International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.22, October 2018

Comparative Study of GAN and VAE

Jaydeep T. Chauhan
Student, B.Tech(CE)
DDIT, Nadiad
Gujarat, India

ABSTRACT

Generative models are very popular in a field of unsupervised
learning. They are tremendously successful to learn underlying data
distribution of training data and generate a new data with some
variations.This paper presents a detailed study of generative models
and how they differ from traditional discriminative models.The
paper more focus on two most popular generative models such
as Variational Autoencoder(VAE) and Generative Adversarial
Network(GAN).The paper includes working of these generative
models, their architecture and an experiment is conducted
to generate images using very popular MNIST data set.The
comparison between these two models and their advantages and
disadvantages are presented based on an experiment.At last, some
solutions are presented to further improve these models.

Keywords

Generative models, Unsupervised learning, Generative Adversarial
Network, Variational Autoencoder, Machine Learning.

1. INTRODUCTION

There are two types of model in machine learning;discriminative
models and generative models. Discriminative models are mostly
used in supervised learning,where there is some dependency
between variables y and x and main task is to predict y based on
z.This dependency or mapping function between x and y can be
learned from training data.This can be represented as:

f(z) = argmazP(y/z). (1)

Which chooses the class y that is most likely considering
z.So in discriminative models are essentially learned to find
decision boundary between different classes and it will predict y
based on x.Different algorithms like Decision tree, Naive Bayes,
SVM(Support Vector Machine), Artificial Neural Network are
fall into this category.Here It didn’t care about how the data is
generated.Generative models are actually finding data distribution
using joint probability:

f(z) = argmazP(y/x) « P(y). @)

So this basically learn to give score to the configuration
determined by xz and y together and find y for a new
z, so the joint probability became maximum.Algorithms like
Generative Adversarial Network, Boltzmann machine, Variational
autoencoder, auto-regressive networks are widely fall into this
category.

2. CLASSIFICATION OF GENERATIVE MODELS

[Maimmm Likelthood |

i

Explicit density Implicit density

-\ o

' Markov Chai
Tractable density Approximate density arkov Chain

o : GSN
-Fully visible belief nets
-NADE / \‘
-MADE Variational | Markov Chain
-PixelRNN
-Change of variables
models (nonlinear ICA)

Direct

Variational autoencoder Boltzmann machine

Fig. 1. Generative Models [2]

All types of generative models aim at learning the true
data distribution of the training data set and generate new
data samples with some variation.Classification of generative
models can be done based on maximum likelihood estimation.It
helps to estimate parameters of a model that best fits the
probabilistic density function of training data.There are two
types of generative models:implicit and explicit.In explicit model,
the task is to learn probability distribution underlying the
data explicitly.explicit model assume some prior distribution
about some data and directly find density function in form
of likelihood using optimization algorithm.Explicit models falls
into two category:tractable and approximate.Tractable explicit
models are computationally tractable.Popular models like pixelrnn,
pixelenn falls into this category.Where else in approximate
explicit models are not computationally tractable.so here various
methods of approximations are used like variational methods,
stochastic approximations etc to define density function. Variational
autoencoder and Markov chain falls into this category.Implicit
generative models learn data distribution without explicitly define
a density function.It is an implicit because it can only generate
samples and cannot evaluate likelihood of data distribution.

3. WORKING OF GENERATIVE MODELS
3.1 Variational Autoencoder

Variational autoencoder[3] is a very popular generative model.It is
a combination of two neural network.First network is an encoder
network, which takes a data as an input and learn some hidden
latent representation of a data.Encoder network convert input data
into an encoding vector.Each dimension of an encoding vector
represent some feature about a data and is a single value.For
example, an encoder network of a generative model that generates
an image of human face, will learn features of a human face like
smile, hair color, skin tone etc and represent it in a form of encoding
vector with some single value for each feature.Second network
is a decoder network, which will take input an encoding vector
and learn to generate an original data as an output.Variational
autoencoder differs from a traditional autoencoder by instead
of learning fix latent representation, it will learn probabilistic
distribution for each latent feature of a data.

Input data
X Encoder

PIZIX)

Output

l=> Data

Fig. 2. Architecture of Varitional Autoencoder

The goal of Encoder network is to infer hidden latent variable
Z from X as shown in figure 2.Encoder network can infer by
estimating probability of P(Z | X).

P(X | Z)+ P(Z)

P(z|X)= =5)
Now to compute P(X) is a computationally intractable.
P(X) = /P(X | Z)P(Z)dz. “

To solve this problem another technique called variational
inference is used. Variational inference is used to estimate posterior
p(z | x), by defining a new distribution ¢(x | z) such that it
is a computationally tractable distribution.How to make sure that
the parameters of a new distribution g(x | z) are similar to the
original distribution p(z | z)? Kullback-Leibler(KL) divergence is
a very popular variational inference technique, which measure the
difference between two probability distribution.

