International Journal of Computer Applications (0975 — 8887)
Volume 182 — No. 21, October 2018

Adaptive Mutation Rate at Genetic Algorithms with Multi-
Chromosome Representation in Multi-department
Hospital Process Optimization

Matthias Kihn Thomas Severin Joachim Lippold Horst Salzwedel Volker Nissen
Technical University Technical University Technical University = MLDesign Techn. Technical University

llmenau llmenau llmenau Inc. liImenau

Ehrenbergstralle 29 Ehrenbergstralle 29 Ehrenbergstrafie 29 2230 Saint Francis Helmholzplatz 3
98693 limenau, 98693 limenau, 98693 limenau, Drive 98693 limenau,
Germany Germany Germany CA 94303 Palo Alto, Germany
USA

ABSTRACT Keywords
The performance of Metaheuristics in general and Genetic algorithms, hospital, inpatient admission, multi-
Evolutionary Algorithms (EA) in particular depends on good chromosome, mutation rate, op-theater planning.

settings of algorithm parameter values, such as population
size, mutation rate or crossover probability. To increase
performance, researchers still try to find optimal settings. At
present, researchers are adapting the parameter settings during
an evolutionary run (parameter control). Thus, no hand tuning
is needed upfront of an evolutionary run. In this paper we
analyze algorithm performance when using adaptable
algorithm parameters on Genetic Algorithms (GA) with multi-
chromosome representation. Most of the research in the field
of EA has been done on a theoretical basis. Often the
proposed solutions do not deliver what they promise, when
applying them to complex problems of real-world. Thus,
experimental studies on complex problems of real-world are
needed to ascertain performance improvement of adaptive
parameter control. This paper is an experimental study on
such a complex optimization problem of real-world
(dynamically coupled System of Systems). In our approach of
parameter control new individuals are generated by adapting
the mutation rate. Therefore, we calculate a dedicated
mutation rate for each chromosome of the individual. This
happens in relation to the fitness of each chromosome. We
analyzed and have statistically proven the outperformance of
our approach upfront with the De Jong’s (Sphere) and the
Schwefel’s test function. In this paper, we are now applying
our approach to a real world based complex optimization
problem (nonstationary, dynamic, noisy), to prove the
outperformance of our approach. Therefore, we made a
performance comparison with non-adaptive GA, which
demonstrates the superiority of the adaptive approach. More
specifically, we use a stochastic simulation model of
university hospital processes. Inpatient admission, outpatient
admission and op-theater planning of elective patients must be
optimized simultaneously, while emergencies occur. Every
hospital area has its own objectives and constraints (dedicated
systems). The number of patients and utilization of resources
must be maximized in every hospital area, while waiting
times, lead times and schedule variances must be minimized.
In that, a system of systems can be seen. It is shown how our
approach can be used to optimize such dynamically coupled
system of systems (SoS) in an efficient way.

optimization, outpatient admission, parameter control, self-
adapting, computer simulation, real world problem, system of
systems optimization.

1. INTRODUCTION

Since Genetic Algorithms (GAs) were introduced by Holland
[1], GAs were increasingly used to solve optimization
problems when exact, analytic methods are not available or
cannot be applied. Since the early beginning researchers try to
find optimal parameter settings for GA control parameters
like, population size, crossover probability or mutation rate.
By tuning these control parameters better solutions can be
found in less time. Several researchers like De Jong [3] or
Schaffer et al. [4] focused on finding optimal algorithm
parameter settings. But the results are specific to the
optimization problems of their test cases and cannot be
generalized [5, p. 124 f.]. Finding the optimal values for
specific problems or in general is a long-standing challenge in
the field of Evolutionary Algorithms (EA). In the past
parameter settings were tuned upfront the optimization run
(evolutionary run). But tuning of GA control parameter
upfront is very time consuming. At present researchers ar
focusing on parameter control, which is adapting the control
parameters during evolutionary run, to overcome the problem
of upfront time-consuming hand tuning or using given
parameter settings of other test cases. Parameter control is
“still in its infancy, requiring fundamental research” [5, p.
146], e.g. towards good control strategies. Thus, looking at
GAs, it is necessary to focus on selected parameters to find
effective ways of parameter control. It is difficult to ascertain
witch parameter control strategy would improve performance
[5, p. 63 f.]. EAs and also GAs are stochastic, non-linear
algorithms. Formal proof is extremely difficult [2, p. 6]. A
deeper understanding of how changes in GA parameters affect
GA performance can be obtained by experimental studies, e.g.
setting one parameter adaptive and keeping the other values
fixed throughout the run. Most of the research in the field of
EA has been done on a theoretical basis. Often the proposed
solutions do not deliver what they promise, when applying
them to complex problems of real-world. Thus, experimental
studies on complex problems of real-world are needed to
ascertain performance improvement of adaptive parameter
control. This paper is an experimental study on such a

41

http://www.ijcaonline.org/

complex real-world optimization problem (dynamically
coupled system of systems). At a glance, this paper is
focusing on five issues:

* adaptive parameter control

* GA with multi-chromosomal representation,

* real-word optimization problem (nonstationary,
dynamic, noisy)

» multi-objectives (multi-system optimization:
dynamically coupled system of systems)

* obtaining performance improvements

In the following section II related work is given. In section III
we describe a real-world case. Section IV points out the
experimental design and specifies the test scenarios. In section
V we present the results. Section VI summarizes the work and
gives an outlook on future work that needs to be done.

2. RELATED WORK

Early research by De Jong [3] or Schaffer et al. [4] focused on
finding optimal algorithm parameter settings. These results
are specific to the optimization problems of their test cases
and cannot be generalized [5, p. 124 f.]. The parameter must
be specified at the beginning and remain static during the
evolutionary run. This is the commonly practiced approach
called parameter tuning [12, p. 20]. It means to figure out the
best values in preliminary runs. It is very time consuming and
computationally expensive.

The Evolutions Strategy (ES) by Rechenberg and Schwefel
led to the development of adapting control parameter [9]-[11].
This forms an alternative, called parameter control, where
parameter values are changed dynamically during runs [12, p.
20]. Eiben, Hinterding & Michalewicz [6, p. 131] distinguish
three types of parameter control (see Figure 1):

Parameter setting

before the run during the run

Parameter tuning Parameter control

s

Deterministic Adaptive Self-adaptive

Figure 1. Global taxonomy of parameter setting in EA’s
[6, p. 129]

Deterministic, as a blind deterministic rule, e.g. triggered by
the process of time (number of generations). Adaptive
parameter control, which incorporate feedback from the
search process, like Rechenberg’s “1/5” success rule [10].
And self-adaptive, when using a meta-EA or by using EA that
tunes itself to a given problem. It is typically done via a
mechanism in which the algorithm parameter values are
encoded as a control gene on individual genomes [2, p. 7].

