
International Journal of Computer Applications (0975 – 8887)

 Volume 182 – No. 21, October 2018

41

Adaptive Mutation Rate at Genetic Algorithms with Multi-

Chromosome Representation in Multi-department

Hospital Process Optimization

Matthias Kühn
Technical University

Ilmenau
Ehrenbergstraße 29

98693 Ilmenau,
Germany

Thomas Severin
Technical University

Ilmenau
Ehrenbergstraße 29

98693 Ilmenau,
Germany

Joachim Lippold
Technical University

Ilmenau
Ehrenbergstraße 29

98693 Ilmenau,
Germany

Horst Salzwedel
MLDesign Techn.

Inc.
2230 Saint Francis

Drive
CA 94303 Palo Alto,

USA

Volker Nissen
Technical University

Ilmenau
Helmholzplatz 3
98693 Ilmenau,

Germany

ABSTRACT

The performance of Metaheuristics in general and

Evolutionary Algorithms (EA) in particular depends on good

settings of algorithm parameter values, such as population

size, mutation rate or crossover probability. To increase

performance, researchers still try to find optimal settings. At

present, researchers are adapting the parameter settings during

an evolutionary run (parameter control). Thus, no hand tuning

is needed upfront of an evolutionary run. In this paper we

analyze algorithm performance when using adaptable

algorithm parameters on Genetic Algorithms (GA) with multi-

chromosome representation. Most of the research in the field

of EA has been done on a theoretical basis. Often the

proposed solutions do not deliver what they promise, when

applying them to complex problems of real-world. Thus,

experimental studies on complex problems of real-world are

needed to ascertain performance improvement of adaptive

parameter control. This paper is an experimental study on

such a complex optimization problem of real-world

(dynamically coupled System of Systems). In our approach of

parameter control new individuals are generated by adapting

the mutation rate. Therefore, we calculate a dedicated

mutation rate for each chromosome of the individual. This

happens in relation to the fitness of each chromosome. We

analyzed and have statistically proven the outperformance of

our approach upfront with the De Jong’s (Sphere) and the

Schwefel’s test function. In this paper, we are now applying

our approach to a real world based complex optimization

problem (nonstationary, dynamic, noisy), to prove the

outperformance of our approach. Therefore, we made a

performance comparison with non-adaptive GA, which

demonstrates the superiority of the adaptive approach. More

specifically, we use a stochastic simulation model of

university hospital processes. Inpatient admission, outpatient

admission and op-theater planning of elective patients must be

optimized simultaneously, while emergencies occur. Every

hospital area has its own objectives and constraints (dedicated

systems). The number of patients and utilization of resources

must be maximized in every hospital area, while waiting

times, lead times and schedule variances must be minimized.

In that, a system of systems can be seen. It is shown how our

approach can be used to optimize such dynamically coupled

system of systems (SoS) in an efficient way.

Keywords

Genetic algorithms, hospital, inpatient admission, multi-

chromosome, mutation rate, op-theater planning.

optimization, outpatient admission, parameter control, self-

adapting, computer simulation, real world problem, system of

systems optimization.

1. INTRODUCTION
Since Genetic Algorithms (GAs) were introduced by Holland

[1], GAs were increasingly used to solve optimization

problems when exact, analytic methods are not available or

cannot be applied. Since the early beginning researchers try to

find optimal parameter settings for GA control parameters

like, population size, crossover probability or mutation rate.

By tuning these control parameters better solutions can be

found in less time. Several researchers like De Jong [3] or

Schaffer et al. [4] focused on finding optimal algorithm

parameter settings. But the results are specific to the

optimization problems of their test cases and cannot be

generalized [5, p. 124 f.]. Finding the optimal values for

specific problems or in general is a long-standing challenge in

the field of Evolutionary Algorithms (EA). In the past

parameter settings were tuned upfront the optimization run

(evolutionary run). But tuning of GA control parameter

upfront is very time consuming. At present researchers ar

focusing on parameter control, which is adapting the control

parameters during evolutionary run, to overcome the problem

of upfront time-consuming hand tuning or using given

parameter settings of other test cases. Parameter control is

“still in its infancy, requiring fundamental research” [5, p.

146], e.g. towards good control strategies. Thus, looking at

GAs, it is necessary to focus on selected parameters to find

effective ways of parameter control. It is difficult to ascertain

witch parameter control strategy would improve performance

[5, p. 63 f.]. EAs and also GAs are stochastic, non-linear

algorithms. Formal proof is extremely difficult [2, p. 6]. A

deeper understanding of how changes in GA parameters affect

GA performance can be obtained by experimental studies, e.g.

setting one parameter adaptive and keeping the other values

fixed throughout the run. Most of the research in the field of

EA has been done on a theoretical basis. Often the proposed

solutions do not deliver what they promise, when applying

them to complex problems of real-world. Thus, experimental

studies on complex problems of real-world are needed to

ascertain performance improvement of adaptive parameter

control. This paper is an experimental study on such a

http://www.ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, October 2018

42

complex real-world optimization problem (dynamically

coupled system of systems). At a glance, this paper is

focusing on five issues:

• adaptive parameter control

• GA with multi-chromosomal representation,

• real-word optimization problem (nonstationary,

dynamic, noisy)

• multi-objectives (multi-system optimization:

dynamically coupled system of systems)

• obtaining performance improvements

In the following section II related work is given. In section III

we describe a real-world case. Section IV points out the

experimental design and specifies the test scenarios. In section

V we present the results. Section VI summarizes the work and

gives an outlook on future work that needs to be done.

2. RELATED WORK
Early research by De Jong [3] or Schaffer et al. [4] focused on

finding optimal algorithm parameter settings. These results

are specific to the optimization problems of their test cases

and cannot be generalized [5, p. 124 f.]. The parameter must

be specified at the beginning and remain static during the

evolutionary run. This is the commonly practiced approach

called parameter tuning [12, p. 20]. It means to figure out the

best values in preliminary runs. It is very time consuming and

computationally expensive.

The Evolutions Strategy (ES) by Rechenberg and Schwefel

led to the development of adapting control parameter [9]-[11].

This forms an alternative, called parameter control, where

parameter values are changed dynamically during runs [12, p.

20]. Eiben, Hinterding & Michalewicz [6, p. 131] distinguish

three types of parameter control (see Figure 1):

Figure 1. Global taxonomy of parameter setting in EA’s

[6, p. 129]

Deterministic, as a blind deterministic rule, e.g. triggered by

the process of time (number of generations). Adaptive

parameter control, which incorporate feedback from the

search process, like Rechenberg’s “1/5” success rule [10].

And self-adaptive, when using a meta-EA or by using EA that

tunes itself to a given problem. It is typically done via a

mechanism in which the algorithm parameter values are

encoded as a control gene on individual genomes [2, p. 7].

