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ABSTRACT 

Bitcoin is an established cryptographic digital currency whose 

value lays in the computational complexity rather than a 

physical commodity. Bitcoin is an open source software 

program with three aspects. (i) Peer-to-Peer network – low 

barrier entry; (ii) Mining – inevitable concentration of power; 

(iii) Software upgrades. The nodes on the network follow a 

decentralized consensus for establishing the value of ledger 

and updating the blockchain which serves as a single source 

of truth for all transactions. As cryptocurrencies are 

developing more compelling utilities, creating ever faster and 

safer payment systems they are shifting the “money 

paradigm”. Bitcoins are an evolution in money and provide a 

unique opportunity to forecast their price unlike the existing 

fiat currencies. The goal of this paper is to implement, train 

and evaluate several machine learning models in order to 

predict the price of the most popular cryptocurrency – 

Bitcoins. The various machine learning algorithms employed 

are – Linear Regression, K-Nearest Neighbors, Ridge 

Regression, Lasso Regression, Polynomial Regression, Linear 

Support Vector Machine, and Kernel Support Vector 

Machine. 
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1. INTRODUCTION 
Bitcoin is a novel cryptocurrency that was established in 

2009. Bitcoin transactions take place on the blockchain that 

enables the users to be anonymous. The blockchain 

technology is powered by a network of computers that follow 

a decentralized protocol through which the nodes reach a 

consensus and verify every bitcoin transaction that occurs.  

The nodes are independently and constantly solving the “hash 

puzzles” in order to identify and authentic transactions and 

append them to the block chain. This process is termed as 

mining and the nodes are rewarded with Bitcoins for their 

tedious efforts. Bitcoin is a decentralized peer-to-peer network 

with nodes across the globe [1].  

Fiat currencies are regulated by the government and have 

central authority to establish the policies to achieve economic 

stability, growth and currency value. Bitcoins, on the other 

hand, by design take a decentralized approach. There is no 

middle man in this system. The monetary value of the Bitcoin 

is influenced by various factors. (i) Limited Supply – the total 

number of Bitcoin is limited to 21 million, this has a huge 

influence on the supply and demand of the Bitcoins. (2) 

Prestige/Credibility – Bitcoin is a “grand” financial 

experiment and widely recognized digital currency. (3) Media 

– positive news coverage leads to potential surge in Bitcoin 

demand. (4) Access – Bitcoin can be traded in cryptocurrency 

exchanges around the world. (5) Acceptance – Increase in 

businesses and service providers accepting Bitcoin as a 

payment and financial services and offering Bitcoin trading 

options could drive the Bitcoin demand. (6) Digital evolution 

– better hardware, improving computation speed, enabling 

safer transactions, reduced fees and accelerated transaction 

window increase Bitcoin demand [2]. 

The significant contributions of this paper are as follows. 

Firstly, identify the factors that influence the market price of 

the Bitcoin. Secondly, utilize several machine learning 

approaches to train the model and predict the Bitcoin price 

given the features of importance. Thirdly, apply the trained 

model to evaluate its performance on the test set and identify 

the machine learning algorithm that provided the optimum 

result intended to forecast Bitcoin prices. Lastly, improve the 

algorithm by tuning the performance and consider a larger 

subset of factors influencing the Bitcoin price.      

2. RELATED WORK  
Bitcoin as a cipher currency was published in 2009 as a 

research work under the pseudo name Satoshi Nakamoto. 

Since its inception and rise of the social media the current 

research is mostly focused on classifying the sentiment of the 

population in order to identify the inclination of the public 

towards Bitcoins.  

A thesis published by KTH Royal Institute of Technology, 

predicts Bitcoin prices using twitter sentiment analysis 

system. They examined 2.27 million Bit-coin related 

sentiments and attributed to the fluctuations in the Bitcoin 

price based on the severity of the twitter feed over periods 

ranging from 5 minutes to 4 hours. The model provided an 

accuracy of 79% [3]. 

Studies conducted on the time series model of the Bitcoin 

prices with specific technical rules is the new market variable 

and its characteristics are considered a financial assets. It 

utilizes the GARCH model to explore the time series of the 

Bitcoin. The GARCH (Generalized Autoregressive 

Conditional Heteroskedasticity) process helps describe 

financial market fluctuations and volatile climate. 