Aldeida & Moser [40], De Jong [2], Eiben & Smit [36],
Karafotias et al. [37] and Meyer-Nieberg & Beyer [35] are
giving an overview of parameter control for EA. Today,
parameter control is a standard component of many ES
algorithms [2, p. 13]. Except of ES, for mutation step size
adaption, none of the EAs are using adaption routinely in
every day practice [2, p. 6]. Adapting control parameter
during EA run, e.g. mutation rate, is also not common for
Genetic Algorithms [2, p. 13]; [35, p. 48]. However it has

International Journal of Computer Applications (0975 — 8887)
Volume *~ No.* October 2018

been empirically and theoretically demonstrated that different
values of parameters at different stages of the evolutionary
process increase algorithm performance [12, p. 21, 41]; [5, p.
58, 131], for example in [13]-[20], [38], [41], [43]. Fogarty
[13] uses a deterministic rule and has shown that reducing
mutation rate exponentially over time increases the
performance of the GA. Hesser & Ménner [14] obtained the
result of Fogarty that mutation rate should be decreased
during convergence. Fernandes et al. [38] introduced a
method for GAs mutation rate control, based on the Sandpile
Model. The Sandpile is a complex system operating at a
critical state between chaos and order. The mutation intensity
changes along the search process and also depends on the
convergence stage of the algorithm. The approach of sandpile
mutation must work on evaluated individuals that would
require two cycles of evaluations per generation. To avoid
this, Fernandes et al. use the fitness values of the parents of an
individual to derive an expected normalized fitness. They say
that Sandpile Mutation appears to be well suited for function
optimization in dynamic environments. Grefenstette [15] uses
an metalevel GA to find optimal values for six algorithm
parameters, like crossover and mutation rate. An additional
GA was used to identify optimal algorithm parameter values
of another (subjected) GA. The idea of the meta-GA was
revived by Yuan & Gallagher [43] on a hybrid approach with
racing scheme. Bick [16], [17] also uses self-adaption and
handled mutation rate as temporal and individually differing
parameter, which 1is incorporated into the genetic
representation of the individuals. He confirmed that
mechanism of self-adaptive mutation rate is advantageous for
GAs performance. Back [16] sees this as a strong argument
for general introduction of adaptive mutation rates to GAs.
Smith [18] improved the scheme of Béck, by using a fixed
learning rate instead of also variate the rate of variation.
Serpell & Smith [41] uses self-adaption to adapt the choice of
mutation operator as well as the mutation rate for the chosen
operator during runtime. Serpell & Smith showed that all the
tested self-adaptive GAs provided comparable or better results
to the best choice of non-adaptive GAs. But, they have seen
an overhead at self-adaption in the time required to find the
optimal mutation rate (costs of self-adaption). Further on, they
imply that self-adaptation of the mutation rate takes
precedence over the self-adaptation of the mutation operator.

Just a little research is done on adapting algorithm parameters
for GAs with multi-chromosome representations. It is a fact,
that complex optimization problems of real-world usually
have more than one objective and can be seen as system of
systems, with each of the containing systems having its own
characteristics. Therefore multi-chromosome representations
seem to be very suitable. They have been used in GAs to
encode different aspects of the representation of a problem
(solution) onto separate chromosomes. Thus, it is possible to
decompose a problem (solution) into several simpler parts so
that each part can be represented onto a separate chromosome.
Each chromosome can use a different representation and its
own set of reproduction operators. From our point of view this
is needed to efficiently represent and optimize system of
systems and also to find effective adaptive control strategies
for algorithm parameters.

Hinterding [19] used two chromosomes to investigate the
effect of self-adaptive mutation rate. He wused one
Chromosome to represent the problem (solution) and the other
one to represent the self-adaptive strategy. Hinterding showed
that self-adaptation leads to better results, except for the easier
problems run for shorter numbers of evaluations. He points
out that this could be attributed to the fact that the self-

42

adaptive parameters were initialized with uniform random
values, and the GA needs some time to evolve appropriate
values for them. Hence, in that he has also seen the cost for
using self-adaptation. But Hinterding says that the costs are
out-weighed by the better results for the harder problems and
remove the need to hand-tune the parameters that are adapted.

Kiihn et al. [20] introduced an approach of adaptive parameter
control of mutation rate for GAs with multi-chromosome
representation. The test suite was given by De Jong’s (Sphere)
and Schwefel’s function. The optimization problem was
divided into two parts and represented by two chromosomes.
For example, at Schwefel’s function (SF) [10]:

f5@ = Y =i +sin (Tl M
i=1

—500 < x; <500
nEN; X' = (x] X3, %3,) X5)

The parts are (2, 3):

fs1 (e) = =2 * sin (JIx1), @)
fs,(x2) = —x5 * sin (/ |x2]). 3)

There is one chromosome representing x1 and the other one
x2. When generating new individuals by mutation, for each
chromosome of the selected individual a dedicated mutation
rate is calculated. Therefore, an additional fitness value for
each chromosome (chromosome fitness) is calculated. This
value is used to adapt the mutation rate to the fitness of each
chromosome. Better fitness of a chromosome leads to lower
mutation rate. Thus, the mutation rate can vary between the
chromosomes of an individual and in every generation (over
time). To calculate the specific mutation rate of a
chromosome in relation to the chromosome fitness either a
linear or an exponential function was used. While fitness is
not that good, like at the beginning of the GA run, the
resulting mutation rate is very high with 0.5 in maximum. The
reason for this is seen in a better exploration of the search
space at the beginning of a search process to efficient locate
regions with good fitness values. Therefore, large mutation
rates are needed [12, p. 21] [5, p. 131]. Later, when only fine
tuning has to be done smaller mutation rates are required.
While the fitness level is getting better over time, the mutation
rate decreases to 0.001 in minimum. The test functions
mentioned above were used to analyze the GA performance.
GA runs with non-adaptive mutation rates of 0.001, 0.01,
0.05, 0.1, 0.2 and 0.5 were compared to the approach of
adaptive mutation rate. All other algorithm parameters
remained the same during the run. Population size was set to
20 individuals. Thus, a quite small population was chosen.
The reason is that on complex optimization problems long run
times may be expected when having a large population size.
Less individuals might lead to less run time and computation
expenses. Every individual consists of two binary coded
chromosomes each representing half of the search space (resp.
problem solution). Selection is done by roulette wheel. A
normalization for the fitness values was done, according to the
parent population. Single point crossover was used at every
chromosome. Crossover probability was set to 0.60. At every
variant of mutation rate 100.000 runs were performed using
De Jong’s and Schwefel’s function. The GA run ended when
a fitness level of 0.995 was reached. The number of
generations it took to reach the defined fitness level was
measured and statistically analyzed. The mean value for each

International Journal of Computer Applications (0975 — 8887)
Volume *~ No.* October 2018

variant was calculated. Kiihn et al. [20] have shown for GA
with multi-chromosome representations that adaptive
mutation rate based on chromosome fitness leads to
significant better GA Performance, compared to non-adaptive
variants. It was shown that a linear function to calculate
mutation rates performed much better than exponential. For
linear mutation function the duration to reach a defined fitness
level was decreased by at least 38 % compared to the best
non-adaptive variant. In only one variant of Sphere function,
the results are worse than in best non-adaptive run. The reason
can be seen in the easy test function. The high mutation rate at
the beginning leads to better exploration of the search space,
what might not be needed at that easy (static) problem. That
also corresponds to De Jong [2, p. 16], when he is saying non-
adaptive algorithm parameters “that have been pre-tuned for
particular classes of problems will continue to outperform”.
Kiihn et al. say, that their approach needs to be wider tested,
e.g. on complex optimization problems of real world. This
will be done in the following.

