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ABSTRACT
KKT proximity measure (KKTPM) is use as metric for obtained
how we are close to the from a corresponding Pareto-optimal (PO)
point without any knowledge about the true optimum point. This
metric use one such common a scalarization method that also
guarantees to find any PO solution that is achievement scalarizing
function (ASF) method. Since that KKTPM formulation is based
on augmented achievement scalarizing function (AASF) to avoid
weak PO solutions. This paper studies a relation between KKTPM
values and AASF values. Aim of this study to know the advantage
and disadvantage of both measures. Also, this paper discusses some
special cases to know the merits of both measures and to confirm
that KKT proximity measure is an essential measure for conver-
gence. In addition, this study investigates the correlation plot be-
tween these two measures for ZDT test problems, results show the
difference in values and therefore cannot obtain a perfect correla-
tion between KKTPM values and AASF values. Hence, it can be
said that KKT proximity measure is better.

Keywords
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1. INTRODUCTION
Recently, a number of evolutionary algorithms have been proposed
that attempt to find a set of PO solutions for a problem. This type
of solutions should be as close as possible to the Pareto front and,
at the same time, it should be as diverse as possible on the Pareto
front. Most of these algorithms have no evidence of convergence.
It is therefore necessary to have performance metrics to evaluate
this type of evolutionary algorithms. For this purpose, Deb and
Abouhawwash recently in [7] have proposed KKTPM metric that
is able to determine relative closeness for any solution (in objec-
tive space) from the theoretical optimum solution without actually
knowing the location of the true optimal solution. This metric de-
pends on KKT optimality conditions that guarantee to be satisfied
at only optimal solutions. This means that for multi-objective opti-
mization problems (MOPs) must satisfy all KKT optimality condi-
tions at an optimum solution (or KKT point) [13], [5], [17], [18],
[4]. The proposal of Deb and Abouhawwash called exact (or op-
timal) KKT proximity metric and the value of this metric called
exact (or optimal) KKTPM value. Exact KKTPM has generalized

the idea of approximate KKT point definition which proposed in
an earlier study for single-objective optimization problems (SOPs)
[10,12], [2,19] to be applied to MOPs. The KKTPM procedure can
be applied also to MOP with conflicting objectives. The exact KK-
TPM computational procedure requires the first-order gradient for
both objectives and constraints functions at all point thereby mak-
ing the exact procedure computationally expensive and therefore
extremely time-consuming for any practical use.
To tackle this shortcoming, the authors in [8] proposed several al-
ternative approximate methods so that KKTPM value can be com-
puted in a computationally fast method. This metric called Direct
KKT proximity metric and the value of this metric called direct KK-
TPM value. One of the most important advantages of these metrics
is that they do not require prior knowledge of the true PO solu-
tions, while the previously proposed performance metrics require
prior knowledge of this type of solution, such as hypervolume mea-
sure [21], [3], inverse generational distance (IGD) metric [9], and
other metrics [6], [20], [14], [11].
Both of the suggested KKTPM above [7], [8] used one of the pop-
ular ways for handling MOPs, and also its guarantees to find any
PO solution. This method is called achievement scalarizing func-
tion (ASF) [22]. This method requires two parameters (reference
point (utopian) and a weight vector).
Since KKTPM formulation is based on augmented ASF approach,
then, this paper studies a correlation plot between both exact KK-
TPM values and AASF values, also between direct KKTPM values
and AASF values. The aim of this study if there a perfect correla-
tion, AASF value can be used as a metric (i.e., can be found out
how close any point of Pareto front is through the AASF value at
that point) and no need for KKTPM metric. This study shows the
importance of KKTPM as a measure that ensures that each PO so-
lution has a zero value, and there is no way of telling whether a
point is PO solution from the AASF or ASF value. In other words,
The study demonstrates that the KKTPM is an essential metric of
convergence and the AASF approach cannot be used as a conver-
gence metric.
In the remainder of this paper. In Section 2 the augmented ASF ap-
proach is presented only briefly. In Section 3, KKTPM computation
procedures (Exact and Direct Methods) are summarized. Special
cases for KKT proximity measure are discussed in Section 4 and,
in the same section, a correlation plot between KKTPM values and
AASF values for ZDT test problems [23] is investigated. Finally,
the conclusions are presented in Section 5.
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2. AUGMENTED ACHIEVEMENT SCALARIZING
FUNCTION (AASF) APPROACH