Certain studies are conducted on estimation of Bitcoin prices 

using categorized financial information. A linear model is 

built to predict the Bitcoin price based on data that is clustered 

into several market forces, investor interests, and global 

market-financial factors. The model assumes that market 

forces and investor interests dominant the Bitcoin price 

estimations when compared to global financial factors. 
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Bitcoin pricing process using machine learning techniques 

have also been conducted. Multiple deep learning techniques 

– Recurrent Neural Network (RNN), Long short-term memory 

(LSTM), Bayesian Neural Network, and Autoencoders have 

been utilized to train the model to forecast the Bitcoin prices 

[4]. 

The current study systematically identifies factors influencing 

Bitcoin fluctuations and builds multiple machine learning 

models to enhance the Bitcoin predictive performance.  

3. DATASET AND FEATURES 
The Kaggle Bitcoin Data was considered for this study. This 

dataset was utilized to make inference from, as it was the most 

available and had ample number of features and adequate 

samples to draw conclusive inference.  

3.1 Features 
The Bitcoin dataset consists of 24 features. The features 

include date, market price, total bitcoins mined, market 

cap/supply, trade volume, block size, average block size, 

number of orphaned blocks, number of transactions per block, 

median confirmation time, hash rate, difficulty, miners 

revenue, transaction fee, cost per transaction, unique 

addresses, number of transactions, total transactions, number 

of transaction excluding 100 popular addresses, number of 

transactions excluding chains longer than 100, output volume, 

estimated transaction volume, estimated transaction volume in 

USD value. 

Not all features provide significant information to estimate 

Bitcoin prices. Basic visualization of the features provides 

vital insight to choose features that can affect forecasting 

process. 

3.2 Preprocessing 
The dataset consists of 3000 samples, 30 samples had missing 

feature bitcoin trade volume. It constituted 1% of the dataset. 

Figure1. Plot of Kaggle bitcoin dataset with missing data. 

Although it was possible to discard the records with missing 

trade volume, it could be possible that these records could 

provide significant data to enhance the Bitcoin forecasting 

process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore previous value imputation technique was employed 

to treat the missing values. Figure 2 - 4 show visualization 

plots to identify column-wise missing data. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Kaggle bitcoin dataset with missing data 

 

Figure 2: Total bitcoin and Trade Volume 

Missing Data Plot 

 

Figure 3: Median Confirmation Time and Bitcoin 

Difficulty Missing Data Plot 

 

Figure 4: Block Size and Transaction Fee Missing 

Data Plot 
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Furthermore the dataset was tested for correlation of the target 

variables with other predictor variables. Columns with high 

correlation can be removed as it otherwise could lead to 

overfitting the model.  

From the correlation plot the following inferences can be 

drawn. The ‘Date’ feature does not contribute to the ‘Bitcoin 

Market Price’ hence can be ignored. Moreover features 

‘Market Cap’ and ‘Miners Revenue’ are highly correlated 

with the target variable ‘Bitcoin Market Price’ so these 

columns must be removed from the dataset as it could affect 

the accuracy of the model and the machine learning model 

will overfit. 

Additionally, since the column dataset has high variability it 

must be scaled. The min-max scaling method is applied on the 

dataset. Finally from the processed points, the data was 

randomly split into 80% training set and the remaining 20% 

was for testing. 

4. MACHINE LEARNING MODELS 
The goal of this paper is to build machine learning models to 

predict the price of the bitcoin given its volatile nature when 

compared to fiat currency. Seven models were built to train 

the data and thereafter evaluate the performance on the test set 

[5]. 

4.1 Linear Regression Model 
Regression analysis is an important tool for modeling and 

analyzing data. It is a form of predictive modeling technique 

to investigate the relationship between dependent (target) and 

independent variables (predictor). The model fits a curve/line 

through the data points in a manner that minimizes the 

differences between the distances of the data points. The 

Regression Machine Learning Block Diagram is shown in 

Figure 5. 

Linear Regression establishes the relationship between the 

target (Y) and independent variables (X) using a best fit 

straight line. The model calculates the best-fit line for the 

observed data by minimizing the sum of the squares of the 

vertical deviations from each data-point to the line. The model 

performance is evaluated using the metrics RSS (Residual 

Sum of Squares). The equation of a linear regression model is 

given in Eq. (1). 