3. REAL WORLD CASE AND
REPRESENTATION

A complex problem of real-world can be seen as an
optimization problem that can be found in real-world, with
dynamic behavior, noisy and nonstationary conditions. Such a
problem cannot be solved analytically. In complex real-world
optimization problems, usually more than one objective needs
to be optimized. Optimization problems consisting of several
systems that are dynamically coupled and interacting with
each other (system of systems) are increasing in number. In
general, systems can be differentiated e.g. on different
objectives, different resources, different constraints or even
different languages that are spoken. Some researcher is
merging these systems on a high level of abstraction to make
optimization easier. That might end in solutions that do not
have expected results, when applying them to the real-world.
That is why there is the need and acuteness to figure out
efficient ways to optimize complex optimization problems of
real-world, in particular for dynamic, coupled system of
systems. An example for that kind of complex optimization
problems can be seen in the inpatient admission, outpatient
admission and op-theater planning of elective cardiologic
patients of a German university hospital, which must be
optimized together (scheduling and sequencing) while
emergencies occur. The number of patients treated should be
maximized, patient waiting times and idle times of hospital
resources should be minimized. Considered hospital entities
are: outpatient department, two cardiological wards, three
heart catheter laboratories (HCLs) as op-theaters, an electro-
physiological laboratory (op-theater), an electrocardiographic
unit (ECG) and three echocardiographic units (ECHO). Each
of these units can be seen as a system. They are dynamically
coupled and each of them has their own objectives and
constraints of planning scheduling and sequencing. Moreover,
diverse uncertainties (noise) need to be considered, like
patient’s health conditions, duration of examinations, lateness
of patients, decisions made by physicians and emergencies
that occur. On planning and optimization, downstream
resources and dynamic of processes must be considered.
Downstream resources are resources that patients went
through after admission. None of the three university hospitals
analyzed have noise conditions or downstream resources
considered at admission planning. Even at op-theater planning
no emergencies were considered.

By now, no research is seen, considering this together [46]-
[50]. Also, no analytic way is seen as suitable to calculate an

43

optimal solution. The reason can be the fact, that we think it is
not possible to put all the objects to be planned, all
constraints, all uncertainty and the dynamic behavior in a
mathematic function. In case it is possible somehow, we are
not able to say that the optimization function is continuously
differentiable twice. Nor we do see a way to calculate every
single possible solution of the search space. Knowing that
there is a huge number of possible combinations and knowing
that by the noise, later we will get different results every time,
when testing a solution.

To analyze or optimize highly dynamic processes as can be
found within hospitals, a dynamic executable model is
necessary. Further on a heuristic is needed to optimize it. We
have tested a GA in Kiihn at al. [53] and think it is suitable to
the given optimization problem. Following this, we use the
stochastic, executable simulation model developed by Kiihn &
Lippold [21] to optimize the hospital processes. The
simulation model was built in MLDesigner as a discrete event
model. Stochastic effects within the model are, e.g.:

* unplanned patients (walk-in),

* emergency patients from emergency department,

* occurring of an emergency while a treatment is
running or within bedtime on a ward,

* unpunctuality of patients,

« upfront unknown treatment plan,

e variation in duration of treatments,

« fault of medical devices.

For purpose of modelling a database containing 2 years of
collected real-world data (SAP IS-H*med extraction,
empirical data collections) and process descriptions of all the
related hospital processes were used. Hospital processes were
automatically transformed and imported into the simulation
model, following the approach of Kiihn at al. [44]. The
database of real data has been divided into two parts following
Page [45, p.149]. The first part was only used for modelling
and parameterizing the simulation model. The second part of
real-world data was used to validate the simulation model. As
a result, a validated, dynamic simulation model is developed,
which includes all the mentioned constraints, uncertainties
and given capacities of considered hospital resources. Now an
optimization of admission planning, patient scheduling and
sequencing can be done by simulation possible solutions. On
evolution run, solutions will be created, tested and evolve,
fitting to the environment.

For the simulation model Severin [39] implemented a GA,
with multi-chromosome representation. It appeared quite
difficult for us to merge all planning parameters on one
chromosome. Dividing the problem representation by units
(systems) and planning focus on dedicated chromosomes
makes it much easier for us to represent the different
optimization objectives in an appropriate way. Further on, the
chromosome structure differs on the specific planning focus.

In detail, the chosen optimization problem is represented by
15 chromosomes. 7 of these chromosomes are used for patient
admission planning. For each hospital area that needs to be
considered (e.g. outpatient department, wards, ECG, ECHO,
HCLs), a dedicated chromosome (CZ01-CZ07) is used to plan
the number of patients and day of treatment/admission (day of
week). Table 1 shows the structure of these seven
chromosomes. All of them are dynamic in length. So, the
number of patients planned is represented by the length of the
chromosome, which changes during the EA run.

International Journal of Computer Applications (0975 — 8887)
Volume *~ No.* October 2018

Table 1: Structure of chromosomes to plan number of
patients and the day of admission (CZ01-CZ07)

Pati
ent
1D
Day
of
We
ek

0| 0 0] O 202212
112 (3]|4]5 11213 |4

Two of the mentioned 15 chromosomes are used to plan the
appointment rules and start time of admission (opening time)
for the outpatient department (CTO01) and the considered
wards (CT02). At these two chromosomes, optimization
parameters are ni: number of patients at first appointment, ni:
number of patients at each appointment; ai: time between two
appointments, following Cayirli & Veral [46], and time of the
first appointment (begin opening time). Table 2 shows the
structure of these two chromosomes.

Table 2: Structure of chromosomes for inpatient and
outpatient admission (CT01+CT02)

G Mo b | 1% | web | T | Frb
n| | a; = begi = begi =
en egin egin egin
n n
va |
Ilu|1]1 5 450 510 510 510 | 570
e

Planning purpose for ECGs, ECHOs and HCLs (op-theaters)
is only the number of patients and day of appointment. The
appointment times are assigned by an implemented
appointment calendar within the hospital model, that is
initiated with e.g. frequently planned maintenances and all the
other times, when appointments cannot be made, to ensure
that appointments do not overlap and will be made at valid
times. In general appointments from calendar are given by
first-come, first-appointment rule. This can vary in case a
patient already has other appointments. Thereby a period of
time is given (before and afterwards) within that no other
appointment is made.

The remaining six chromosomes are used to plan reservations
upfront the admission and to plan sequencing and scheduling
of patients in ECGs, ECHOs and OP-Theaters units. The
following table 3 shows the structure of these six
chromosomes. The intention is to make reservation to defined
types of patients upfront the admission and to minimize
patient waiting time at wards after admission. Because, a lot
of times patients waiting on ward for treatment, while
resources needed for treatment (like ECG, ECHO or HCL)
were not available that soon after admission.