Let us consider a n-variable, and M -objective optimization prob-
lem in its form:

Minimize(x) fm(x), m = 1, 2, . . . ,M,

subject to gj(x) ≤ 0 , j = 1, 2, . . . , J.
(1)

The achievement scalarizing function (ASF) one of the most widely
used methods of dealing with above problem. This method was
originally suggested by Wierzbicki [22]. The ASF procedure re-
quires reference point z (zideal or utopian) and weight w as pa-
rameters, the ASF problem is described as follows:

Minimize(x) ASF (x, z,w) = maxMi=1(
fi(x)− zi

wi
),

subject to gj(x) ≤ 0 , j = 1, 2, . . . , J.

(2)

For illustrating the working principle of the ASF procedure for find-
ing PO solution in [7]. Any Pareto-optimal or properly/weakly PO
solution can be generated by the above ASF minimization process.
But it turns out that in case weakly PO solution, ASF procedure
computed from the utopian (or ideal) point may result in a weak
PO solution as well. For discarding weakly PO solution, the fol-
lowing AASF approach was suggested [15]:

Minimize(x) AASF (x, z,w) = maxMi=1(
fi(x)− zi

wi
)

+ ρ

M∑
i=1

(
fi(x)− zi

wi
),

Subject to gj(x) ≤ 0 , j = 1, 2, . . . , J.

(3)

Here, ρ > 0 takes a small value (≈ 10−4). Where the additional
term is added to avoid finding weak points. Figure 1 shows how the
working of the AASF approach. The additional term makes the iso-
AASF lines inclined to objective axes (see Figure 1). For the ex-
ample shown, intersect both of weight vector and weakly PO front
at point A, but at this point, the AASF value is not the minimum
value required. The point O has a smaller AASF value as the cor-
responding iso-AASF lines intersect the weight vector closer to the
reference point z. A bit of reflection will reveal that with a positive
value ρ, the optimal solution for the previous AASF problem is the
point O. The AASF has a larger value at a point A or other weak
PO points because it conforms to the w-line at a higher point. In-
terestingly, the value of both AASF and ASF at strictly PO point
O is identical. More information about ASF and AASF approaches
in [7, 15]. The advantage of ASF is that any (weakly) PO solution
can be obtained by only moving the reference point [15, 16]. This
means that augmented ASF or ASF value depends on the location
of the reference point z.
In the following section, the KKTPM (exact and direct) compu-
tation procedures on based AASF are briefly summarized, and
the most important properties of KKT proximity measure are pre-
sented.

3. KKTPM COMPUTATION PROCEDURE (EXACT
AND DIRECT METHODS)

As mentioned in Section 1, Deb and Abouhawwash in [7], [8] de-
fined two methods for an approximate KKT solution to calculate
KKTPM value for any iterate xk. Exact and direct KKTPM met-
rics have used for an estimate of the proximity of any point from a
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Fig. 1: AASF approach is illustrated.

corresponding PO point without really knowing the exact location
of the optimum point. These metrics used ASF approach and which
its guarantees to find any PO solution. Since the problem stated in
Equation 2 is non-differentiable, the authors in [7], [8] used the
following formula:

Min.(x,xn+1) F (x, xn+1) = xn+1,

subject to (
fi(x)− zi

wi
)− xn+1 ≤ 0 , j = 1, 2, . . . ,M.

gj(x) ≤ 0 , j = 1, 2, . . . , J.
(4)

Here, the new variable xn+1 is added to M number of inequality
constraints to make the problem smooth. To ensure finding a strictly
PO point, the authors used AASF approach as follows:

Min.(x,xn+1) F (x, xn+1) = xn+1,

s.t. (
fi(x)− zi

wi
) + ρ

M∑
i=1

(
fi(x)− zi

wi
)− xn+1 ≤ 0,∀i

gj(x) ≤ 0 , j = 1, 2, . . . , J.
(5)