Aldeida & Moser [40], De Jong [2], Eiben & Smit [36],

Karafotias et al. [37] and Meyer-Nieberg & Beyer [35] are

giving an overview of parameter control for EA. Today,

parameter control is a standard component of many ES

algorithms [2, p. 13]. Except of ES, for mutation step size

adaption, none of the EAs are using adaption routinely in

every day practice [2, p. 6]. Adapting control parameter

during EA run, e.g. mutation rate, is also not common for

Genetic Algorithms [2, p. 13]; [35, p. 48]. However it has

been empirically and theoretically demonstrated that different

values of parameters at different stages of the evolutionary

process increase algorithm performance [12, p. 21, 41]; [5, p.

58, 131], for example in [13]-[20], [38], [41], [43]. Fogarty

[13] uses a deterministic rule and has shown that reducing

mutation rate exponentially over time increases the

performance of the GA. Hesser & Männer [14] obtained the

result of Fogarty that mutation rate should be decreased

during convergence. Fernandes et al. [38] introduced a

method for GAs mutation rate control, based on the Sandpile

Model. The Sandpile is a complex system operating at a

critical state between chaos and order. The mutation intensity

changes along the search process and also depends on the

convergence stage of the algorithm. The approach of sandpile

mutation must work on evaluated individuals that would

require two cycles of evaluations per generation. To avoid

this, Fernandes et al. use the fitness values of the parents of an

individual to derive an expected normalized fitness. They say

that Sandpile Mutation appears to be well suited for function

optimization in dynamic environments. Grefenstette [15] uses

an metalevel GA to find optimal values for six algorithm

parameters, like crossover and mutation rate. An additional

GA was used to identify optimal algorithm parameter values

of another (subjected) GA. The idea of the meta-GA was

revived by Yuan & Gallagher [43] on a hybrid approach with

racing scheme. Bäck [16], [17] also uses self-adaption and

handled mutation rate as temporal and individually differing

parameter, which is incorporated into the genetic

representation of the individuals. He confirmed that

mechanism of self-adaptive mutation rate is advantageous for

GAs performance. Bäck [16] sees this as a strong argument

for general introduction of adaptive mutation rates to GAs.

Smith [18] improved the scheme of Bäck, by using a fixed

learning rate instead of also variate the rate of variation.

Serpell & Smith [41] uses self-adaption to adapt the choice of

mutation operator as well as the mutation rate for the chosen

operator during runtime. Serpell & Smith showed that all the

tested self-adaptive GAs provided comparable or better results

to the best choice of non-adaptive GAs. But, they have seen

an overhead at self-adaption in the time required to find the

optimal mutation rate (costs of self-adaption). Further on, they

imply that self-adaptation of the mutation rate takes

precedence over the self-adaptation of the mutation operator.

Just a little research is done on adapting algorithm parameters

for GAs with multi-chromosome representations. It is a fact,

that complex optimization problems of real-world usually

have more than one objective and can be seen as system of

systems, with each of the containing systems having its own

characteristics. Therefore mu1ti-chromosome representations

seem to be very suitable. They have been used in GAs to

encode different aspects of the representation of a problem

(solution) onto separate chromosomes. Thus, it is possible to

decompose a problem (solution) into several simpler parts so

that each part can be represented onto a separate chromosome.

Each chromosome can use a different representation and its

own set of reproduction operators. From our point of view this

is needed to efficiently represent and optimize system of

systems and also to find effective adaptive control strategies

for algorithm parameters.

Hinterding [19] used two chromosomes to investigate the

effect of self-adaptive mutation rate. He used one

Chromosome to represent the problem (solution) and the other

one to represent the self-adaptive strategy. Hinterding showed

that self-adaptation leads to better results, except for the easier

problems run for shorter numbers of evaluations. He points

out that this could be attributed to the fact that the self-

Parameter setting

before the run during the run

Parameter tuning Parameter control

Deterministic Adaptive Self-adaptive

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, October 2018

43

adaptive parameters were initialized with uniform random

values, and the GA needs some time to evolve appropriate

values for them. Hence, in that he has also seen the cost for

using self-adaptation. But Hinterding says that the costs are

out-weighed by the better results for the harder problems and

remove the need to hand-tune the parameters that are adapted.

Kühn et al. [20] introduced an approach of adaptive parameter

control of mutation rate for GAs with multi-chromosome

representation. The test suite was given by De Jong’s (Sphere)

and Schwefel’s function. The optimization problem was

divided into two parts and represented by two chromosomes.

For example, at Schwefel’s function (SF) [10]:

𝑓𝑆(𝑥⃗) = ∑ −𝑥𝑖 ∗ sin (√|𝑥𝑖|

𝑛

𝑖=1

−500 ≤ 𝑥𝑖 ≤ 500

𝑛 ∈ 𝑁; 𝑥∗⃗⃗⃗⃗⃗ = (𝑥1,
∗ 𝑥2

∗, 𝑥3
∗, … , 𝑥𝑛

∗)

(1)

The parts are (2, 3):

 𝑓𝑆1
(𝑥1) = −𝑥1 ∗ sin (√|𝑥1|),

 𝑓𝑆2
(𝑥2) = −𝑥2 ∗ sin (√|𝑥2|).

(2)

(3)

There is one chromosome representing x1 and the other one

x2. When generating new individuals by mutation, for each

chromosome of the selected individual a dedicated mutation

rate is calculated. Therefore, an additional fitness value for

each chromosome (chromosome fitness) is calculated. This

value is used to adapt the mutation rate to the fitness of each

chromosome. Better fitness of a chromosome leads to lower

mutation rate. Thus, the mutation rate can vary between the

chromosomes of an individual and in every generation (over

time). To calculate the specific mutation rate of a

chromosome in relation to the chromosome fitness either a

linear or an exponential function was used. While fitness is

not that good, like at the beginning of the GA run, the

resulting mutation rate is very high with 0.5 in maximum. The

reason for this is seen in a better exploration of the search

space at the beginning of a search process to efficient locate

regions with good fitness values. Therefore, large mutation

rates are needed [12, p. 21] [5, p. 131]. Later, when only fine

tuning has to be done smaller mutation rates are required.

While the fitness level is getting better over time, the mutation

rate decreases to 0.001 in minimum. The test functions

mentioned above were used to analyze the GA performance.

GA runs with non-adaptive mutation rates of 0.001, 0.01,

0.05, 0.1, 0.2 and 0.5 were compared to the approach of

adaptive mutation rate. All other algorithm parameters

remained the same during the run. Population size was set to

20 individuals. Thus, a quite small population was chosen.

The reason is that on complex optimization problems long run

times may be expected when having a large population size.