Table 3: Structure of chromosomes for reservation
planning in ECG, ECHOs and HCLs

slot 1 o1 10203 oa | . 18] 19
number
value | 0 | 1] 1] 3 o lo]2

The length of these chromosomes is defined by the number of

44

available time slots within the mentioned calendar in the
simulation model. Each slot can be set to a value of 0 up to 3.
Only the value is manipulated by the GA. A value of 0 is
representing no reservation. Thus, all patients can make an
appointment at this time slot. Values from 1 to 3 are
reservations made upfront and dedicated to a defined group of
patients, like patients on ward or outpatients.

By differentiating in chromosomes, it was possible to easily
implement the genetic operators independent and individually,
in regard to the need of the different chromosome structure.
That was much easier than having one operator to handle all
cases and constraints at once, in a single chromosome
representation. A huge difference between the chromosomes
was to handle mutation and crossover operators on
chromosomes representing the number of patients, that are
varying in length.

4. ADAPTING GA FOR PARAMETER
CONTROL

Looking at the algorithm performance, relating to the chosen
complex real-world problem, parameter tuning does not
appear practical. Testing one solution only takes 17 seconds.
But testing 200 generations with a population of 30
individuals and testing each solution 10 times (because of
noise), it takes 11,8 days! for only one evolutionary run. Thus,
preliminary runs are too much time consuming. That is why
an adaptive control strategy is used in the following.

Eiben [5, p. 145] sees the research community to converge on
the idea that: “successful parameter control must take into
account two types of information regarding the evolutionary
search: data about fitness and population diversity.” Mutation
rate can be seen as a control mechanism to preserve diversity
of the population. Moreover, the mutation rate seems to be a
very sensitive parameter with high impact on efficiency of
GA [35, p. 59]; [4, p. 591; [10, p. 71; [7, p. 228]. That is why
this paper is focusing on the mutation rate in the following.
When adapting the GA, the approach of Kiihn et al. [20] is
used. Both the mutation rate (diversity) and data about fitness
are considered in this approach (see details in the former
section 2).

As already explained, this approach includes at every
generation an additional fitness rating for each chromosome.
When optimizing system of systems, it appears quite difficult
to merge all optimization objectives into one objective
function. By having an additional chromosome fitness,
chromosome specific objectives can be applied to the
corresponding chromosomes and later on main objectives to
the individual. Thus, a hierarchy of objectives is given. First a
dedicated fitness function for each of the 15 chromosomes
needs to be defined, based on the constraints and objectives of
the dedicated planning purpose. Here are some examples,
showing the way it was to be handled. All of the mentioned
key figures are calculated excluding settling time.

CZ01: Planning purpose is the number of patients and the
admission day (day of week) for the outpatient department.

e The number of outpatients admitted a day in the
outpatient department (mean per week) has to be
maximized.

OutPat
) @)

tFP1 =mi (1.0; -
min Weeks * Patients,

* Lead times (Length of stay) of outpatients admitted in
the outpatient department (mean per patient) has to be

®)

International Journal of Computer Applications (0975 — 8887)
Volume *~ No.* October 2018

maximized.

OutLoS)

tFP2 = 0.0;1 -
max(’ OutPat * OutLoS, 4y

* Number of outpatients admitted in the outpatient
department, that have not finished by end of day
(mean per Week) has to be minimized.

tFP3 = max (0.0; 1 — 2 * OutPat;y, (6)
OutLoSmean)
E3
Weeks * Patientsy,

OutPat: outpatient admitted in the outpatient department

Weeks: number of weeks simulated

Patientsmax: Maximum number of Patients per week possible

OutLoS: patient length of stay in the outpatient department

OutLoSmax: Maximum OutLoS possible

OutPatinc: number of patients in the outpatient department
that have not left at the end of day

The three key figures (tFP1-tFP3) mentioned above are equal
weighted in the chromosome fitness function.

tFP1+ tFP2 + tFP3 7
cz01 = 3

CZ02: Planning purpose is the number of patients and day of
admission (day of week) for inpatients on ward 1.

e The number of inpatients admitted at ward 1 a day
(mean per week) has to be maximized.

* Waiting time of inpatients admitted for a bed on ward
(mean per patient) has to be minimized.

e Number of patients admitted, that do not have a bed
on ward at the end of the day (mean per week) have to
be minimized.

The three key figures mentioned are equal weighted in the
chromosome fitness function.

CTO1: Planning purpose is the appointment rule for outpatient
department and period of time where appointments are made
for each day of the week.

* Waiting time of outpatient admitted in the outpatient
department till first contact (after admission) (mean
per patient) has to be minimized.

* Lead time of outpatient admitted in the outpatient
department till discharge from hospital (mean per
patient) has to be minimized.

* Number of outpatients admitted in the outpatient
department, that have not finished at end of day (mean
per week) has to be minimized.

The three key figures mentioned are equally weighted in the
chromosome fitness function.

Out of these figures the dedicated additional fitness for each
chromosome is calculated. This fitness rating is only used to
calculate the specific mutation rate for each chromosome of
an individual when generating new individuals.

To calculate the specific mutation rate, a linear function is
used, which Kiihn et al. [20] have seen as the best choice. The
mutation rate can vary between 0.5 in maximum and 0.001 in
minimum. This was chosen here, without any testing upfront.
0.5 seems the maximum mutation rate we can imagine, that
not ends up in random search, and 0.001 is the minimum
chosen mutation rate found in the literature. The control

45

strategy is adjusting the mutation rate within these borders by
itself, relating to the chromosome fitness. When the
chromosome fitness increases, the mutation rate decreases.
So, at the end of an evolution run the mutation rate should be
low. But, it seems possible that one or more chromosomes
might end up with high mutation rates. A reason can be, e.g.
that just very view patient admissions are planned. This might
lead to bad fitness rating for single chromosomes even though
it is the best solution in the overall view. To prevent high
mutation rates at chromosomes, especially at the end of
optimization run and to make sure that the minimum mutation
rate of 0.001 will be reached at the end of a given run length,
the approach of Kiihn et al. [20] was expanded by
implementing an additional deterministic rule. That lowers the
maximum possible mutation rate over time.

So far, just the additional chromosome fitness and how to
calculate the chromosome specific mutation rates out of it was
explained. Selection is done based on the individual fitness,
by fitness proportional selection (roulette-wheel). To measure
the quality of an individual (solution) a cost function is
implemented, calculating an earnings-cost value for each
individual.

EC(i) = Y™ ,(Earnings;) — ¥ ,(Costs;); n€N (8)

The resulting value is representing the main optimization
objectives. Earnings are calculated as follows:

Earnings = InPat * 60 + HCL * 500 + OutPat 9)
* 60 + ECG * 30 + ECHO = 40

InPat: number of elective patient admission at ward

OutPat: number of outpatient admission at ward at ward

HCL: number of HCL procedures carried out

ECG: number of ECG examinations carried out at patients
from outpatient department

ECHO: number of ECHO examinations carried out at
patients from outpatient department

ECG and ECHO are not considered as earnings for inpatients,
following the given fact in the hospitals.