KLQ(Z| X) || P(Z | X)] = Ellog Q(Z | X)~log P(Z | X()’ajj
Now to get the similar distribution, the KL divergence between
those two distribution should be minimum.So the cost function
contains two terms, first term represent the reconstruction loss
which ensure that it is able to distinguish different classes
uniquely and second term KL divergence that ensure that our new
distribution q is similar to the prior distribution p.

Eq(Z| X)log P(X | Z) - KLIQ(Z | X) || P(2)]. (6)

After in training phase, Model parameters can be learned for
both the encoder and decoder network by applying optimization
algorithm like stochastic gradient descent on above loss function.

International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.22, October 2018

An experiment is carried out to evaluate performance of this
model.Variational autoencoder is trained on MNIST dataset.It
is a very popular dataset.Pytorch and tensorflow frameworks
are used to implement this model.Encoder is implemented as a
convolutional neural network.Encoder contains one input layer,
four hidden layers which performs convolution operations and
two fully connected layers.Decoder contains two fully connected
layers, four hidden layers which try to reconstruct output image
and one output layer.Adam optimizer is used to train the networks
and learning rate is set to 0.01.Batch normalization technique is
used to speed up the learning process.The result of different epochs
are shown below.

@
7
r
o
’
9
o
7
5
G

F

L

=N T AP~ Eap
NN QL Dy .y
——~x W O==dwad

e

Fig. 3. Visualization of generated images by VAE.Above images are
sampled at four different epochs .(i)first epoch (ii) second epoch (iii)
fifth epoch (iv) hundred epoch

As shown in the above figure, Image quality is improve as
number of epoch increases.In experiment, If model is exposed to
only KL loss then it is shown that most of that data distribute
around the center of the latent space.Due to the dense data
distribution, it is difficult for decoder to decode any meaningful
from latent space.Contrarily, if KL divergence completely removed
from the model then data distribution become less smooth and
more discrete.As a result, there is a less variation in an output
data.Decoder perfectly able to reconstruct an original input data.It
is very important to optimize both the loss in a model so that
decoder can able to decode a sample perfectly and learn smooth
data distribution.

Applications:-

—New images can be generated by replacing standard encoder
network with convolutional and decoder network with
deconvolutional network.

—By adding another sequence to sequence architecture like LSTM
to the model, More creative things can be generted like synthetic
text and music such as Google’s Magenta MusicVAE[4].

—Google’s Magenta sketchrnn is also very popular application of
VAE[S].

3.2 Generative Adversarial Network

Generative Adversarial Network[]] has shown a very good results
in many tasks to generate images, music, text etc.It takes a game
theoretic approach unlike other conventional generative models,
which learns to approximate complex density functions.It learns to
generate by two player game between training.The two players are
generator network and discriminator network.Generator network
tries to generate data which is indistinguishable from training data
distribution. The discriminator receives the sample and determine
whether it is real or fake.The generator is trained to generate
samples that fool the discriminator network, and discriminator is
trained to make accurate predictions.

Real
Dataset
—>| Loss
Discriminator
Noise Generator
Tune
T Parameters

Fig. 4. Architecture of Generative Adversarial Network.

Generator is a neural network with parameter 6; and it’s role is
mapping some random input noise z to the data space.Discriminator
is also a neural network that takes x as a input and parameter
0> and it outputs a probability that the data came from real
dataset in a range of (0,1).Both this networks have their own
cost functions and try to optimize their parameters.Generator’s
parameters are optimized to maximum the probability that any fake
image is classified to belonging to real dataset.In mathematical
terms, generator is a differential function G and discriminator is
a differential function D.Generator tries to maximize the function
D(G(z)) or minimize the term log(1 — D(G(z))).

mGin max V(D,G) = Espaata(a) [log D(X)]
+E.p2(z) [log(1 — D(G(2)))]

O]

Discriminator tries to maximize the whole above cost function
by maximizing logD(z) and maximizing log(1 — D(G(z)))
and generator tries to minimize only log(1 — D(G(z))) in cost
function.This is called minimax game because optimization can
be achieved by minimize the inner loop and maximize the outer
loop.Author(] presented an algorithm to find convergence of this
game.In training, there are alternate sequence between optimizing
discriminator in k steps and optimizing generator in one step.Two
mini batches are selected, one from real data-set and other is sample
from noise at each iteration.Stochastic gradient ascent is applied
to update discriminator’s parameters in a direction to maximize
the loss function in solution space and stochastic gradient descent
is applied to update generator’s parameters to minimize log(1 —
D(G(z))) in solution space.There should be some equilibrium
point of this game, otherwise this game runs forever. Equilibrium
point is achieved when D(X) becomes 0.5 or when generator’s data
distribution pz becomes same as prior data distribution pdata.