Less individuals might lead to less run time and computation

expenses. Every individual consists of two binary coded

chromosomes each representing half of the search space (resp.

problem solution). Selection is done by roulette wheel. A

normalization for the fitness values was done, according to the

parent population. Single point crossover was used at every

chromosome. Crossover probability was set to 0.60. At every

variant of mutation rate 100.000 runs were performed using

De Jong’s and Schwefel’s function. The GA run ended when

a fitness level of 0.995 was reached. The number of

generations it took to reach the defined fitness level was

measured and statistically analyzed. The mean value for each

variant was calculated. Kühn et al. [20] have shown for GA

with multi-chromosome representations that adaptive

mutation rate based on chromosome fitness leads to

significant better GA Performance, compared to non-adaptive

variants. It was shown that a linear function to calculate

mutation rates performed much better than exponential. For

linear mutation function the duration to reach a defined fitness

level was decreased by at least 38 % compared to the best

non-adaptive variant. In only one variant of Sphere function,

the results are worse than in best non-adaptive run. The reason

can be seen in the easy test function. The high mutation rate at

the beginning leads to better exploration of the search space,

what might not be needed at that easy (static) problem. That

also corresponds to De Jong [2, p. 16], when he is saying non-

adaptive algorithm parameters “that have been pre-tuned for

particular classes of problems will continue to outperform”.

Kühn et al. say, that their approach needs to be wider tested,

e.g. on complex optimization problems of real world. This

will be done in the following.

3. REAL WORLD CASE AND

REPRESENTATION
A complex problem of real-world can be seen as an

optimization problem that can be found in real-world, with

dynamic behavior, noisy and nonstationary conditions. Such a

problem cannot be solved analytically. In complex real-world

optimization problems, usually more than one objective needs

to be optimized. Optimization problems consisting of several

systems that are dynamically coupled and interacting with

each other (system of systems) are increasing in number. In

general, systems can be differentiated e.g. on different

objectives, different resources, different constraints or even

different languages that are spoken. Some researcher is

merging these systems on a high level of abstraction to make

optimization easier. That might end in solutions that do not

have expected results, when applying them to the real-world.

That is why there is the need and acuteness to figure out

efficient ways to optimize complex optimization problems of

real-world, in particular for dynamic, coupled system of

systems. An example for that kind of complex optimization

problems can be seen in the inpatient admission, outpatient

admission and op-theater planning of elective cardiologic

patients of a German university hospital, which must be

optimized together (scheduling and sequencing) while

emergencies occur. The number of patients treated should be

maximized, patient waiting times and idle times of hospital

resources should be minimized. Considered hospital entities

are: outpatient department, two cardiological wards, three

heart catheter laboratories (HCLs) as op-theaters, an electro-

physiological laboratory (op-theater), an electrocardiographic

unit (ECG) and three echocardiographic units (ECHO). Each

of these units can be seen as a system. They are dynamically

coupled and each of them has their own objectives and

constraints of planning scheduling and sequencing. Moreover,

diverse uncertainties (noise) need to be considered, like

patient’s health conditions, duration of examinations, lateness

of patients, decisions made by physicians and emergencies

that occur. On planning and optimization, downstream

resources and dynamic of processes must be considered.

Downstream resources are resources that patients went

through after admission. None of the three university hospitals

analyzed have noise conditions or downstream resources

considered at admission planning. Even at op-theater planning

no emergencies were considered.

By now, no research is seen, considering this together [46]-

[50]. Also, no analytic way is seen as suitable to calculate an

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, October 2018

44

optimal solution. The reason can be the fact, that we think it is

not possible to put all the objects to be planned, all

constraints, all uncertainty and the dynamic behavior in a

mathematic function. In case it is possible somehow, we are

not able to say that the optimization function is continuously

differentiable twice. Nor we do see a way to calculate every

single possible solution of the search space. Knowing that

there is a huge number of possible combinations and knowing

that by the noise, later we will get different results every time,

when testing a solution.

To analyze or optimize highly dynamic processes as can be

found within hospitals, a dynamic executable model is

necessary. Further on a heuristic is needed to optimize it. We

have tested a GA in Kühn at al. [53] and think it is suitable to

the given optimization problem. Following this, we use the

stochastic, executable simulation model developed by Kühn &

Lippold [21] to optimize the hospital processes. The

simulation model was built in MLDesigner as a discrete event

model. Stochastic effects within the model are, e.g.:

• unplanned patients (walk-in),

• emergency patients from emergency department,

• occurring of an emergency while a treatment is

running or within bedtime on a ward,

• unpunctuality of patients,

• upfront unknown treatment plan,

• variation in duration of treatments,

• fault of medical devices.

For purpose of modelling a database containing 2 years of

collected real-world data (SAP IS-H*med extraction,

empirical data collections) and process descriptions of all the

related hospital processes were used. Hospital processes were

automatically transformed and imported into the simulation

model, following the approach of Kühn at al. [44]. The

database of real data has been divided into two parts following

Page [45, p.149]. The first part was only used for modelling

and parameterizing the simulation model. The second part of

real-world data was used to validate the simulation model. As

a result, a validated, dynamic simulation model is developed,

which includes all the mentioned constraints, uncertainties

and given capacities of considered hospital resources. Now an

optimization of admission planning, patient scheduling and

sequencing can be done by simulation possible solutions. On

evolution run, solutions will be created, tested and evolve,

fitting to the environment.

For the simulation model Severin [39] implemented a GA,

with multi-chromosome representation. It appeared quite

difficult for us to merge all planning parameters on one

chromosome. Dividing the problem representation by units

(systems) and planning focus on dedicated chromosomes

makes it much easier for us to represent the different

optimization objectives in an appropriate way. Further on, the

chromosome structure differs on the specific planning focus.

In detail, the chosen optimization problem is represented by

15 chromosomes. 7 of these chromosomes are used for patient

admission planning. For each hospital area that needs to be

considered (e.g. outpatient department, wards, ECG, ECHO,

HCLs), a dedicated chromosome (CZ01-CZ07) is used to plan

the number of patients and day of treatment/admission (day of

week). Table 1 shows the structure of these seven

chromosomes. All of them are dynamic in length. So, the

number of patients planned is represented by the length of the

chromosome, which changes during the EA run.

Table 1: Structure of chromosomes to plan number of

patients and the day of admission (CZ01-CZ07)

Pati

ent

_ID

0

1

0

2

0

3

0

4

0

5
…

2

1

2

2

2

3

2

4
…

Day

of

We

ek

1 1 3 1 1 … 3 1 4 4 …

Two of the mentioned 15 chromosomes are used to plan the

appointment rules and start time of admission (opening time)

for the outpatient department (CT01) and the considered

wards (CT02). At these two chromosomes, optimization

parameters are n1: number of patients at first appointment, ni:

number of patients at each appointment; ai: time between two

appointments, following Cayirli & Veral [46], and time of the

first appointment (begin opening time). Table 2 shows the

structure of these two chromosomes.

Table 2: Structure of chromosomes for inpatient and

outpatient admission (CT01+CT02)

G

en
𝑛1 𝑛𝑖 𝑎𝑖

Mo_b

egin

Tu_

begi

n

We_b

egin

Th_

begi

n

Fr_b

egin

va

lu

e

1 1
1

5
450 510 510 510 570

Planning purpose for ECGs, ECHOs and HCLs (op-theaters)

is only the number of patients and day of appointment. The

appointment times are assigned by an implemented

appointment calendar within the hospital model, that is

initiated with e.g. frequently planned maintenances and all the

other times, when appointments cannot be made, to ensure

that appointments do not overlap and will be made at valid

times. In general appointments from calendar are given by

first-come, first-appointment rule. This can vary in case a

patient already has other appointments. Thereby a period of

time is given (before and afterwards) within that no other

appointment is made.