Costs are calculated as follows:

Costs = DIV(WT/15) * =2 + WT * 1 + InLoS + 1 (10)
+ OutLoS * 1 + OutPat;,. * 50
+ InPat;,. * 50 + HCLyg * 100

WT: patients waiting time at all during the whole stay

InLoS: inpatients length of stay at all in days

OutLoS: outpatient length of stay at all in hours

OutPatinc:number of patients in the outpatient department that
have not left at the end of day

InPatinc: number of patients on ward waiting for a bed over
night after admission

HCLts: number of procedures in HCL, that have not been
carried out at day planned

The resulting value has to be maximized. To calculate the
individual fitness out of the earnings-cost value a ranking
followed by a linear fitness assignment (linear ranking) was
used. The sorted list of individuals is ranked, while the best
individual is getting rank 1. The fitness F is calculated in

regard to the rank i and population size n by:
N ARG Sl)
O = nx(n+1) an

For optimization purpose the dynamic simulation model
provided was extended to an optimization model, with

International Journal of Computer Applications (0975 — 8887)
Volume *~ No.* October 2018

attached GA. Before any of the experiments described in the
following were done, an extensive final validation was done.

5. EXPERIMENTAL DESIGN

To optimize the chosen problem of real-world and to analyze
the effects of the adaptive mutation rate, several test scenarios
were defined. The optimization follows in a loop, as shown in
Figure 2. The loop will be done as long as the optimization
algorithm (GA) is running. The run length of GA is defined
by the number of generations to be calculated.

Generate start quantifying , fitness* target value . best individual
lati £ individuals (number of gernerations .
population of individuals reached? (quit search)
7y ! yes
no
create new
. population
yes
new
population oti .
Start of search created? no Selection End of search

A or

—| Recombination || Mutation |

calculate mutation
Rate for each
chromosome

Figure 2. General sequence of actions for the genetic
algorithm (based on [52, p. 9])

Following Kiithn et al. [20] after selection either
recombination OR mutation will be carried out to create new
individuals. The reason is, when doing recombination first, in
that moment a new individual is created and the upfront
calculated chromosome fitness nor the calculated mutation
rate fits to that new created individual. Furthermore, either
recombination or mutation is performed for reproduction, to
validate the Approach of Kiihn et al. [20] on the chosen
complex real-world problem.

The experimental design is based on two test scenarios (see
Table 4). In scenario 1 the mutation rate (pm) is non-adaptive
during the optimization run and the same for every
chromosome. Each variant of mutation rate in scenario 1 and
2 will be tested in separate evolutionary runs on a crossover
probability (pc) of 0.60 and 0.75, following De Jong [3] and
Schaffer et al. [4]. For every variant, the run length of 200,
225 and 250 generations will be tested. In some runs during
implementing and testing the GA, it was seen that this is a
suitable range of run lengths. Over all, this leads to 54
optimization runs in scenario 1 (6 runs for each variant) and 6
runs in scenario 2. For every test scenario, the optimization
model and all of its parameters will be kept unchanged, except
the parameters shown in table 4.

Table 4: Test scenarios with variants

Mutation rate Crossover Number of

(pm) probability generations

Pm (pe) (run length)
non-adaptive mutation 0.60 200

rates

0.001, 0.005, 0.01, 0.02, 225
0.03,0.05,0.1,0.2, 0.5 0.75 250
adaptive mutation rate 0.60 200
based on chromosome ’ 225

46

fitness
(0.5 -0.001) 0.75 250

The initial population is set up by random and contains 30
individuals. Elitism is not used (non-overlapping generations).
As De Jong [2, p. 11] said, the “more ‘elitist’ a selection
algorithm is, the more an EA behaves like a local search
procedure (i.e., a hill climber, [...]) and is less likely to
converge to a global optimum”. The fitness value is calculated
with a linear ranking function and selection is done by roulette
wheel strategy (see section 4). Crossover is done by one-point
crossover at each chromosome. Pierrot & Hinterding [28, p.
144] have shown for multi-chromosome representations, that
mutating only one chromosome did not give good results.
They recommend to mutate one variable per chromosome
instead of the average of one mutated variable per
chromosome.

For every optimization run, at the end of the defined run time
(number of Generations), the best Earning-Cost-Value (EC)
reached is stored (as GA Performance). To minimize the
stochastic influence each individual (solution) is tested 10
times with differing sequence of random numbers. The mean
value is used, following [27, p. 117]. Based on this, scenario 1
and 2 are compared with each other. De Jong [2, p. 6] says
that comparing non-adaptive parameter settings to one with
adaptive settings is unfair since the non-adaptive settings were
established via some preliminary parameter tuning runs.
Keeping that in mind, the scenario 1 is compared to scenario 2
based on the GA performance.

For simulation purpose, MLDesigner v. 3.0 was used as
simulation system. Each optimization run needs approx. 12
days in cpu time (Fujitsu Primergy TX200 S5, 2 x Intel®
XEON® E5570 2,93 GHz Quad Core, 32 GB RAM). Because
of that much optimization runs to be tested (~640 days in CPU
time), a pool of 9 machines was used.

6. EXPERIMENTAL RESULTS

The two test scenarios were simulated and the effects on GA
performance are measured. The following Table 5 shows the
mean optimization results over all, Figure 3 visualizes the
results.

Table 5: Resulting earnings-cost-value of scenarios 1 + 2

earnings-cost-value

. mutation (CR 0.6 and CR 0.75)
scenario rate N =60
best worst mean

0.001 | 172,180 [165,919 [168,564.33
0.005 | 196,337 [165,815 [184,423.83
001 | 197,022 |186,331 [191,381.33
scenario 1: 0.02 | 197,298 [182,547 [192,411.67
‘rﬂ;?;ftr‘:tz 0.03 | 195,335 |184,506 [189,080.67

0.05 | 194,076 [180,315 [188,458.50
0.1 191,464 (174,176 |181,274.50
0.2 185,164 |168,802 [177,164.50
0.5 176,703 [161,731 [168,458.33

scenario 2:
adaptive .5-0.001] 198,272 |188,250 (192,503.83
mutation rate

International Journal of Computer Applications (0975 — 8887)
Volume *~ No.* October 2018

195000

W non-adaptive

150000 mutation rates
(scenario 1)
185000
—— adaptive
180000 7 mutation rate
175000 (scenario 2)

170000

165000

earnings-cost-value (mean)

160000 + T T T T T
0.001 0.005 0.01 0.02 003 005 01 02 05

mutation rate

Figure 3. Resulting earnings-cost-value of scenarios 1 + 2

It is distinguished in the way mutation is done (scenario 1+2)
and between the mutation rates applied. Each variant consists
of 6 evolutionary runs (60 overall). At this moment, it is not
distinguished by the crossover probabilities tested, so both
variants of cross-over probability tested are included.

In both scenarios, it was aimed to maximize the earning-cost
value (EC). In scenario 1, using non-adaptive mutation rates,
the best mean result was 192,412 and was reached when
applying a mutation rate of 0.02 (see Table 5). For scenario 2
with adaptive mutation rate, it is close to the same, with best
mean value of 192,504 (see Table 5). On a significance level
of 0.05, there was no statistic significant difference in mean
values of these two variants. Thus, the adaptive parameter
control delivers comparable results to the best non-adaptive
mutation rate, without preliminary parameter tuning. That
makes adaptive parameter more efficient and upfront hand
tuning obsolete.