Since a slack variable xn+1 for this problem will be satisfied by
setting:

xn+1 = maxMi=1(
fi(x)− zi

wi
) + ρ

M∑
i=1

(
fi(x)− zi

wi
). (6)

The weight value can be computed for the i-th objective as follows:

wi =
fi(x)− zi√∑M

k=1 (fk(x)− zk)
2
. (7)

The exact KKTPM problem for a smooth objective function y =
(x;xn+1) given by Equation 5 can be written as follows:

Min.(εk,xn+1,u) εk +
∑J
j=1

(
uM+jgj(x

k)
)2
,

S.t. ‖∇F (y) +
∑M+J
j=1 uj∇Gj(y)‖2 ≤ εk,∑M+J

j=1 ujGj(y) ≥ −εk,
uj ≥ 0, j = 1, 2, . . . , (M + J),
−xn+1 ≤ 0.

(8)
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Fig. 2: A set of non-dominated points may have widely different KKTPM
values.

Where

Gj(y) = (
fj(x)−zj

wj
) + ρ

∑M
j=1 (

fj(x)−zj
wj

)− xn+1 ≤ 0,

j = 1, 2, . . . ,M, and
GM+j(y) = gj(x) ≤, j = 1, 2, . . . , J.

(9)

The above KKTPM optimization problem needs derivative infor-
mation of both objectives and constraints functions at each point,
meaning that the procedure computationally to find exact KKTPM
value at each point is expensive and then takes a long time for any
practical use.
Direct KKT proximity metric is an approximate and computation-
ally fast method with exact the same accuracy for the exact KK-
TPM. This metric has three different approximation procedures (di-
rect εDk , projected εPk and estimated εestk KKTPM computation ap-
proaches) for KKTPM computation. Details of the computational
procedures for both the direct, projected and estimated KKTPM
methods in [8]. The second study [8] showed surprising results, an
estimated εestk KKTPM value are very close to the exact KKTPM
value εk. For more detailed results on exact and direct KKT prox-
imity measures, please refer to the original studies [7], [8].
On a number of MOPs, the exact KKTPM metric introduced many
beneficial aspects, we mentioned here some of these properties as
following [7, 8]:

(1) First, a solution nearer to the strictly PO front has a smallest
KKTPM value, in this manner giving a relatively monotonic
normal for the KKTPM surface on the objective space.

(2) For every feasible solution, The KKTPM value is always
bounded in [0, 1].

(3) It is essential to understand that not all non-dominated solu-
tions are probably going to be near PO front. probably going
to be near the PO front. Figure 2 shows the following:
—For true PO solutions (marked by filled circles), KKTPM

value will be exactly to be zero.
—For all non-dominated solutions that are near to PO front

(marked by open circles), KKTPM value will be small.
—For far away non-dominated solutions (marked by open

boxes), KKTPM value will be large.

(4) Non-weak PO solutions have good KKTPM values than weak
PO solutions.

(5) Non-dominated solutions that have poorly convergence can be
identified using KKTPM value and then improves it by using
an ASF based local search operator [1].
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Fig. 3: ASF procedure of finding PO solution for reference point inside the
feasible objective space (not utopian point) is illustrated.

(6) From all of the above mentioned properties, KKTPM used for
a termination conditions for any multi-objective evolutionary
algorithms instead of running the algorithm a fixed number of
generation which may not be required.

The following section is presented simulation results using the
above KKTPM values and AASF values for ZDT test problems.
But before that, some special cases are discussed for each of the
measures (exact and direct KKTPM) which show the amazing ad-
vantages of these measures

4. RESULTS AND DISCUSSIONS
As mentioned above in Section 2, the ASF or AASF values rely
on the exact location of the reference point z. Hence, what occurs
when change the reference point at PO solutions? Below, an expla-
nation of this case is provided.

(1) An interesting aspect would be when the reference point is
taken R = (r1, r2) inside the feasible objective space (not the
utopian point) as shown in Figure 3, then AASF will produce
negative value for the respective PO solution, but KKTPM
value will be zero at the same reference point R.