                                (1) 

Where    is the predicted label,   is the bias (y-intercept),  , 

…,   are the multiple input features,   ,…,   are the 

weights of the corresponding feature inputs,   - epsilon – error 

term. 

The Linear Regression model is implemented in the project to 

fit the best line with minimum cost through the dataset in 

order predict the target (btc_market_price) given the input 

features. For the given scenario the linear regression model 

performs the following operations. 

i. The linear regression model fits a line through the dataset 

which can be represented by estimated parameters. 

ii. Given the estimated parameters like slope, intercept and 

other coefficients compute the predicted value. 

iii. Compute the Prediction error – which is the difference 

between original and predicted value. 

iv. Update the coefficients – compute the derivative, 

adjustment of the step-size and decrease the slope accord to 

hill descent algorithm. 

v. Compute the magnitude of the gradient as shown in Eq. 2 

               
    

Where yi is the original data, h(xi) is the estimated output and 

w is the weight of each feature. 

vi. Check for convergence. If the magnitude of the gradient is 

less than the tolerance factor then stop the computation 

process and return the model and the respective coefficients.  

 

The model searches over all possible lines and finds the 

smallest possible residual sum of squares.   

 

 

4.2 K-Nearest Neighbors Model 
The KNN algorithm is a non-parametric and instance-based 

supervised learning algorithm. Non-parametric means it 

makes no explicit assumptions about the underlying data 

distribution. Instance-based learning means that the algorithm 

does not explicitly learn the model instead chooses to 

memorize the training instances which are subsequently used 

in the training phase. The similarity is defined by the distance 

metrics between the data points. Common choices for the data 

metrics are Euclidean, Manhattan, Chebyshev and Hamming 

distance. The choice of distance metrics leads to different 

predictive surfaces as shown in Figure 6. 

 

 

 

The distance metric chosen for the project is the Minkowski 

distance. It is the generalization of the Euclidean distance and 

Manhattan distance as shown in Eq (3). 

                
 

 

   

 
 
               

Where d is the similarity metrics, x and y are variables. When 

p is set to 1 the distance metrics is transformed to Manhattan 

distance and p=2 is equivalent to the Euclidean distance. The 

Scaled Euclidean distance is a variant of the Euclidean 

Distance metrics. The weight on each input is applied to 

(2) 

Figure 5: Regression Machine Learning Block Diagram 

Figure 6: Predictive surface based on distance metrics 
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emphasize the importance of the feature. Eq (4) represents the 

Scaled Euclidean Distance where          are the weights 

on each input. 

                     
               

         

For a given positive integer K (nearest neighbors), 

observations x and metrics d, the KNN algorithm performs the 

following: 
i. Initializes the Distance Dis2Knn parameter by sorting the 

first k data records in the dataset based on the query bitcoin 

record. 

ii. For the remaining observations, the distance    difference 

between the observation and query is computed. 

 - If    < Dis2Knn, recompute the distance metrics, remove 

the furthest bitcoins, shift the queue and insert new nearest 

neighbors. 

iii. Return K most similar bitcoins. The prediction is obtained 

by taking the average over all the estimated outputs. 

4.3 Ridge Regression 
Ridge Regression is a remedial measure taken to alleviate 

multicollinearity amongst regression predictor variables in a 

model. Often predictor variables used in a regression are 

highly correlated. Ridge Regression performs L2 

regularization, which adds a penalty equal to the sum of the 

square of the magnitude of the coefficients. 

As model complexity increases, the bias decreases while the 

variance increases this leads to model overfitting. Bias is the 

amount by which the expected model prediction differs from 

the true value. Variance is the amount by which the target 

function changes while it is being trained on the data. 

Alternatively it is the models flexibity to tune itself with the 

data points in the dataset. When a model is highly specific to 

the training set it is Overfit. Ridge Regression automatically 

balances between the Bias and Variance which is required to 

achieve a good predictive performance. Overfitting is a 

generic issue with complex models and it can be detected 

since the estimated parameters magnitude becomes very large. 