Looking at scenario 1, the non-adaptive mutation rates less
than 0.005 and higher than 0.1 have shown a quite poor GA
performance. This behavior was anticipated and caused by too
low (insufficient diversity — clones appear) and at > 0.1 too
high (highly destructive) mutation rates. On the chosen
complex optimization problem, best GA performance (mean)
can be reached at a mutation rate of 0.02. Compared to former
work, like De Jong [3], Schaffer et al. [4] or Grefenstette [15],
the best mutation rate found here appears to be a little higher.
At this point it is not clear, what causes that. It can be a result
of the fact that in our test case a multi-chromosomal
representation is used, that might need a higher mutation rate.
A reason can also be, that either mutation or crossover was
used to create new individuals (see experimental design in
section 5).

The following Table 6 and Table 7 are presenting the
earnings-cost-values for scenario 142 separated by the applied
crossover probability of 0.60 and 0.75.

As it can be seen, the resulting GA performance depends also
on the crossover probability. For crossover probability of 0.6
the adaptive mutation rate performs not that good as using a
crossover probability of 0.75 on the chosen complex
optimization problem. A reason can also be seen in the limited
number of GA runs.

47

Table 6: Resulting earnings-cost-value of scenarios 1 + 2 at

CR 0.6
earnings-cost-value
scenario mutation (CR0.6)
rate N=30

best worst mean

0.001 165,919 |169,913 |168,461.00
0.005 190,885 |196,337 |193,578.33
0.01 189,446 195,444 (191,497.33
193,059 {196,079 [194,779.00
0.03 184,506 {192,690 |187,811.00
0.05 180,315 {186,486 (183,940.33
0.1 174,176 178,250 |176,021.67
0.2 168,802 (174,747 |171,797.67
0.5 161,731 164,535 |163,399.67

scenario 1: 0.02
non-adaptive
mutation rate

scenario 2:
adaptive
mutation rate

0,5-0,001(188,250 {191,101 189,576.67

International Journal of Computer Applications (0975 — 8887)
Volume *~ No.* October 2018

Table 7: Resulting earnings-cost-value of scenarios 1 + 2 at

CR0.75
earnings-cost-value
scenario mutation (CR0.75)
rate N=30

best worst mean

0.001 {172,180 |166,050 {168,667.67
0.005 |182,195 |165,815 |175,269.33
0.01 197,022 (186,331 |191,265.33
197,298 (182,547 |190,044.33
0.03 195,335 {187,070 |190,350.33
0.05 194,076 (191,963 [192,976.67
0.1 191,464 (183,234 |186,527.33
0.2 185,164 (179,082 |182,531.33
0.5 176,703 (170,699 |173,517.00

scenario 1: 0.02
non-adaptive
mutation rate

scenario 2:
adaptive
mutation rate

0,5-0,001{198,272 |193,975 195,431.00

Scenario 1

Scenario 2

200000 .

190000

180000

170000

160000

earnings-cost-calue (mean)

150000

0.001 0.005 0.01 0.02 0.03
W best B worst mean

0.05 0.1 0.2 05
mutation rate

adaptive adaptive
CR0O.6 CRO.75

Figure 4. Results separated by best, worst and mean results

Figure 4 shows the best (blue), worst (red) and mean (green)
results reached for both scenarios, separated by mutation rate
and the way mutation is done (scenario 1+2). The Results of
scenario 1, can be seen on the left side, separated by the non-
adaptive mutation rates (0.001 — 0.5). For scenario 1, both
variants of crossover probability are included (mean).
Scenario 2 is shown on the right side, separated by the
crossover probabilities (CP).

In general, a quite good GA performance can be seen in
scenario 2, independent of the crossover probability. The
adaptive mutation rate, calculated by chromosome fitness,
performed a little better at a crossover probability of 0.75 than
at one of 0.60. The same can be observed for non-adaptive
mutation rates. Further on, the results of adaptive mutation
rate seem quite robust, as the best, worst and mean values are
close together, compared to non-adaptive variants. But, maybe
there are more runs needed to say this in general. Like it was
said before, a lot of CPU time is needed for testing. And it
was not aimed to statistically prove the approach itself. The

outperformance of this approach in general was statistically
proven upfront with a huge number of runs on a set of
theoretical test functions in Kiihn et al. [20].

The following Figure 5 visualizes the adaptive mutation rates
applied to the chromosomes CR0O1 — CRO6 over time. These
chromosomes are designed to plan reservations, sequencing
and scheduling of elective patients in ECG, ECHOs and Op-
theaters.

Figure 6 shows the earnings values over time for one variant
of adaptive mutation rate with CR of 0.75. Each dot is a tested
solution (mean value simulated 10 times). It can be seen that
at the beginning better solutions can be found very fast. With
growing number of generations passed, it takes more time to
find better solutions (convergence of GA). By the spreading
of solutions it can be seen, how adaptive mutation rate is
generating more solutions with low earnings value at the
beginning of the optimization run and less at the end, when
mutation rate is lower. Figure 7 shows an example when static
mutation rate of 0.02 and CR of 0.75 is used instead.

48

International Journal of Computer Applications (0975 — 8887)
Volume *— No.* October 2018

o
w

mutation rate
o
N

o
=

number of generations
——CR01 ——CR02 ——CR03 —— CR04 —— CR05 ——CR06 mean mutation rate - - - maximum mutation rate

Figure S. Applied adaptive mutation rates over time, separated by chromosomes

Summe von individual_sernings.
200000
o 150000 -
=
:
i
o
9 ¥
& 100000
o -
£ '
€ t o “
£ ! :
H AT ! ’
L} . ’ ‘)
50000 - =
W : :
0
Lo T o T = A T T e T O = TN o e I o = O T I o T = A Y T T o T o T T O o T = T o T O s B = A TR T
O A N OO d A NOO ddNOO A AN 0OO0 AN OO0 A06OOoAAn
RET A DOMONRNTANOOMNODNNNOT AONNORTARDHON T
SN ANNMTANORNRNOODOOANANMSTIININON®BXNONO O ANMMS
oA A A H NN NN N NN
Eal=ee number of individuals

Figure 6. Individuals optimized by adaptive mutation rate over time

Summe van Individuzl_eamings

200000
150000 -
L]
3
m©
>
-
w
=]
S 100000
(%]
oo
£
c
£
S x
50000 |-
0
O QW M~OUNSESMNMON-TdO MO~ OUNSTTMONCdONWNMNWOLINS NN OO
N O N T O NN O dMN OO0 14 O dN = OO = OO
N NORQWM—A QWM A OO NDANON_NNMNOCNWM—A O W S
S NN M SN OO~ O AN ANNMS WNW WO~ O0 NN M S
R IR IR I B B I I B I I o R IR B o I oV B o VI o VI o VI o |
o number of individuals
individual _id =

Figure 7. Individuals optimized by non-adaptive mutation rate of 0.02 over time

49

7. SUMMARY AND OUTLOOK

It was shown, on a complex real-world optimization problem,
how dynamic coupled system of systems (SoS) can be
optimized by using a Genetic Algorithm (GA). We used a
dynamic, executable simulation model, which was very
detailed and considers the uncertainty of real-world processes,
to optimize outpatient admission, inpatient admission and op-
theater planning simultaneously for the first time. We used
dedicated chromosomes to represent (sub-)systems (multi-
chromosome representation), with their individual objectives
and constraints of planning. Thus, we were able to optimize
and measure specific criteria dedicated to each chromosome
(system).