International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.22, October 2018

In experiment, DCGAN(Deep Convolutional Generative
Adversarial Network) is chosen.DCGAN(6] is a popular variant of
GAN which gives good results in image generation.It composes of
mainly convolutional layers without any fully connected layer and
max pooling.It contains convolutional strides for down sampling
and up sampling.Generator network is a convolutional neural
network which contains input layer, four hidden layers which do
inverse of convolution operation and output layer.ReLU is used
as an activation function.Discriminator network’s architecture
is same as a generator but performing opposite operations
on input data.nstead of ReLU, LeakyReLU is used as an
activation function.Batch normalization is applied in both of the
network, which is used to normalize all the features in a same
dimension.Output layer contain a sigmoid activation function,
which outputs O or 1.

P
g
7
i

-
3
i
A

J
‘v
o

™

!
}
o
=
?’

by

Fig. 5. Visualization of generated images by DCGAN.Above images
are sampled at four different epochs .(i)first epoch (ii) second epoch
(iii) fifth epoch (iv) hundred epoch

BCE(Binary cross entropy) is used as a loss function.Adam
optimizer is used to optimize both network.Image quality of
generated image increase as number of epoch increase.

Applications:-

—GAN is used as mainly to generate data.But recent advancement
in this field leads to various other successful variants of gan
which are widely popular for its applications.some of them are
shown below.

—In Entertainment such as some animation studios can use
DCGAN[6] to generate cartoon characters and background
images.

—Fashion industry can use it to input pose to transform it into other
poses.

—CycleGan[[7]] is one of successful variant of gan, which is used to
transform images of one domain to another domain, like it can
transform pictures between horse and zebra.

—SRGan[8]|(super resolution gan) is used to generate high

resolution images from low resolution image.It shows very
impressive results.

—StackGan[9] is another domain transfer model like Cyclegan.It
is used to transform input text to generate images that perfectly
matches the descriptions

4. COMPARATIVE ANALYSIS

It can be seen from table 1 that DCGAN supports a purely
unsupervised learning.Where else, VAE supports both semi
supervised and unsupervised learning.Both have convolutional
neural network architecture.But in VAE it is encoder-decoder type
and in DCGAN it have some constraints like it doesn’t have
fully connected layers and max pooling layers.Stochastic gradient
descent based optimization is used in both the networks for training
with adam optimizer.To evaluate performance, log-likelihood is
measured in VAE using KL divergence.Mean squared error is also
used in both for comparison.

—First criteria to evaluate performance of two generative model
is by comparing mean squared error of both of the models.As
VAE is taking pixel values of an image as an input, convert
it into lower dimensional space and then reverse it to generate
original image.The mean squared error of VAE tend to decrease
during training and at last it is 34.66 in an experiment.Where
else, mean squared error of DCGAN be 36.3 and it is oscillating
at every epoch because of the minimax game.So it is difficult
to measure performance of DCGAN.Recently various other
evaluation metric is discovered such as inception score[13] and
FID[14] score to more accurately measure performance of GAN.

—second criteria to compare the two model is by visual
inspection of generated samples.As shown in figure, Variational
autoencoder tend to produce blurry images compared to the
DCGAN.The reason is Decoder output a average value of all
generated images or mean value of distribution.L1 loss can be
used to reduce blurriness in generated images.

—DCGAN outputs garbage images during some starting epochs as
shown in figure 5, because it’s loss value is high due to sampling
from random noise.The loss measures how well player is doing
against the competitor.So after some epochs generator loss
increases, but still image quality of generated images increases.

—DCGAN produces high quality images compared to the VAE
but limited varieties of samples.It is because equilibrium point

Table 1. Comparision between two models

Criteria VAE DCGAN
Learnin Semisupervised
g & Unsupervised
type .
unsupervised
. Convolutional
. Convolutional .
Architecture networks with
Autoencoder .
some constraint
. SGD with
Gradient undate to SGD update to
r:construction both Generator
Update ; and Discriminator
P and KL loss
Optimizer Adam Adam
Inference b
. Y Learn structural
matching latent . .
L Lo hierarchy of objects
Objective data distribution | .
.. in Generator and
to original data L
L Discriminator
distribution
Performance | Log-likelihood Accuracy and
Metrics and error rate error rate

International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.22, October 2018

sometimes may not be reached.Non convergence is a very
difficult problem for GAN.