Table 1 shows exact KKTPM values, direct KKTPM val-
ues, and AASF values for two random optimum points for
ZDT2 and ZDT4 at different reference points R = (r1, r2)
inside the feasible objective space and under PO front.
For example, first, a random optimal solution is taken for
ZDT2 problem (suppose that x∗1 = 0.3876554, x∗i =
0 for all i = 2, 3, . . . , 30), and with specific weight vec-
tor 1

w
= [2.409008161529888; 1.099176656292937]. sec-

ond, a random optimal point is taken for ZDT4 prob-
lem (suppose that x∗1 = 0.5979065 and x∗i = 0, for
all i = 2, 3, . . . , 30) with specific weight vector 1

w
=

[1.069536852812447; 2.819367284100803]. In both prob-
lems, AASF values are negative at reference points that lie in-
side the feasible objective space, while AASF values are posi-
tive at reference points that lie under the PO front. At any ref-
erence point, exact and direct KKTPM values are close to zero
(at any optimum point). Thus, can be said that KKTPM value,
being close to zero, always indicates closeness to the optimum
solution. Hence, at any point of reference, KKTPM always en-
sures that each PO solution has zero value.
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Table 1. : The augmented ASF, exact and direct KKTPM values are illus-
trated. For number of random reference points that lie inside the feasible
objective space and under PO front with specific weight vectors and ran-
dom optimal solutions for ZDT2 and ZDT4 problems, respectively.

ZDT2

Reference Exact Direct Augmented
points KKTPM KKTPM ASF value

[-0.0001;-0.0001] 0.000000 0.000000 0.935974
[0.5;1.095799564] 0.000041 0.000000 -0.271022
[0.2;0.4383913073] 0.000017 0.000000 0.453031

[1;2.191479992] 0.000082 0.000000 -1.477778
[0.456693776;1.001] 0.000009 0.000000 -0.166612

ZDT4

[-0.0001;-0.0001] 0.000000 0.000000 0.640869
[0.3;0.1137639046] 0.000021 0.000000 0.319259
[1.317964847;0.5] 0.000090 0.000000 -0.771669
[1.317964847;0.5] 0.000034 0.000000 0.104924
[0.8;0.3034738423] 0.000055 0.000000 -0.216579

 

 

 

 

 

 

 

 

 

Obj1 

Obj2 

Different 

Reference 

 Points 

(PO) front 

Weights 

Optimum 

point 

Fig. 4: Weight vectors are such that some of them not intersect with the PO
front are illustrated.

(2) Another case would be when the reference and weight vec-
tors are such that the weight vector does not intersect with the
PO front. In this case, AASF value will be non-zero, while
KKTPM value will be zero for the PO point. Figure 4 illus-
trates this case. For example, a random optimal point is taken
for ZDT3 (x∗1 = 0.4460650 and x∗i = 0, for i = 2, 3, . . . , 30),
with reference point z = (0.4,−0.25) and weight vector 1

w
=

[3.188303073010045; 1.053141707419629] (this weight vec-
tor does not intersect with the PO front). Here, The value of
AASF is 0.147163, while KKTPM value is zero.

(3) Since KKTPM formulation is based on AASF approach, KK-
TPM value will not be zero for weak PO solutions. In this case
also, AASF value will be non-zero. But in strictly PO solution
case, KKTPM value will be zero, while AASF value will be
non-zero. For example, if a random point is taken on weak ef-
ficient front for ZDT2 problem (x1 = 0, x2 = x3 = 0.9 and xi =
0 for all i = 4, 5, . . . , 30). Thus, KKTPM value for this point
is 0.106178 (non-zero) and AASF value is 1.561838. Also,
if a random optimal point is taken on the strict efficient front
for the same problem (for example x∗1 = 0.476065, x∗i = 0 for
all i = 2, 3, . . . , 30). Then, KKTPM value is zero and AASF
value is 0.910099 for the same PO point.

Based on the above properties, KKTPM value will be zero for the
PO solution. While, AASF minimum value is unpredictable for the
PO solution. All the above advantages for KKTPM show the extent
flexible of this metric. In the next subsection, the correlation plot

Obj2 
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Fig. 5: KKTPM values for weak and strict efficient fronts are illustrated.

between exact KKTPM values and AASF values are investigated,
also between direct KKTPM values and AASF values with the spe-
cific weight vector and reference point. The aim of this work, if
there is a perfect correlation, can be used ASF approach as a metric
and no need for KKT proximity measure.