The remaining six chromosomes are used to plan reservations

upfront the admission and to plan sequencing and scheduling

of patients in ECGs, ECHOs and OP-Theaters units. The

following table 3 shows the structure of these six

chromosomes. The intention is to make reservation to defined

types of patients upfront the admission and to minimize

patient waiting time at wards after admission. Because, a lot

of times patients waiting on ward for treatment, while

resources needed for treatment (like ECG, ECHO or HCL)

were not available that soon after admission.

Table 3: Structure of chromosomes for reservation

planning in ECG, ECHOs and HCLs

slot

number
01 02 03 04 … 18 19 …

value 0 1 1 3 … 0 2 …

The length of these chromosomes is defined by the number of

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, October 2018

45

available time slots within the mentioned calendar in the

simulation model. Each slot can be set to a value of 0 up to 3.

Only the value is manipulated by the GA. A value of 0 is

representing no reservation. Thus, all patients can make an

appointment at this time slot. Values from 1 to 3 are

reservations made upfront and dedicated to a defined group of

patients, like patients on ward or outpatients.

By differentiating in chromosomes, it was possible to easily

implement the genetic operators independent and individually,

in regard to the need of the different chromosome structure.

That was much easier than having one operator to handle all

cases and constraints at once, in a single chromosome

representation. A huge difference between the chromosomes

was to handle mutation and crossover operators on

chromosomes representing the number of patients, that are

varying in length.

4. ADAPTING GA FOR PARAMETER

CONTROL
Looking at the algorithm performance, relating to the chosen

complex real-world problem, parameter tuning does not

appear practical. Testing one solution only takes 17 seconds.

But testing 200 generations with a population of 30

individuals and testing each solution 10 times (because of

noise), it takes 11,8 days! for only one evolutionary run. Thus,

preliminary runs are too much time consuming. That is why

an adaptive control strategy is used in the following.

Eiben [5, p. 145] sees the research community to converge on

the idea that: “successful parameter control must take into

account two types of information regarding the evolutionary

search: data about fitness and population diversity.” Mutation

rate can be seen as a control mechanism to preserve diversity

of the population. Moreover, the mutation rate seems to be a

very sensitive parameter with high impact on efficiency of

GA [35, p. 59]; [4, p. 59]; [10, p. 7]; [7, p. 228]. That is why

this paper is focusing on the mutation rate in the following.

When adapting the GA, the approach of Kühn et al. [20] is

used. Both the mutation rate (diversity) and data about fitness

are considered in this approach (see details in the former

section 2).

As already explained, this approach includes at every

generation an additional fitness rating for each chromosome.

When optimizing system of systems, it appears quite difficult

to merge all optimization objectives into one objective

function. By having an additional chromosome fitness,

chromosome specific objectives can be applied to the

corresponding chromosomes and later on main objectives to

the individual. Thus, a hierarchy of objectives is given. First a

dedicated fitness function for each of the 15 chromosomes

needs to be defined, based on the constraints and objectives of

the dedicated planning purpose. Here are some examples,

showing the way it was to be handled. All of the mentioned

key figures are calculated excluding settling time.

CZ01: Planning purpose is the number of patients and the

admission day (day of week) for the outpatient department.

• The number of outpatients admitted a day in the

outpatient department (mean per week) has to be

maximized.

𝑡𝐹𝑃1 = 𝑚𝑖𝑛 (1.0;
𝑂𝑢𝑡𝑃𝑎𝑡

𝑊𝑒𝑒𝑘𝑠 ∗ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠𝑚𝑎𝑥
)

• Lead times (Length of stay) of outpatients admitted in

the outpatient department (mean per patient) has to be

maximized.

𝑡𝐹𝑃2 = max (0.0; 1 −
𝑂𝑢𝑡𝐿𝑜𝑆

𝑂𝑢𝑡𝑃𝑎𝑡 ∗ 𝑂𝑢𝑡𝐿𝑜𝑆𝑚𝑎𝑥
)

• Number of outpatients admitted in the outpatient

department, that have not finished by end of day

(mean per Week) has to be minimized.

𝑡𝐹𝑃3 = max (0.0; 1 − 2 ∗ 𝑂𝑢𝑡𝑃𝑎𝑡𝑖𝑛𝑐

∗
𝑂𝑢𝑡𝐿𝑜𝑆𝑚𝑒𝑎𝑛

𝑊𝑒𝑒𝑘𝑠 ∗ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠𝑚𝑎𝑥
)

OutPat : outpatient admitted in the outpatient department

Weeks: number of weeks simulated

Patientsmax: Maximum number of Patients per week possible

OutLoS: patient length of stay in the outpatient department

OutLoSmax: Maximum OutLoS possible

OutPatinc: number of patients in the outpatient department

that have not left at the end of day

The three key figures (tFP1-tFP3) mentioned above are equal

weighted in the chromosome fitness function.

𝐹𝐶𝑍01 =
𝑡𝐹𝑃1 + 𝑡𝐹𝑃2 + 𝑡𝐹𝑃3

3

CZ02: Planning purpose is the number of patients and day of

admission (day of week) for inpatients on ward 1.

• The number of inpatients admitted at ward 1 a day

(mean per week) has to be maximized.

• Waiting time of inpatients admitted for a bed on ward

(mean per patient) has to be minimized.

• Number of patients admitted, that do not have a bed

on ward at the end of the day (mean per week) have to

be minimized.

The three key figures mentioned are equal weighted in the

chromosome fitness function.

CT01: Planning purpose is the appointment rule for outpatient

department and period of time where appointments are made

for each day of the week.

• Waiting time of outpatient admitted in the outpatient

department till first contact (after admission) (mean

per patient) has to be minimized.

• Lead time of outpatient admitted in the outpatient

department till discharge from hospital (mean per

patient) has to be minimized.

• Number of outpatients admitted in the outpatient

department, that have not finished at end of day (mean

per week) has to be minimized.

The three key figures mentioned are equally weighted in the

chromosome fitness function.

Out of these figures the dedicated additional fitness for each

chromosome is calculated. This fitness rating is only used to

calculate the specific mutation rate for each chromosome of

an individual when generating new individuals.

To calculate the specific mutation rate, a linear function is

used, which Kühn et al. [20] have seen as the best choice. The

mutation rate can vary between 0.5 in maximum and 0.001 in

minimum. This was chosen here, without any testing upfront.

0.5 seems the maximum mutation rate we can imagine, that

not ends up in random search, and 0.001 is the minimum

chosen mutation rate found in the literature. The control

(4)

(5)

(6)

(7)

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, October 2018

46

strategy is adjusting the mutation rate within these borders by

itself, relating to the chromosome fitness. When the

chromosome fitness increases, the mutation rate decreases.