Ridge Regression attempt to balance between (i) Best 

predictive function fit through the data and (ii) The model 

complexity. The quality metrics or the total cost is a 

combination of the measure of fit and the measure of the 

coefficient magnitude. Measure of fit is the RSS (Residual 

Sum of Squares) – sum of the square of difference between 

the actual and observed data points as shown in Eq 5. Measure 

of magnitude of coefficients is the L2 norm - sum of squares 

of the coefficients Eq 6. The Total cost of Ridge Regression is 

given in Eq 7. 

Measure of fit                          
          

Measure of coefficient magnitude  

          
     

     
        

                             

Total Cost =                 
                       (7) 

Where   is a tuning parameter chosen to balance the fit and 

coefficient magnitude. In general when   is small the 

coefficient magnitude is large and when   is infinite the 

coefficients tend to zero. Figure 7. Shows the Ridge 

Coefficients as a function of the regularization. 

 

 

 

The Ridge Regression algorithm performs the following steps: 

i. Initialize the coefficients to zero (w=0) at t=1. 

ii. While the Residual sum of squares is not within the 

threshold limit (ε), compute the estimated coefficient at the 

next iteration as a function of the total cost of ridge regression 

on the training set. 

ii. Use the validation set to select the tuning parameter    such 

that the estimated coefficients      minimizes the error on the 

dataset. 

iii. Approximate generalization error of     , using the test set. 

In case of insufficient data to form a separate validation set 

then performs K-Folds Cross-Validation. The training set is 

divided into blocks and each block is treated as a validation 

set during each iteration. The training blocks are used to 

estimate the coefficients while the error is computed on the 

validation block. The average error across all validation set is 

computed. 

 

4.4 LASSO Regression 
LASSO is an acronym for Least Absolute Shrinkage and 

Selection Operator. It is an alternative to the least square 

estimate to avoid overfitting in the presence of a large number 

of independent variables [6]. 

Large coefficients are significant since it emphasize features 

that could be good predictors of the outcome. Lasso 

regression performs L1 regularization that adds the penalty 

equivalent to the absolute value of the magnitude of the 

coefficients. L1 regularization leads to sparse solutions. The 

total cost of LASSO Regression is the contribution from the 

measures of fit and L1 penalty as formulated in Eq 8. 

 

Total Cost =                
 
                              (8) 

Where        is the measure of fit of the model,      
 
 is 

the L1 penalty and is the sum of the absolute values of the 

coefficients,   is the tuning factor that controls the strength of 

the penalty. When      then it is a simple linear regression 

model. When   = ∞:  then all coefficients are zero. When   is 

in between, LASSO Regression attempts fit a linear model on 

the dataset and shrinks the coefficients. 

The LASSO procedure encourages simple and sparse 

solutions. This causes some coefficients to be shrunk to zero 

and is able to perform feature selection. As   value increases, 

more coefficients will be set to zero and they can be discarded 

and only features with significant magnitude can be taken into 

Figure 7: Ridge Coefficient Path 
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consideration. Figure 8. Shows the LASSO Coefficients as a 

function of the regularization. 

 

. 

The Ridge regression shrinks all coefficients towards zero; the 

lasso tends to give a set of zero coefficients and leads to 

sparse solutions.  

4.5 Polynomial Regression 
Polynomial regression is a form regression analysis in which 

the maximum power of the independent variable is more than 

one. The polynomial regression model for a single predictor X 

is given in Eq 9. 

            
       

                      

Where h is the degree of the polynomial. When h = 2 it is a 

quadratic model, h = 3 is a cubic model. These models allow 

non-linear relationship between Y and X, but are still 

considered linear regression since the regression coefficients 

are linear        . Since the model consists of powers of a 

single feature it is not possible to hold the other values still 

while focusing on one coefficient.  

The cost of implementing a polynomial regression model is 

equivalent to the Residual Sum of Squares which is the square 

of the sum of difference between the original and predicted 

values. For a Dataset consisting of D features and N 

observations, then the total complexity in computing RSS is 

given in Eq 10. 

                                               

The polynomial Regression model performs the following 

operations:  

i. The dataset is split three-ways into training set, validation 

set and test set. 

ii. Select the degree of the polynomial in a wide range (1, 15). 

iii. Train the polynomial regression model, by providing the 

current polynomial degree, input feature, target feature. 

iv. Compute the Residual Sum of Squares on the validation 

set. 