4.1 Two-Objective ZDT Problems
The concentrate is only on a reference point based approach for
finding a single PO solution. Let us fix a reference point (utopian)
and a weight vector. Afterthat, 1000 random points are taken in x-
space, and each of them calculates the KKTPM value for a specific
weight vector and reference point. Thereafter, The AASF value for
each of these points for the same weight and reference vectors is
computed. A correlation plot between exact KKTPM values and
AASF values is created, also between direct KKTPM values and
AASF values. Table 2 shows weights for one random point of 1000
random points for ZTD test problems, which will be used as spe-
cific weights.

Table 2. : Specific weights to ZDT test problems for one random point.

weight
ZDT problems 1

w1

1
w2

ZDT1 4.119836471954109 1.030827551552600
ZDT2 6.486074915527206 1.012101361711274
ZDT3 5.024358032770250 1.020415123125383
ZDT4 357.8956472489180 1.000003903549700
ZDT6 5.546826981150847 1.016658212910996

First, ZDT1 problems has 30 variables and convex efficient front.
In this problem, all the variables lie in the range [0,1]. The efficient
solutions occur for 0 ≤ x∗1 ≤ 1 and x∗i = 0 for i = 2, 3, . . . , 30.
Figure 6 shows the relationship between exact (or optimal) KK-
TPM values ε∗k and AASF values, where 1, 000 random points were
taken in x-space in the range [0,1]. After that, a specific weight is
taken from Table 2 and specific reference point (utopian). There-
after, for each of them, the exact KKTPM values are computed for
the specific weight vector and reference point, and the AASF val-
ues for each of these points are computed for the same weight and
reference vectors. It’s clear that there is no a perfect correlation be-
tween exact KKTPM and AASF values, as evident from Figure 6.
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Fig. 6: Correlation plot between ex-
act KKTPM and AASF values to
1, 000 random points for problem
ZDT1.
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Fig. 7: Correlation plot between di-
rect KKTPM and AASF values to
1, 000 random points for problem
ZDT1.
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Fig. 8: Correlation plot between ex-
act KKTPM and AASF values to
1, 000 random points for problem
ZDT2.
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Fig. 9: Correlation plot between di-
rect KKTPM and AASF values to
1, 000 random points for problem
ZDT2.

Figure 7 shows the relationship between direct KKTPM values
and AASF values, the same 1, 000 random points are taken in
x-space and the same specific weight vector and reference point as
ε∗k case . Thereafter, for each of them, the direct KKTPM values
and AASF values are computed for the same specific weight
vector and reference vectors. Figure 7 shows that there is no exact
correlation between direct KKTPM and AASF values.

Next, ZDT2 problem has 30-variables and non-convex PO front.
All the variables lie in the range [0,1]. The same random points for
ZDT1 problem are used with a special weight from Table 2 and
reference point (utopian). Figure 8 shows the relationship between
exact KKTPM values ε∗k and AASF values for ZDT2 problem.
For 1, 000 random points, the exact KKTPM values for the spe-
cific weight vector and reference point are calculated. Also, for the
same weight and reference vectors, AASF values for each of these
points are calculated. This figure in general shows that increasing
the value of AASF then exact KKTPM grows more slowly.
Figure 9 shows the relationship between direct KKTPM values and
augmented ASF values for ZDT2 problem to the same specific
weight vector and reference point in optimal KKTPM for problem
ZDT2. The same situation as ZDT1 problem above, its clear that
there is no correlation between exact KKTPM and AASF values,
as well as between direct KKTPM values and AASF values. So in
general, there is not sufficient relationship.
The ZDT3 problem has 30-decision variables with disconnected
PO front. Special weight is taken for one of 1000 random points
from Table 2, and reference point. With the special weight and
reference points, AASF values are computed for each of these
random points. Also, both exact and direct KKTPM values are
computed for the special weight and reference points, respec-
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Fig. 10: Correlation plot between
exact KKTPM and AASF values to
1, 000 random points for problem
ZDT3.
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Fig. 11: Correlation plot between di-
rect KKTPM and AASF values to
1, 000 random points for problem
ZDT3.
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Fig. 12: Correlation plot between
exact KKTPM and AASF values to
1, 000 random points for problem
ZDT4.
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Fig. 13: Correlation plot between di-
rect KKTPM and AASF values to
1, 000 random points for problem
ZDT4.
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Fig. 14: Correlation plot between
exact KKTPM and AASF values to
1, 000 random points for problem
ZDT6.
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Fig. 15: Correlation plot between di-
rect KKTPM and AASF values to
1, 000 random points for problem
ZDT6.