So, at the end of an evolution run the mutation rate should be

low. But, it seems possible that one or more chromosomes

might end up with high mutation rates. A reason can be, e.g.

that just very view patient admissions are planned. This might

lead to bad fitness rating for single chromosomes even though

it is the best solution in the overall view. To prevent high

mutation rates at chromosomes, especially at the end of

optimization run and to make sure that the minimum mutation

rate of 0.001 will be reached at the end of a given run length,

the approach of Kühn et al. [20] was expanded by

implementing an additional deterministic rule. That lowers the

maximum possible mutation rate over time.

So far, just the additional chromosome fitness and how to

calculate the chromosome specific mutation rates out of it was

explained. Selection is done based on the individual fitness,

by fitness proportional selection (roulette-wheel). To measure

the quality of an individual (solution) a cost function is

implemented, calculating an earnings-cost value for each

individual.

𝐸𝐶(𝑖) = ∑ (𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖) − ∑ (𝐶𝑜𝑠𝑡𝑠𝑖
𝑛
𝑖=1); 𝑛

𝑖=1 𝑛 ∈ 𝑁 (8)

The resulting value is representing the main optimization

objectives. Earnings are calculated as follows:

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 = InPat ∗ 60 + HCL ∗ 500 + OutPat
∗ 60 + ECG ∗ 30 + ECHO ∗ 40

InPat : number of elective patient admission at ward

OutPat: number of outpatient admission at ward at ward

HCL: number of HCL procedures carried out

ECG: number of ECG examinations carried out at patients

from outpatient department

ECHO: number of ECHO examinations carried out at

patients from outpatient department

ECG and ECHO are not considered as earnings for inpatients,

following the given fact in the hospitals.

Costs are calculated as follows:

𝐶𝑜𝑠𝑡𝑠 = DIV(WT/15) ∗ −2 + WT ∗ 1 + InLoS ∗ 1
+ OutLoS ∗ 1 + OutPat𝑖𝑛𝑐 ∗ 50
+ InPat𝑖𝑛𝑐 ∗ 50 + HCL𝑇𝑆 ∗ 100

WT: patients waiting time at all during the whole stay

InLoS: inpatients length of stay at all in days

OutLoS: outpatient length of stay at all in hours

OutPatinc: number of patients in the outpatient department that

have not left at the end of day

InPatinc: number of patients on ward waiting for a bed over

night after admission

HCLTS: number of procedures in HCL, that have not been

carried out at day planned

The resulting value has to be maximized. To calculate the

individual fitness out of the earnings-cost value a ranking

followed by a linear fitness assignment (linear ranking) was

used. The sorted list of individuals is ranked, while the best

individual is getting rank 1. The fitness F is calculated in

regard to the rank i and population size n by:

𝐹(𝑖) =
2 ∗ (𝑛 + 1 − 𝑖)

𝑛 ∗ (𝑛 + 1)

For optimization purpose the dynamic simulation model

provided was extended to an optimization model, with

attached GA. Before any of the experiments described in the

following were done, an extensive final validation was done.

5. EXPERIMENTAL DESIGN
To optimize the chosen problem of real-world and to analyze

the effects of the adaptive mutation rate, several test scenarios

were defined. The optimization follows in a loop, as shown in

Figure 2. The loop will be done as long as the optimization

algorithm (GA) is running. The run length of GA is defined

by the number of generations to be calculated.

Figure 2. General sequence of actions for the genetic

algorithm (based on [52, p. 9])

Following Kühn et al. [20] after selection either

recombination OR mutation will be carried out to create new

individuals. The reason is, when doing recombination first, in

that moment a new individual is created and the upfront

calculated chromosome fitness nor the calculated mutation

rate fits to that new created individual. Furthermore, either

recombination or mutation is performed for reproduction, to

validate the Approach of Kühn et al. [20] on the chosen

complex real-world problem.

The experimental design is based on two test scenarios (see

Table 4). In scenario 1 the mutation rate (pm) is non-adaptive

during the optimization run and the same for every

chromosome. Each variant of mutation rate in scenario 1 and

2 will be tested in separate evolutionary runs on a crossover

probability (pc) of 0.60 and 0.75, following De Jong [3] and

Schaffer et al. [4]. For every variant, the run length of 200,

225 and 250 generations will be tested. In some runs during

implementing and testing the GA, it was seen that this is a

suitable range of run lengths. Over all, this leads to 54

optimization runs in scenario 1 (6 runs for each variant) and 6

runs in scenario 2. For every test scenario, the optimization

model and all of its parameters will be kept unchanged, except

the parameters shown in table 4.

Table 4: Test scenarios with variants

Mutation rate

(pm)

Crossover

probability

(pc)

Number of

generations

(run length)

non-adaptive mutation

rates

0.001, 0.005, 0.01, 0.02,

0.03, 0.05, 0.1, 0.2, 0.5

0.60
200

225

0.75
250

adaptive mutation rate

based on chromosome
0.60

200

225

Generate start

population

Start of search

quantifying „fitness“

of individuals
best individual

(quit search)
yes

no

new

population

created?
End of search

Recombination

target value

(number of gernerations

reached?

no

yes

create new

population

Selection

Mutation

calculate mutation

Rate for each

chromosome

or

(9)

(10)

(11)

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, October 2018

47

fitness

(0.5 – 0.001) 0.75
250

The initial population is set up by random and contains 30

individuals. Elitism is not used (non-overlapping generations).

As De Jong [2, p. 11] said, the “more ‘elitist’ a selection

algorithm is, the more an EA behaves like a local search

procedure (i.e., a hill climber, […]) and is less likely to

converge to a global optimum”. The fitness value is calculated

with a linear ranking function and selection is done by roulette

wheel strategy (see section 4). Crossover is done by one-point

crossover at each chromosome. Pierrot & Hinterding [28, p.

144] have shown for multi-chromosome representations, that

mutating only one chromosome did not give good results.

They recommend to mutate one variable per chromosome

instead of the average of one mutated variable per

chromosome.

For every optimization run, at the end of the defined run time

(number of Generations), the best Earning-Cost-Value (EC)

reached is stored (as GA Performance). To minimize the

stochastic influence each individual (solution) is tested 10

times with differing sequence of random numbers. The mean

value is used, following [27, p. 117]. Based on this, scenario 1

and 2 are compared with each other. De Jong [2, p. 6] says

that comparing non-adaptive parameter settings to one with

adaptive settings is unfair since the non-adaptive settings were

established via some preliminary parameter tuning runs.

Keeping that in mind, the scenario 1 is compared to scenario 2

based on the GA performance.

For simulation purpose, MLDesigner v. 3.0 was used as

simulation system. Each optimization run needs approx. 12

days in cpu time (Fujitsu Primergy TX200 S5, 2 x Intel®

XEON® E5570 2,93 GHz Quad Core, 32 GB RAM). Because

of that much optimization runs to be tested (~640 days in CPU

time), a pool of 9 machines was used.

6. EXPERIMENTAL RESULTS
The two test scenarios were simulated and the effects on GA

performance are measured. The following Table 5 shows the

mean optimization results over all, Figure 3 visualizes the

results.