Return the polynomial degree that had the lowest cost (RSS) 

on the validation set. Consider the chosen degree from the 

validation set to assess the performance on the test set. 

A polynomial Regression model should adhere to the 

hierarchy principle, which says that if your model includes    

and    is shown to be a statistically significant predictor of Y, 

then the model should also include each    for all j<h, 

whether or not the coefficients for these lower-order terms are 

significant. 

 

4.6 Linear Support Vector Machine 
Support Vector Machine (SVM) is a supervised Machine 

learning algorithm. Support Vectors are the data points that lie 

closest to the decision surface or the hyperplane. This data has 

a direct bearing on the optimum location of the decision 

surface. SVMs maximize the margin around the separating 

hyperplane. The decision function is fully specified by a 

subset of the training samples. [9] 

Input to the SVM is the set of training pair samples, and the 

Output is a set of weights w for each feature whose linear 

combination predicts the target value y. Key point is in SVM 

optimization of the margin is employed to reduce the number 

of weights that are non-zero to just a few that correspond to 

the important features that matter in separating hyperplane. 

The non-zero weights correspond to support vectors since 

they “support” the separating hyperplane. 

One of the most important ideas in Support Vector Machines 

is presenting the solution by using a small subset of the 

training subset to give enormous computational advantage. 

Using the epsilon intensive loss function the global minimum 

can be ensured and the optimization of reliable generalization 

bound can be obtained. Figure 9. Detailed picture of the  

epsilon band with slack variables and selected data points. 

 

 
 

 

 

In SVM regression, the input space x is first mapped onto a 

m-dimensional feature space using a fixed nonlinear mapping; 

thereafter the linear model is constructed in the feature space. 

Using the mathematical notation, the linear model is given in 

Eq 10. 

                    

 

   

                               

   

Where        is the features space,       denotes a set of 

non-linear transformations, b is the “bias” term. 

The Linear SVM algorithm is implemented by setting the 

Kernel parameter to linear; moreover it is implemented as 

liblinear that gives the model more flexibility in terms of 

choice of penalties and loss functions that enhances the 

models scalability. The parameters chosen for the model are:  

i. Kernel – It is set to “linear” to perform linear regression. 

ii. C – It is the L2 penalty parameter. As the parameter 

magnitude increases, the regularization is reduced. 

iii. Epsilon – It is a loss function and the value of this 

parameter depends on the scale of the target value. 

 

Figure 8. LASSO Coefficient Path 

Figure 9. Epsilon bandwidth and selected data 

points 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 182 – No. 24, October 2018 

44 

4.7 Kernel Support Vector Machine 
The idea of a Support Vector Machine for non-linear 

regression is to build a mapping        from the original 

m dimensional feature space   to a new feature space   .In the 

new space    the relationship between the new feature vector 

     and target   is considered linear [8]. By building a 

proper mapping, the nonlinear relationship can be 

approximated. 

The SVM performs regression by using the -insensitive 

loss and attempts to minimize the model complexity |      - 

the L2 norm. The SVM regression is formulated to minimize 

the loss function given in Eq 11. 

 
 

 
                 

   
                      (11) 

 

Where C,   are the SVM meta-parameters and        is the L2 

regularization parameter. The optimization problem can be 

addressed by the Kernel function as shown in Eq 12. 

 

             
          

   

   

                     

Where     is the number of Support Vectors (SVs) and 

        is the Kernel function.   

 

Commonly used kernels include radial basis function kernel 

                          and the sigmoid function 

kernel                      , where  ,    and   are 

kernel parameters than can be tuned [9]. The Kernel employed 

in the Bitcoin estimation project is the Radial Basis Function 

(RBF) Kernel. 

The RBF kernel on samples represented as feature vectors in 

input space can be recognized as the square of the Euclidean 

distance between the feature vectors. The value of the RBF 

Kernel decreases with distance and ranges between 0 and 1. 

