was no statistic significant difference in mean 

values of these two variants. Thus, the adaptive parameter 

control delivers comparable results to the best non-adaptive 

mutation rate, without preliminary parameter tuning. That 

makes adaptive parameter more efficient and upfront hand 

tuning obsolete. 

Looking at scenario 1, the non-adaptive mutation rates less 

than 0.005 and higher than 0.1 have shown a quite poor GA 

performance. This behavior was anticipated and caused by too 

low (insufficient diversity – clones appear) and at > 0.1 too 

high (highly destructive) mutation rates. On the chosen 

complex optimization problem, best GA performance (mean) 

can be reached at a mutation rate of 0.02. Compared to former 

work, like De Jong [3], Schaffer et al. [4] or Grefenstette [15], 

the best mutation rate found here appears to be a little higher. 

At this point it is not clear, what causes that. It can be a result 

of the fact that in our test case a multi-chromosomal 

representation is used, that might need a higher mutation rate. 

A reason can also be, that either mutation or crossover was 

used to create new individuals (see experimental design in 

section 5). 

The following Table 6 and Table 7 are presenting the 

earnings-cost-values for scenario 1+2 separated by the applied 

crossover probability of 0.60 and 0.75. 

As it can be seen, the resulting GA performance depends also 

on the crossover probability. For crossover probability of 0.6 

the adaptive mutation rate performs not that good as using a 

crossover probability of 0.75 on the chosen complex 

optimization problem. A reason can also be seen in the limited 

number of GA runs. 
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Table 6: Resulting earnings-cost-value of scenarios 1 + 2 at 

CR 0.6 

scenario 
mutation 

rate 

earnings-cost-value 

(CR 0.6) 

N = 30 

best worst mean 

scenario 1: 

non-adaptive 

mutation rate 

 

0.001 165,919 169,913 168,461.00 

0.005 190,885 196,337 193,578.33 

0.01 189,446 195,444 191,497.33 

0.02 193,059 196,079 194,779.00 

0.03 184,506 192,690 187,811.00 

0.05 180,315 186,486 183,940.33 

0.1 174,176 178,250 176,021.67 

0.2 168,802 174,747 171,797.67 

0.5 161,731 164,535 163,399.67 

scenario 2: 

adaptive 

mutation rate 

0,5 – 0,001 188,250 191,101 189,576.67 

 

Table 7: Resulting earnings-cost-value of scenarios 1 + 2 at 

CR 0.75 

scenario 
mutation 

rate 

earnings-cost-value 

(CR 0.75) 

N = 30 

best worst mean 

scenario 1: 

non-adaptive 

mutation rate 

 

0.001 172,180 166,050 168,667.67 

0.005 182,195 165,815 175,269.33 

0.01 197,022 186,331 191,265.33 

0.02 197,298 182,547 190,044.33 

0.03 195,335 187,070 190,350.33 

0.05 194,076 191,963 192,976.67 

0.1 191,464 183,234 186,527.33 

0.2 185,164 179,082 182,531.33 

0.5 176,703 170,699 173,517.00 

scenario 2: 

adaptive 

mutation rate 

0,5 – 0,001 198,272 193,975 195,431.00 

 

 

 

Figure 4. Results separated by best, worst and mean results 

 

 

Figure 4 shows the best (blue), worst (red) and mean (green) 

results reached for both scenarios, separated by mutation rate 

and the way mutation is done (scenario 1+2). The Results of 

scenario 1, can be seen on the left side, separated by the non-

adaptive mutation rates (0.001 – 0.5). For scenario 1, both 

variants of crossover probability are included (mean). 

Scenario 2 is shown on the right side, separated by the 

crossover probabilities (CP). 