Table 5: Resulting earnings-cost-value of scenarios 1 + 2

scenario
mutation

rate

earnings-cost-value

(CR 0.6 and CR 0.75)

N = 60

best worst mean

scenario 1:

non-adaptive

mutation rate

0.001 172,180 165,919 168,564.33

0.005 196,337 165,815 184,423.83

0.01 197,022 186,331 191,381.33

0.02 197,298 182,547 192,411.67

0.03 195,335 184,506 189,080.67

0.05 194,076 180,315 188,458.50

0.1 191,464 174,176 181,274.50

0.2 185,164 168,802 177,164.50

0.5 176,703 161,731 168,458.33

scenario 2:

adaptive

mutation rate

0.5 – 0.001 198,272 188,250 192,503.83

Figure 3. Resulting earnings-cost-value of scenarios 1 + 2

It is distinguished in the way mutation is done (scenario 1+2)

and between the mutation rates applied. Each variant consists

of 6 evolutionary runs (60 overall). At this moment, it is not

distinguished by the crossover probabilities tested, so both

variants of cross-over probability tested are included.

In both scenarios, it was aimed to maximize the earning-cost

value (EC). In scenario 1, using non-adaptive mutation rates,

the best mean result was 192,412 and was reached when

applying a mutation rate of 0.02 (see Table 5). For scenario 2

with adaptive mutation rate, it is close to the same, with best

mean value of 192,504 (see Table 5). On a significance level

of 0.05, there was no statistic significant difference in mean

values of these two variants. Thus, the adaptive parameter

control delivers comparable results to the best non-adaptive

mutation rate, without preliminary parameter tuning. That

makes adaptive parameter more efficient and upfront hand

tuning obsolete.

Looking at scenario 1, the non-adaptive mutation rates less

than 0.005 and higher than 0.1 have shown a quite poor GA

performance. This behavior was anticipated and caused by too

low (insufficient diversity – clones appear) and at > 0.1 too

high (highly destructive) mutation rates. On the chosen

complex optimization problem, best GA performance (mean)

can be reached at a mutation rate of 0.02. Compared to former

work, like De Jong [3], Schaffer et al. [4] or Grefenstette [15],

the best mutation rate found here appears to be a little higher.

At this point it is not clear, what causes that. It can be a result

of the fact that in our test case a multi-chromosomal

representation is used, that might need a higher mutation rate.

A reason can also be, that either mutation or crossover was

used to create new individuals (see experimental design in

section 5).

The following Table 6 and Table 7 are presenting the

earnings-cost-values for scenario 1+2 separated by the applied

crossover probability of 0.60 and 0.75.

As it can be seen, the resulting GA performance depends also

on the crossover probability. For crossover probability of 0.6

the adaptive mutation rate performs not that good as using a

crossover probability of 0.75 on the chosen complex

optimization problem. A reason can also be seen in the limited

number of GA runs.

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, October 2018

48

Table 6: Resulting earnings-cost-value of scenarios 1 + 2 at

CR 0.6

scenario
mutation

rate

earnings-cost-value

(CR 0.6)

N = 30

best worst mean

scenario 1:

non-adaptive

mutation rate

0.001 165,919 169,913 168,461.00

0.005 190,885 196,337 193,578.33

0.01 189,446 195,444 191,497.33

0.02 193,059 196,079 194,779.00

0.03 184,506 192,690 187,811.00

0.05 180,315 186,486 183,940.33

0.1 174,176 178,250 176,021.67

0.2 168,802 174,747 171,797.67

0.5 161,731 164,535 163,399.67

scenario 2:

adaptive

mutation rate

0,5 – 0,001 188,250 191,101 189,576.67

Table 7: Resulting earnings-cost-value of scenarios 1 + 2 at

CR 0.75

scenario
mutation

rate

earnings-cost-value

(CR 0.75)

N = 30

best worst mean

scenario 1:

non-adaptive

mutation rate

0.001 172,180 166,050 168,667.67

0.005 182,195 165,815 175,269.33

0.01 197,022 186,331 191,265.33

0.02 197,298 182,547 190,044.33

0.03 195,335 187,070 190,350.33

0.05 194,076 191,963 192,976.67

0.1 191,464 183,234 186,527.33

0.2 185,164 179,082 182,531.33

0.5 176,703 170,699 173,517.00

scenario 2:

adaptive

mutation rate

0,5 – 0,001 198,272 193,975 195,431.00

Figure 4. Results separated by best, worst and mean results

Figure 4 shows the best (blue), worst (red) and mean (green)

results reached for both scenarios, separated by mutation rate

and the way mutation is done (scenario 1+2). The Results of

scenario 1, can be seen on the left side, separated by the non-

adaptive mutation rates (0.001 – 0.5). For scenario 1, both

variants of crossover probability are included (mean).

Scenario 2 is shown on the right side, separated by the

crossover probabilities (CP).

In general, a quite good GA performance can be seen in

scenario 2, independent of the crossover probability. The

adaptive mutation rate, calculated by chromosome fitness,

performed a little better at a crossover probability of 0.75 than

at one of 0.60. The same can be observed for non-adaptive

mutation rates. Further on, the results of adaptive mutation

rate seem quite robust, as the best, worst and mean values are

close together, compared to non-adaptive variants. But, maybe

there are more runs needed to say this in general. Like it was

said before, a lot of CPU time is needed for testing. And it

was not aimed to statistically prove the approach itself. The

outperformance of this approach in general was statistically

proven upfront with a huge number of runs on a set of

theoretical test functions in Kühn et al. [20].

The following Figure 5 visualizes the adaptive mutation rates

applied to the chromosomes CR01 – CR06 over time. These

chromosomes are designed to plan reservations, sequencing

and scheduling of elective patients in ECG, ECHOs and Op-

theaters.

Figure 6 shows the earnings values over time for one variant

of adaptive mutation rate with CR of 0.75. Each dot is a tested

solution (mean value simulated 10 times). It can be seen that

at the beginning better solutions can be found very fast. With

growing number of generations passed, it takes more time to

find better solutions (convergence of GA). By the spreading

of solutions it can be seen, how adaptive mutation rate is

generating more solutions with low earnings value at the

beginning of the optimization run and less at the end, when

mutation rate is lower. Figure 7 shows an example when static

mutation rate of 0.02 and CR of 0.75 is used instead.

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, October 2018

49

Figure 5. Applied adaptive mutation rates over time, separated by chromosomes

Figure 6. Individuals optimized by adaptive mutation rate over time

Figure 7. Individuals optimized by non-adaptive mutation rate of 0.02 over time

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, October 2018

50

7. SUMMARY AND OUTLOOK
It was shown, on a complex real-world optimization problem,

how dynamic coupled system of systems (SoS) can be

optimized by using a Genetic Algorithm (GA). We used a

dynamic, executable simulation model, which was very

detailed and considers the uncertainty of real-world processes,

to optimize outpatient admission, inpatient admission and op-

theater planning simultaneously for the first time. We used

dedicated chromosomes to represent (sub-)systems (multi-

chromosome representation), with their individual objectives

and constraints of planning. Thus, we were able to optimize

and measure specific criteria dedicated to each chromosome

(system).