When employing SVM with Radial Basis Function to train a 

dataset two parameters must be considered.  

i. C – determines the tradeoff between the model complexity 

and deviation tolerance   . If C is large, then the objective 

reduces to identifying the deviations larger than   that can be 

tolerated in the optimization formulation. 

ii. gamma – It defines the extent of influence a training 

example has on the model. If gamma is large, then the radius 

of area of influence of the support vectors only includes 

support vectors and C penalty factor cannot prevent 

overfitting. The model is prone to overfitting and is in a low 

bias / high variance state. When gamma is very small, the 

model is too constrained to capture the complexity and hence 

fails to identify the data shape. It behaves like linear model 

with a set of hyperplanes separating the data points. 

 

5. RESULTS 
Brief summary of the results generated by applying the above 

methods to the historical bitcoin dataset is presented in this 

section. The dataset was split into two portions, 80% of the 

dataset was used for training while the rest 20% was used for 

testing. 

 

5.1 Linear Regression Model 
The Linear regression model was the first model trained to 

predict the Bitcoin market price given the input features. The 

model performed well and produced good accuracy. The 

Linear regression model has no hyperparameters to tune the 

algorithms performance. The values of the coefficients and 

cost of the linear regression model is provided in Table 1. 

 

Table 1. Linear Regression Model Coefficients and 

Accuracy 

Model Information Values 

Intercept -0.00440126 

Coefficients 

 
0.008128    0.010289 1.194470 
-0.012411   0.007715 0.028568 
0.012052 0.066543 0.320372 
0.051178 0.006806 0.187696 
0.052609 0.093790 -1.305774  

-0.069781 -0.054105 -0.033170 
-0.026893     0.593628  

 
 

Training RSS 97.41% 

Test RSS 97.99% 

Mean Square Error 0.000329838203834 

 

5.2 K-Nearest Neighbors Model 
The K-Nearest Neighbors Model is used in the project. A 

range of alpha values are employed in the algorithm to test the 

performance. Furthermore Grid Search Logic is introduced for 

hyperparameter tuning. Additionally, cross-validation is done 

to verify the Residual Sum of Squares on the Training and 

Test data set. The KNN model parameters and accuracy is 

listed in Table 2. 

Table 2.  K-NN Model Parameters and Accuracy 

Model Information Values 

Alpha range 1,2,3,4,5,6,7,8,9,10 

Distance Metrics Minkowski 

Leaf Size 30 

Cross Validation 

Folds 
5 

Grid Search Best 

Score 

- 1.66906363028 

Grid Search Best 

Estimator 
10 

Training RSS 98.77% 

Test RSS 98.81% 

Mean Square Error 
0.000213874440035 

 
 

5.3 Ridge Regression Model 
The Ridge Regression algorithm trained the model to penalize 

for overfitting. It introduced an additional L2 regularization 

term to trade off between bias and variance. The Grid Search 

logic was used to perform parameter tuning on the model. 

Moreover the cross-validation technique was used to validate 
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the r-squares values of the training and test dataset. The Ridge 

Regression model details and results are given in Table 3. 
 

Table 3.  Ridge Regression Model Metrics and Accuracy 

Model 

Information 
Values 

Alpha range 0.0001, 0.001, 0.01, 0.1, 0, 1, 10, 100  

Cross Validation 

Folds 
5 

Grid Search Best 

Score 

- 186.016540236 

Grid Search Best 

Estimator 

100.0 
 

Intercept -0.0043451 

Coefficients 

 
-1.81e-02 -1.81e-02 4.63e-02 
2.54e-03 -1.4e-02 2.71e-03 
4.36e-04 9.41e-02 9.75e-02    
4.38e-02 8.89e-05    1.09e-01 
3.26e-02 7.67e-03 4.8e-02 
2.97e-03 5.28e-03 -2.24e-03   
-2.47e-03    9.16e-02  

 
 

Number of non-

zero features 
20 

Training RSS 74.6% 

Test RSS 11.5% 

Mean Square Error 
0.0037794297444 

 

 
 

5.4 LASSO Regression Model 
The Lasso Regression algorithm introduces the L1 

regularization term that plays a vital role in feature selection. 

The Grid Search logic is applied in this model for 

hyperparameter tuning in order to achieve optimum 

performance. A maximum of 100000 iterations are computed 

using the LASSO regression model.  The model performed 

well with high accuracy. The 5-folds cross validation set is 

used to evaluate the quality metrics of the training and test 

datasets. The Lasso Regression evaluation metrics and results 

are tabulated in Table 4. 
 