To increase the GA performance our approach uses an
adaptive mutation rate. We considered aspects of diversity
and fitness together to make the mutation rate adaptive. While
creating new individuals every chromosome has its dedicated
mutation rate, depending on its goodness. Thereby, we see
two level of hierarchy. The specific objectives of
(sub-)systems and the main objectives for the system as a
whole. Both were optimized together.

For the complex real-world optimization problem, preliminary
parameter tuning runs were performed, to figure out the non-
adaptive mutation rate, where the best optimization results can
be reached within a given period of time (number of
generations). We have shown, that optimization results with
the best non-adaptive mutation rate is comparable to our GA
with adaptive mutation rate. That confirms the upfront tests on
a set of test functions and shows that the expected results can
also be achieved when applying our approach to the chosen
complex problem of real world.

It was not our goal to achieve better results on applying
adaptive mutation rate compared to non-adaptive. The main
improvement can be seen in overcoming the need to hand tune
control parameters upfront. This is important and very time
saving.

Most of the research in the field of EA has been done on a
theoretical basis. Often the proposed solutions do not deliver
what they promise, when applying them to complex real-
world problems. Thus, to confirm research, more tests on
complex optimization problems of real world are needed,
especially for multi-objectives.

Besides mutation rate, also other control parameters should be
adaptive, e.g. crossover probability and populations size. Like
De Jong [2, p.15] said, “the ultimate goal of these efforts is to
produce an effective and general problem-solving EA with no
externally visible parameters.” This will only be achieved if
there are effective ways to dynamically adapt various internal
parameters.

8. REFERENCES

[1] Holland, J. H. 1975. Adaption in natural and artificial
systems, Ann Arbor, Michigan, USA: Univ. of Michigan
Press.

[2] De Jong, K. A. “Parameter setting in EAs: a 30 year
perspective”. In Lobo et al. [33], pp. 1-18.

[3] De Jong, K. A. 1975. An analysis of the behavior of a
class of genetic adaptive, Ph.D. thesis, University of
Michigan.

[4] Schaffer, J. D., Caruana, R. A., Eshelman, L. J. and Das,
R. “A study of control parameters affecting online
performance of genetic algorithms for function

International Journal of Computer Applications (0975 — 8887)
Volume *~ No.* October 2018

optimization”. In Proceedings of 3rd Int. Conf. Genetic
Algorithms, 1989, pp. 51-60.

[5] Eiben, A. E. and Smith, J. E. (2015). Introduction to
evolutionary computing. 2nd ed. (Natural Computing
Series), Berlin, Heidelberg, Germany: Springer, doi:
10.1007/978-3-662-05094-1.

[6] Eiben, A. E., Hinterding, R. and. Michalewicz, Z.
“Parameter control in evolutionary algorithms”. IEEE
Trans. on Evolutionary Computation, 3(2), 1999, pp
124-141.

[7] Béck, T. 1996. Evolutionary algorithms in theory and
practice. Oxford. UK: Oxford University Press.

[8] Reeves, C. “Using Genetic Algorithms with small
Populations”. In Procedings of 5th Int. Conf. Genetic
Algorithms, 1993, pp. 92-99.

[9] Rechenberg, I. 1973. Evolutionsstrategie: Optimierung
Technischer Systeme nach Prinzipien der biologischen
Evolution. Stuttgart. Germany: Frommann-Holzboog.

[10] Schwefel, H.-P. 1981. Numerical Optimization of
Computer Models. New York. USA: Wiley.

[11] Beyer, H.-G. and Schwefel, H.-P. “Evolution strategies -
A comprehensive introduction”. In Natural Comput,
2002, vol. 1. no.1, pp. 3-52.

[12] Eiben, A. E., Michalewicz, Z., Schoenauer, M. and
Smith, J. E. “Parameter control in Evolutionary
Algorithms”. In Lobo et al. [33], pp. 19-46.

[13] Fogarty, T. C., “Varying the probability of mutation in
the genetic algorithm”. In Proceedings of 3rd Int. Conf.
Genetic Algorithms. 1989, pp. 104—109.

[14] Hesser, J. and Ménner, R. “Towards an Optimal
Mutation Probability for Genetic Algorithms”, Parallel
Problem Solving from Nature (Lecture Notes in
Computer Science vol. 496). Berlin, Heidelberg.
Germany: Springer. 2005, ch. 4, pp. 23-32, doi:
10.1007/Bfb0029727.

[15] Grefenstette, J. J. “Optimization of control parameters
for genetic algorithms”. In IEEE Trans. Syst., Man,
Cybern., vol. 16, no. 1, (Jan. 1986), pp. 122-128, doi:
10.1109/TSMC.1986.289288.

[16] Béck, T. 1992. Self-Adaption in Genetic Algorithms. In
Proceedings of 1st European Conf. Artificial Life, pp.
263-271.

[17] Béck, T. “Optimal mutation rates in genetic search”. In
Proceedings of 5th Int. Conf. Genetic Algorithms, 1993,

pp- 2-8.

[18] Smith, J. “Parameter perturbation mechanism in binary
coded gas with self-adaptive mutation”. 7th Int.
Workshop FOGA, 2003, pp. 329-346.

[19] Hinterding, = R. “Self-adaptation using multi-
chromosomes”. In Proceedings of IEEE Int. Conf. Evol.
Comput., 1997, pp. 87-91.

[20] Kiithn, M., Severin, T. and Salzwedel, H. “Variable
Mutation Rate at Genetic Algorithms: Introduction of
Chromosome Fitness in Connection with Multi-
Chromosome Representation”. Int. Journal Comput.
Appl., vol. 72, no. 17, 2013, pp. 31-38.

50

(21]

[22]

(23]

[24]

[25]

[26]

[30]

[35]

Lippold, J. 2014. Aufbau eines prozessorientierten
Simulationsmodells fiir klinische Einrichtungen zur
abteilungsiibergreifenden Termin- und
Reihenfolgeplanung. Dipl.-thesis, Tec. Univ. [lmenau.

Gongalves, J. F., de Magalhdes, M. J. J. and Resende,
M. G. C. 2002. A Hybrid Genetic Algorithm for the Job
Shop Scheduling Problem. AT&T Labs Research.
Technical Report TD-5EALG6J.

Keedwell, E. and Khu, S.-T. “A hybrid genetic
algorithm for the design of water distribution
networks”. Engineer Appl. of Artificial Intell., vol. 18,
no. 4, Jun. 2005, pp. 461-472,
doi:10.1016/j.engappai.2004.10.001.

Kiihn, M., Baumann, T. and. Salzwedel, H. “Genetic
Algorithm for process optimization in hospitals”. In
Proceedings of 26th Eur. Conf. Modelling Simulation,
2012, pp. 103-107.