—GAN sometimes suffers from vanishing gradient problem.It
is because in minimax game, Discriminator become more
successful compared to generator then cost function will
not be properly optimized.So Generator’s gradient is
very less and it learns nothing due to very short update
of parameters. Alternative cost function 1is proposed
for Generator to resolve this problem by author[l].
Instead of E..,.(;)[log(1 — D(G(z)))] .new cost function
E. pz(2) [—10g(D(G(2)))] can be used.

—If in minimax game, Generator become more successful
compared to discriminator for minimizing cost function than
Discriminator learns nothing due to less gradient update.As a
result Generator will be successful to fool the discriminator..An
another name of this problem is mode collapsing, in which there
is imbalance between modes in generated images.For example
for this experiment, if mode collapsing occur than generator will
generate some specific digit more compared to other digits.It is
still an open research problem to solve.

S. CONCLUSION

This paper provides a comparative analysis of two popular
Generative models on basis of their objective, performance and
architecture.Both models have their own pros and cons.Recently
computer scientists trying to create a more advance model by
combining both of them.One popular model is VAE-GAN][10].
As shown in figure 6, it looks like a variational autoencoder,

z
encoder decoder/generator
T T
— REAL / GEN
x discriminator
[AE {

' GAN ————

Fig. 6. Structure of VAE-GANJ[10]

but difference is decoder is replaced with Generator of GAN
and loss function is calculated using discriminator.The result is
a pretty impressive.Image quality is improved compared to VAE
and it outputs more diverse images compared to the GAN.Other
models like Adversarial autoencoders[11]], SAGAN(Self Attention
Generative Adversarial Network)[[12] also improves image quality
and diversity in generated images compared to VAE and GAN.

6. REFERENCES

[1] Ian Goodfellow, M. Mirza, B. Xu, Y. Benjio. Generative
Adversarial Network. Department of Computer Science and
Research Operationl, University of Montreal(2014).

[2] Ian Goodfellow. NIPS 2016 Tutorial:Generative Adversarial
Networks, from NIPS conference(2016).

[3] Diederik P. Kingma, Max Welling. Auto-Encoding
Variational Bayes, Machine Learning Group, Universiteit
van Amsterdam(2014).

(4]

(5]

(6]

(7]

[8

—

[10]

[11]

[12]

[13]

[14]

Adam Roberts, Jesse E., Douglas E. Hierarchical
Variational Autoencoders for Music, Google Brain.
from NIPS(2017).

David Ha, Douglas E. A Neural Representation of Sketch
Drawings, from arXiv:1704.03477v4 [cs.NE](2017).

Alec Radford, Luke Metz,Soumith Chintala.
UNSUPERVISED REPRESENTATION LEARNING WITH
DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL
NETWORKS, from ICLR(2016).

Jun-Yan Z.Taesung P.,Phillip 1., Alexei E. Unpaired
Image-to-Image Translation using Cycle-Consistent
Adversarial ~ Networks, from arXiv:1703.10593v5
[cs.CV](2018).

Christan L.,Lucas T.Ference H.Jose C.,Andrew C.
Photo-Realistic Single Image Super-Resolution Using a
Generative Adversarial Network, arXiv:1609.04802v5
[cs.CV](2017).

Han Z.,Tao X.,Hongsheng L.,Shaoting Z. StackGAN: Text
to Photo-realistic Image Synthesis with Stacked Generative
Adversarial Networks, arXiv:1612.03242v2 [cs.CV](2017).
Hugo L.Ole W.,Anders L.Soren S. Autoencoding
beyond pixels using a learned similarity metric,
arXiv:1512.09300v2 [cs.LG](2016).

Alireza M.,Brendan F.,lan G. Adversarial Autoencoders,
arXiv:1511.05644v2 [cs.LG](2016).

Dimitris M.,Jan G.Han Z. Self-Attention Generative
Adversarial Networks, arXiv:1805.08318v1
[stat. ML](2018).

Shane Barratt, Rishi Sharma. A Note on the Inception Score,
arXiv:1801.01973v2 [stat. ML](2018).

Martin H.,Hubert R.,Thomas U.,Bernhard N. GANs Trained

by a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium, arXiv:1706.08500v6 [cs.LG](2018).

International Journal of Computer Applications (0975 - 8887)
Volume 182 - No.22, October 2018

	Introduction
	Classification of Generative Models
	Working of Generative Models
	Variational Autoencoder
	Generative Adversarial Network

	Comparative Analysis
	Conclusion
	References