To increase the GA performance our approach uses an

adaptive mutation rate. We considered aspects of diversity

and fitness together to make the mutation rate adaptive. While

creating new individuals every chromosome has its dedicated

mutation rate, depending on its goodness. Thereby, we see

two level of hierarchy. The specific objectives of

(sub-)systems and the main objectives for the system as a

whole. Both were optimized together.

For the complex real-world optimization problem, preliminary

parameter tuning runs were performed, to figure out the non-

adaptive mutation rate, where the best optimization results can

be reached within a given period of time (number of

generations). We have shown, that optimization results with

the best non-adaptive mutation rate is comparable to our GA

with adaptive mutation rate. That confirms the upfront tests on

a set of test functions and shows that the expected results can

also be achieved when applying our approach to the chosen

complex problem of real world.

It was not our goal to achieve better results on applying

adaptive mutation rate compared to non-adaptive. The main

improvement can be seen in overcoming the need to hand tune

control parameters upfront. This is important and very time

saving.

Most of the research in the field of EA has been done on a

theoretical basis. Often the proposed solutions do not deliver

what they promise, when applying them to complex real-

world problems. Thus, to confirm research, more tests on

complex optimization problems of real world are needed,

especially for multi-objectives.

Besides mutation rate, also other control parameters should be

adaptive, e.g. crossover probability and populations size. Like

De Jong [2, p.15] said, “the ultimate goal of these efforts is to

produce an effective and general problem-solving EA with no

externally visible parameters.” This will only be achieved if

there are effective ways to dynamically adapt various internal

parameters.

8. REFERENCES
[1] Holland, J. H. 1975. Adaption in natural and artificial

systems, Ann Arbor, Michigan, USA: Univ. of Michigan

Press.

[2] De Jong, K. A. “Parameter setting in EAs: a 30 year

perspective”. In Lobo et al. [33], pp. 1–18.

[3] De Jong, K. A. 1975. An analysis of the behavior of a

class of genetic adaptive, Ph.D. thesis, University of

Michigan.

[4] Schaffer, J. D., Caruana, R. A., Eshelman, L. J. and Das,

R. “A study of control parameters affecting online

performance of genetic algorithms for function

optimization”. In Proceedings of 3rd Int. Conf. Genetic

Algorithms, 1989, pp. 51–60.

[5] Eiben, A. E. and Smith, J. E. (2015). Introduction to

evolutionary computing. 2nd ed. (Natural Computing

Series), Berlin, Heidelberg, Germany: Springer, doi:

10.1007/978-3-662-05094-1.

[6] Eiben, A. E., Hinterding, R. and. Michalewicz, Z.

“Parameter control in evolutionary algorithms”. IEEE

Trans. on Evolutionary Computation, 3(2), 1999, pp

124–141.

[7] Bäck, T. 1996. Evolutionary algorithms in theory and

practice. Oxford. UK: Oxford University Press.

[8] Reeves, C. “Using Genetic Algorithms with small

Populations”. In Procedings of 5th Int. Conf. Genetic

Algorithms, 1993, pp. 92–99.

[9] Rechenberg, I. 1973. Evolutionsstrategie: Optimierung

Technischer Systeme nach Prinzipien der biologischen

Evolution. Stuttgart. Germany: Frommann-Holzboog.

[10] Schwefel, H.-P. 1981. Numerical Optimization of

Computer Models. New York. USA: Wiley.

[11] Beyer, H.-G. and Schwefel, H.-P. “Evolution strategies -

A comprehensive introduction”. In Natural Comput,

2002, vol. 1. no.1, pp. 3-52.

[12] Eiben, A. E., Michalewicz, Z., Schoenauer, M. and

Smith, J. E. “Parameter control in Evolutionary

Algorithms”. In Lobo et al. [33], pp. 19-46.

[13] Fogarty, T. C., “Varying the probability of mutation in

the genetic algorithm”. In Proceedings of 3rd Int. Conf.

Genetic Algorithms. 1989, pp. 104–109.

[14] Hesser, J. and Männer, R. “Towards an Optimal

Mutation Probability for Genetic Algorithms”, Parallel

Problem Solving from Nature (Lecture Notes in

Computer Science vol. 496). Berlin, Heidelberg.

Germany: Springer. 2005, ch. 4, pp. 23–32, doi:

10.1007/Bfb0029727.

[15] Grefenstette, J. J. “Optimization of control parameters

for genetic algorithms”. In IEEE Trans. Syst., Man,

Cybern., vol. 16, no. 1, (Jan. 1986), pp. 122–128, doi:

10.1109/TSMC.1986.289288.

[16] Bäck, T. 1992. Self-Adaption in Genetic Algorithms. In

Proceedings of 1st European Conf. Artificial Life, pp.

263–271.

[17] Bäck, T. “Optimal mutation rates in genetic search”. In

Proceedings of 5th Int. Conf. Genetic Algorithms, 1993,

pp. 2–8.

[18] Smith, J. “Parameter perturbation mechanism in binary

coded gas with self-adaptive mutation”. 7th Int.

Workshop FOGA, 2003, pp. 329-346.

[19] Hinterding, R. “Self-adaptation using multi-

chromosomes”. In Proceedings of IEEE Int. Conf. Evol.

Comput., 1997, pp. 87–91.

[20] Kühn, M., Severin, T. and Salzwedel, H. “Variable

Mutation Rate at Genetic Algorithms: Introduction of

Chromosome Fitness in Connection with Multi-

Chromosome Representation”. Int. Journal Comput.

Appl., vol. 72, no. 17, 2013, pp. 31–38.

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, October 2018

51

[21] Lippold, J. 2014. Aufbau eines prozessorientierten

Simulationsmodells für klinische Einrichtungen zur

abteilungsübergreifenden Termin- und

Reihenfolgeplanung. Dipl.-thesis, Tec. Univ. Ilmenau.

[22] Gonçalves, J. F., de Magalhães, M. J. J. and Resende,

M. G. C. 2002. A Hybrid Genetic Algorithm for the Job

Shop Scheduling Problem. AT&T Labs Research.

Technical Report TD-5EAL6J.

[23] Keedwell, E. and Khu, S.-T. “A hybrid genetic

algorithm for the design of water distribution

networks”. Engineer Appl. of Artificial Intell., vol. 18,

no. 4, Jun. 2005, pp. 461–472,

doi:10.1016/j.engappai.2004.10.001.

[24] Kühn, M., Baumann, T. and. Salzwedel, H. “Genetic

Algorithm for process optimization in hospitals”. In

Proceedings of 26th Eur. Conf. Modelling Simulation,

2012, pp. 103–107.

[25] Gao, W. “Study on New Improved Hybrid Genetic

Algorithm”. Advances in Information Technology and

Industry Applications (Lecture Notes in Electrical

Engineering vol. 136), ch. 66, 2012, pp. 505–512 doi:

10.1007/978-3-642-26001-8_66.