Gao, W. “Study on New Improved Hybrid Genetic
Algorithm”. Advances in Information Technology and
Industry Applications (Lecture Notes in Electrical
Engineering vol. 136), ch. 66, 2012, pp. 505-512 doi:
10.1007/978-3-642-26001-8_66.

Davidor, Y. “Genetic Algorithms and Robotics - A
Heuristic Strategy for Optimization” World Scientific
Series in Robotics and Intelligent Systems vol.1, 1991.
Singapore: World Scientific.

Juliff, K. “A multi-chromosome genetic algorithm for
pallet loading”. In Proceedings of 5th Int. Conf. Genetic
Algorithms 1993, pp. 467-473.

Pierrot, H. J. and Hinterding, R. “Using multi-
chromosomes to solve a simple mixed integer
problem”. Lecture Notes in Computer Science, vol.
1342, 1997, pp. 137-146.

Ronald, S., Kirby, S. and Eklund, P. “Multi-
Chromosome Mixed Encodings for Heterogenous
Problems”. In Proceedings of 4th Int. Conf. Evol.
Comput., 1997, pp. 37-42.

Wight, J. and Zhang, Y. “An ‘Ageing’ Operator and Its
Use in the Highly Constrained Topological
Optimization of HVAC System Design”. In
Proceedings of 2005 GECCO, pp. 2075-2082.

Cavill, R., Smith, S. and Tyrrell, A. “Multi-
Chromosomal Genetic Programming”. In Proceedings
of 2005 GECCO, pp. 1753-1759.

Kerati, S., Moudani, W. E. L., de Coligny, M. and
Mora-Camino, F. “A Heuristic Genetic Algorithm
Approach for the Airline Crew Scheduling Problem”. In
IEEE Congr. Evol. Comput., 2009, pp. 1383—-1390.

Peng, J. and Chu, Z. S. “A Hybrid Multi-Chromosome
Genetic Algorithm for the Cutting Stock Problem”. In
ICIIL, 2010, pp. 508-511.

Lobo, F. G., Lima, C. F. and Michalewicz, Z. (Ed.)
“Parameter Setting in Evolutionary Algorithms”. In
Studies in Computational vol. 54, Berlin, Heidelberg,
Germany: Springer, 2007.

Meyer-Nieberg, S. and Beyer, H.-G. “Self-Adaptation
in Evolutionary Algorithms”, in Lobo et al. [33], pp.
47-75.

International Journal of Computer Applications (0975 — 8887)

[36]

[37]

[39]

[40]

[47]

Volume *~ No.* October 2018

Eiben, A. E. and Smit, S. K. “Parameter tuning for
configuring and analysing evolutionary algorithms”,
Swarm, Evol. Comput., vol. 1, no. 1, pp. 19-31, Mar.
2011, doi: DOI: 10.1016/j.swev0.2011.02.001.

Karafotias, G. H. M. and Eiben, A. E. “Parameter
Control in Evolutionary Algorithms: Trends and
Challenges”. IEEE Trans. Evol. Comput., vol. 19, no. 2,
Apr. 2015, pp. 167-187, doi:
10.1109/TEVC.2014.2308294.

Fernandes, C. M., Merelo, J. J., Ramos, V. and Rosa,
A.C. “A Selforganized criticality mutation operator for
dynamic optimization problems”. In Proc. 2008
GECOO, pp. 937-944

Severin, T. 2014. Implementierung eines Genetischen
Algorithmus mit Multichromosomenansatz zur
abteilungsiibergreifenden Termin- und Reihenfolge-
planung in Kliniken®, Dipl.-thesis, Tec. Univ. Ilmenau.

Aleti, A. and Moser, 1. “A Systematic Literature
Review of Adaptive Parameter Control Methods for
Evolutionary Algorithms”. ACM Computing Survey
CSUR, vol. 49, no. 3, Article 56, 2016.

Eiben, A. E., Hinterding, R. and Michalewicz, Z.
,.Parameter Control in Evolutionary Algorithms”. IEEE
Trans. Evol. Comput., vol. 3, no. 2, 1998, pp. 124-141.

Serpell, M. and Smith, J. E. “Self-adaptation of
mutation operator and probability for permutation
representations in genetic algorithms. J. Evol. Comput.,
vol. 18, no. 3, Sep. 2010, pp. 491-514, doi:
10.1162/EVCO_a_00006.

Yuan, B. and. Gallagher, M. “Combining Meta-EAs
and Racing for Difficult EA Parameter Tuning Tasks”,
in Lobo et al. [33], pp. 121-142.

Kiihn, M., Lippold, J. and Salzwedel, H. “Automatic
transformation of hospital processes into executable
model with EPML”. Int. J. Comput. Appl., vol. 80, no.
9, 2013, pp. 20-30.

Page, B. 1991. Diskrete Simulation: Eine Einfiihrung
mit Modula-2 (Springer Lehrbuch). Berlin. Heidelberg.
Germany: Springer.

Cayirli, T., Veral, E. “Outpatient scheduling in health
care: a review of literature”. Prod., Operations Manage.,
vol. 12, no. 4, pp. 519-549, doi: 10.1007/978-3-662-
05094-1, Jan. 2009.

Gupta, D., Wang, W.-Y. “Patient Appointments in
ambulatory Care”. Handbook of Healthcare System
Scheduling (Int. Series in Operations Research &
Management vol. 168), R. Hall, Ed. Boston, MA, USA:
Springer, ch. 4, pp. 65-104, doi: 10.1007/978-1-4614-
173-7 4, Nov. 2011.

Cardoen, B., Demeulemeester, E. and Belién, J.
“Operating room planning and scheduling: A literature
review”, Eur. J. Oper. Res., vol. 201, no. 3, pp. 921—
932, doi: 10.1016/j.ejor.2009.04.011, Mar. 2010.

Helm, J. E., Lapp, M., See, B. D. “Characterizing an
effective hospital admissions scheduling and control
management system: A genetic algorithm approach”. In
Proceedings of 2010 WSC, 2010, pp. 2387-2398.

Gemmel, P., van Dierdonck, R. “Admission scheduling
in acute care hospitals: does the practice fit with the

51

theory?”. Int. J. Operations, Prod. Manage., vol. 19, no.

9, Sep. 1999, pp. 863871, doi:
10.1108/01443579910280188.

Nissen, V. and. Biethahn, J. ,,Ein Beispiel zur
stochastischen Optimierung mittels Simulation und
einem Genetischen Algorithmus®. In Simulation als
betriebliche Entscheidungshilfe. State of the Art und
neuere Entwicklungen, Biethahn, J., Hummeltenberg,
W., Schmidt, B., Stihly P., and Witte, TH. (Ed.)

I[JCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)

Volume *~ No.* October 2018

Heidelberg, Germany: Physica, 1999, ch. 6, pp. 108—
125, doi: 10.1007/978-3-642-58671-2_6.

Pohlheim, H. 2000. Evolutiondre Algorithmen.
Verfahren, Operatoren und Hinweise fiir die Praxis,
Berlin, Germany: Springer.

Kiihn, M., Baumann, T., Salzwedel, H. “Genetic
algorithm for process optimization in hospitals”. In
Proceedings of 26th European Conference on Modeling
and Simulation, 2012, pp. 103—107.

52