tively. In both Figures 10 and 11 show that there is no perfect
correlation between exact KKTPM values and AASF values and
also between direct KKTPM values and AASF values, respectively.

The 30-variable ZDT4 problem is multimodal and has about 100
local PO fronts. With special weight for this problem (Table 2)
and with the same procedures as in above test problems. Figures
12and 13 shows the relationship between both exact and direct
KKTPM values and AASF values respectively. From these figures,
its clear that there is no perfect correlation plot between exact KK-
TPM values and AASF values, and also between direct KKTPM
values and AASF values. In this problem, that most the random
points are far way from the efficient front as shown in Figures
12and 13.
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Fig. 16: Correlation plot between exact KKTPM and AASF values to 1, 000

random points for problem ZDT1 with another specific weight vector.

Now, the 10-variable ZDT6 problem has a non-convex PO set. All
variables lie in the range [0,1]. As the same previous problems, As
the same previous problems, the specific weight vector is taken
from Table 2.The exact KKTPM, direct KKTPM and AASF values
are computed for 1,000 random points. It can be observed that
there is no perfect correlation between exact KKTPM values and
AASF values, also between direct KKTPM values and AASF
values, as shown in Figures 14 and 15, respectively.

Finally, if another specific weight vector is taken for the
same 1,000 random points for any ZDT problem. For exam-
ple ZDT1 test problem, another specific weight vector is 1

w
=

[15.247832629570404; 1.002157533327201] With the same ref-
erence point (utopia) previously used for ZDT1 problem. Figure 16
shows changes in the value of augmented ASF. Here, AASF value
is large but the values of KKTPM are not changed. This change can
be seen by comparing between Figures 6and 16.

5. CONCLUSIONS
The relationship between KKTPM and AASF values was studied
in this paper. The aim of this study was to know the advantages and
disadvantages of both measures. KKTPM can be used as metric
to know if we have a set of solutions how we are close to the true
PO solutions without any given knowledge about these efficient PO
set. One of the most important advantages is that KKTPM can be
used as a termination criterion to optimization algorithms, such as
evolutionary multi-objective optimization methods. Since the KK-
TPM metric for MOPs based on AASF approach which guaran-
tees to find any PO solution, some special cases were discussed to
know the advantages of both the KKTPM and AASF approaches.
By studying these special cases, it was observed that approximate
KKT proximity measure is an essential measure of convergence.
Also, in this work a correlation plot between KKTPM values and
AASF values was investigated for ZDT test problems. The aim of
this study if there was a perfect correlation, the AASF approach can
be used as a metric and KKTPM is no need. Through this study,
a perfect correlation between KKTPM values and AASF values
cannot be obtained, therefore, AASF cannot be used as a metric.
Hence, can be said that KKT proximity measure is better.

6. REFERENCES

[1] Mohamed Abouhawwash, Haitham Seada, and Kalyanmoy
Deb. Towards faster convergence of evolutionary multi-
criterion optimization algorithms using karush kuhn tucker

optimality based local search. Computers & Operations Re-
search, 79:331–346, 2017.

[2] Roberto Andreani, José Mario Martı́nez, and Benar Fux
Svaiter. A new sequential optimality condition for constrained
optimization and algorithmic consequences. SIAM Journal on
Optimization, 20(6):3533–3554, 2010.

[3] Johannes Bader, Kalyanmoy Deb, and Eckart Zitzler. Faster
hypervolume-based search using monte carlo sampling. In
Multiple Criteria Decision Making for Sustainable Energy
and Transportation Systems, pages 313–326. Springer, 2010.

[4] Dimitri P Bertsekas, Angelia Nedi, Asuman E Ozdaglar, et al.
Convex analysis and optimization. 2003.
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