In general, a quite good GA performance can be seen in 

scenario 2, independent of the crossover probability. The 

adaptive mutation rate, calculated by chromosome fitness, 

performed a little better at a crossover probability of 0.75 than 

at one of 0.60. The same can be observed for non-adaptive 

mutation rates. Further on, the results of adaptive mutation 

rate seem quite robust, as the best, worst and mean values are 

close together, compared to non-adaptive variants. But, maybe 

there are more runs needed to say this in general. Like it was 

said before, a lot of CPU time is needed for testing. And it 

was not aimed to statistically prove the approach itself. The 

outperformance of this approach in general was statistically 

proven upfront with a huge number of runs on a set of 

theoretical test functions in Kühn et al. [20]. 

The following Figure 5 visualizes the adaptive mutation rates 

applied to the chromosomes CR01 – CR06 over time. These 

chromosomes are designed to plan reservations, sequencing 

and scheduling of elective patients in ECG, ECHOs and Op-

theaters. 

Figure 6 shows the earnings values over time for one variant 

of adaptive mutation rate with CR of 0.75. Each dot is a tested 

solution (mean value simulated 10 times). It can be seen that 

at the beginning better solutions can be found very fast. With 

growing number of generations passed, it takes more time to 

find better solutions (convergence of GA). By the spreading 

of solutions it can be seen, how adaptive mutation rate is 

generating more solutions with low earnings value at the 

beginning of the optimization run and less at the end, when 

mutation rate is lower. Figure 7 shows an example when static 

mutation rate of 0.02 and CR of 0.75 is used instead. 
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Figure 5. Applied adaptive mutation rates over time, separated by chromosomes 

 

 

Figure 6. Individuals optimized by adaptive mutation rate over time 

 

 

Figure 7. Individuals optimized by non-adaptive mutation rate of 0.02 over time 
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7. SUMMARY AND OUTLOOK 
It was shown, on a complex real-world optimization problem, 

how dynamic coupled system of systems (SoS) can be 

optimized by using a Genetic Algorithm (GA). We used a 

dynamic, executable simulation model, which was very 

detailed and considers the uncertainty of real-world processes, 

to optimize outpatient admission, inpatient admission and op-

theater planning simultaneously for the first time. We used 

dedicated chromosomes to represent (sub-)systems (multi-

chromosome representation), with their individual objectives 

and constraints of planning. Thus, we were able to optimize 

and measure specific criteria dedicated to each chromosome 

(system). 

To increase the GA performance our approach uses an 

adaptive mutation rate. We considered aspects of diversity 

and fitness together to make the mutation rate adaptive. While 

creating new individuals every chromosome has its dedicated 

mutation rate, depending on its goodness. Thereby, we see 

two level of hierarchy. The specific objectives of 

(sub-)systems and the main objectives for the system as a 

whole. Both were optimized together. 

For the complex real-world optimization problem, preliminary 

parameter tuning runs were performed, to figure out the non-

adaptive mutation rate, where the best optimization results can 

be reached within a given period of time (number of 

generations). We have shown, that optimization results with 

the best non-adaptive mutation rate is comparable to our GA 

with adaptive mutation rate. That confirms the upfront tests on 

a set of test functions and shows that the expected results can 

also be achieved when applying our approach to the chosen 

complex problem of real world. 

It was not our goal to achieve better results on applying 

adaptive mutation rate compared to non-adaptive. The main 

improvement can be seen in overcoming the need to hand tune 

control parameters upfront. This is important and very time 

saving. 

Most of the research in the field of EA has been done on a 

theoretical basis. Often the proposed solutions do not deliver 

what they promise, when applying them to complex real-

world problems. Thus, to confirm research, more tests on 

complex optimization problems of real world are needed, 

especially for multi-objectives. 

Besides mutation rate, also other control parameters should be 

adaptive, e.g. crossover probability and populations size. Like 

De Jong [2, p.15] said, “the ultimate goal of these efforts is to 

produce an effective and general problem-solving EA with no 

externally visible parameters.” This will only be achieved if 

there are effective ways to dynamically adapt various internal 

parameters. 
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