[26] Davidor, Y. “Genetic Algorithms and Robotics - A

Heuristic Strategy for Optimization” World Scientific

Series in Robotics and Intelligent Systems vol.1, 1991.

Singapore: World Scientific.

[27] Juliff, K. “A multi-chromosome genetic algorithm for

pallet loading”. In Proceedings of 5th Int. Conf. Genetic

Algorithms 1993, pp. 467–473.

[28] Pierrot, H. J. and Hinterding, R. “Using multi-

chromosomes to solve a simple mixed integer

problem”. Lecture Notes in Computer Science, vol.

1342, 1997, pp. 137–146.

[29] Ronald, S., Kirby, S. and Eklund, P. “Multi-

Chromosome Mixed Encodings for Heterogenous

Problems”. In Proceedings of 4th Int. Conf. Evol.

Comput., 1997, pp. 37–42.

[30] Wight, J. and Zhang, Y. “An ‘Ageing’ Operator and Its

Use in the Highly Constrained Topological

Optimization of HVAC System Design”. In

Proceedings of 2005 GECCO, pp. 2075–2082.

[31] Cavill, R., Smith, S. and Tyrrell, A. “Multi-

Chromosomal Genetic Programming”. In Proceedings

of 2005 GECCO, pp. 1753–1759.

[32] Kerati, S., Moudani, W. E. L., de Coligny, M. and

Mora-Camino, F. “A Heuristic Genetic Algorithm

Approach for the Airline Crew Scheduling Problem”. In

IEEE Congr. Evol. Comput., 2009, pp. 1383–1390.

[33] Peng, J. and Chu, Z. S. “A Hybrid Multi-Chromosome

Genetic Algorithm for the Cutting Stock Problem”. In

ICIII, 2010, pp. 508–511.

[34] Lobo, F. G., Lima, C. F. and Michalewicz, Z. (Ed.)

“Parameter Setting in Evolutionary Algorithms”. In

Studies in Computational vol. 54, Berlin, Heidelberg,

Germany: Springer, 2007.

[35] Meyer-Nieberg, S. and Beyer, H.-G. “Self-Adaptation

in Evolutionary Algorithms”, in Lobo et al. [33], pp.

47–75.

[36] Eiben, A. E. and Smit, S. K. “Parameter tuning for

configuring and analysing evolutionary algorithms”,

Swarm, Evol. Comput., vol. 1, no. 1, pp. 19–31, Mar.

2011, doi: DOI: 10.1016/j.swevo.2011.02.001.

[37] Karafotias, G. H. M. and Eiben, A. E. “Parameter

Control in Evolutionary Algorithms: Trends and

Challenges”. IEEE Trans. Evol. Comput., vol. 19, no. 2,

Apr. 2015, pp. 167-187, doi:

10.1109/TEVC.2014.2308294.

[38] Fernandes, C. M., Merelo, J. J., Ramos, V. and Rosa,

A.C. “A Selforganized criticality mutation operator for

dynamic optimization problems”. In Proc. 2008

GECOO, pp. 937–944

[39] Severin, T. 2014. Implementierung eines Genetischen

Algorithmus mit Multichromosomenansatz zur

abteilungsübergreifenden Termin- und Reihenfolge-

planung in Kliniken“, Dipl.-thesis, Tec. Univ. Ilmenau.

[40] Aleti, A. and Moser, I. “A Systematic Literature

Review of Adaptive Parameter Control Methods for

Evolutionary Algorithms”. ACM Computing Survey

CSUR, vol. 49, no. 3, Article 56, 2016.

[41] Eiben, A. E., Hinterding, R. and Michalewicz, Z.

„Parameter Control in Evolutionary Algorithms”. IEEE

Trans. Evol. Comput., vol. 3, no. 2, 1998, pp. 124–141.

[42] Serpell, M. and Smith, J. E. “Self-adaptation of

mutation operator and probability for permutation

representations in genetic algorithms. J. Evol. Comput.,

vol. 18, no. 3, Sep. 2010, pp. 491-514, doi:

10.1162/EVCO_a_00006.

[43] Yuan, B. and. Gallagher, M. “Combining Meta-EAs

and Racing for Difficult EA Parameter Tuning Tasks”,

in Lobo et al. [33], pp. 121-142.

[44] Kühn, M., Lippold, J. and Salzwedel, H. “Automatic

transformation of hospital processes into executable

model with EPML”. Int. J. Comput. Appl., vol. 80, no.

9, 2013, pp. 20–30.

[45] Page, B. 1991. Diskrete Simulation: Eine Einführung

mit Modula-2 (Springer Lehrbuch). Berlin. Heidelberg.

Germany: Springer.

[46] Cayirli, T., Veral, E. “Outpatient scheduling in health

care: a review of literature”. Prod., Operations Manage.,

vol. 12, no. 4, pp. 519–549, doi: 10.1007/978-3-662-

05094-1, Jan. 2009.

[47] Gupta, D., Wang, W.-Y. “Patient Appointments in

ambulatory Care”. Handbook of Healthcare System

Scheduling (Int. Series in Operations Research &

Management vol. 168), R. Hall, Ed. Boston, MA, USA:

Springer, ch. 4, pp. 65–104, doi: 10.1007/978-1-4614-

173-7_4, Nov. 2011.

[48] Cardoen, B., Demeulemeester, E. and Beliën, J.

“Operating room planning and scheduling: A literature

review”, Eur. J. Oper. Res., vol. 201, no. 3, pp. 921–

932, doi: 10.1016/j.ejor.2009.04.011, Mar. 2010.

[49] Helm, J. E., Lapp, M., See, B. D. “Characterizing an

effective hospital admissions scheduling and control

management system: A genetic algorithm approach”. In

Proceedings of 2010 WSC, 2010, pp. 2387–2398.

[50] Gemmel, P., van Dierdonck, R. “Admission scheduling

in acute care hospitals: does the practice fit with the

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, October 2018

52

theory?”. Int. J. Operations, Prod. Manage., vol. 19, no.

9, Sep. 1999, pp. 863–871, doi:

10.1108/01443579910280188.

[51] Nissen, V. and. Biethahn, J. „Ein Beispiel zur

stochastischen Optimierung mittels Simulation und

einem Genetischen Algorithmus“. In Simulation als

betriebliche Entscheidungshilfe. State of the Art und

neuere Entwicklungen, Biethahn, J., Hummeltenberg,

W., Schmidt, B., Stähly P., and Witte, TH. (Ed.)

Heidelberg, Germany: Physica, 1999, ch. 6, pp. 108–

125, doi: 10.1007/978-3-642-58671-2_6.

[52] Pohlheim, H. 2000. Evolutionäre Algorithmen.

Verfahren, Operatoren und Hinweise für die Praxis,

Berlin, Germany: Springer.

[53] Kühn, M., Baumann, T., Salzwedel, H. “Genetic

algorithm for process optimization in hospitals”. In

Proceedings of 26th European Conference on Modeling

and Simulation, 2012, pp. 103–107.

IJCATM : www.ijcaonline.org