5.5 Polynomial Regression Model 
While a polynomial regression algorithm with degree set to 2 

was used to train the model, the model achieved 100% 

accuracy. This high accuracy rate could be an indication of the 

model overfitting. Hence a Ridge polynomial algorithm was 

applied to the model to prevent overfitting and achieve a 

better predictive estimate of the Bitcoin market price. The 

polynomial Regression accuracy data is presented in Table 5. 

5.6 Linear Support Vector Machine 
The meta-parameters chosen for Linear SVM model are C, 

gamma and epsilon  . Grid Search Logic is implemented in 

order to access and retrieve the optimum values of the hyper 

parameters. Moreover 5-fold cross validation set is used to  

Table 4.  LASSO Regression Model Metrics and Results 

Model 

Information 
Values 

Alpha range 

0.0001, 0.001, 0.01, 0.1, 0, 1, 10, 100, 

1000  

Cross Validation 

Folds 
5 

Grid Search Best 

Estimator 

100.0 
 

Grid Search Best 

Estimator 
0.0001 

Intercept 
--0.00398762 

Coefficients 

 
-0.003 0 0 

0 0.0016 0 
0 0.0283 0.289 
0 0  0.165 
0 0 -0.038 
0 -0.0009 0 
0   0.6527  

 
 

Number of non-

zero features 
8 

Training RSS 97.3% 
Test RSS 97.7% 

Non-zero weight 

Features 

 
btc_estimated_transaction_ 

volume_usd 
0.653 

 
btc_difficulty 

 
0.289 

 
btc_cost_per_transaction 

 
0.165 

 
btc_n_transactions_total 

 
-0.038 

 
btc_hash_rate 0.028 

 
btc_total_bitcoins 

 
-0.003 

 
btc_n_orphaned_blocks 

 
0.002 

 
btc_n_transactions_excludin

g_chains_longer_than_100 
-0.001 

 
 
 

Mean Square Error 
0.000356525918013 

 

Table 5.  Polynomial Regression Model Accuracy 

Model Information Values 

Polynomial Regression Metrics 

Training RSS 100% 

Test RSS 100% 

Ridge Polynomial Metrics 

Training RSS 99.7% 

Test RSS 99.6% 
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verify the cost and quality metrics of the model. The obtained 

hyperparameters are used in the algorithm to train the model. 

The range of meta-parameters and the obtained results from 

the Linear SVM model are enlisted in Table 6. 

Table 6.  Linear SVM Hyperparameters and Accuracy 

Model Information Values 

C – input range 0.01, 0.1, 1, 10 

gamma – input range 0.001, 0.01, 0.1, 1 

epsilon – input range 0.001, 0.01, 0.1, 1 

C – best estimate 0.01 

gamma – best estimate 0.001 

epsilon – best estimate 0.001 

Training RSS 91.2% 

Test RSS 37.1% 

Mean Square Error 0.00126957559829 

 

5.7 Kernel Support Vector Machine 
A Radial Basis Function SVM Kernel is used in the project to 

train the input features to achieve better predictive estimation 

of the Bitcoin Market Price. The Kernel hyperparameters such 

as C, gamma and epsilon   are set to tune the algorithms 

performance. Similar to the Linear SVM model, the Grid 

search Logic is implemented on 5-fold Cross Validation set in 

order to achieve the optimum meta-parameters. The estimated 

parameters are then used to train the model and predict the 

results. The Kernel SVM (RBF) metrics and model accuracy 

is shown in Table 7. 

Table 7.  Kernel SVM Metaparameters and Accuracy 

Model Information Values 

C – input range 0.001,0.01, 0.1, 1, 10 

gamma – input range 0.01, 0.1, 1, 10 

epsilon – input range 0.01, 0.1, 1, 10 

C – best estimate 0.1 

gamma – best estimate 0.01 

epsilon – best estimate 0.01 

Training RSS 95.28% 

Test RSS 61.85% 

Mean Square Error 0.000726112680019 

 

6. CONCLUSION 
Although the dataset has numerous features, all the features 

did not contribute significantly to the Bitcoin Price forecast 

objective. From Data Visualization models and correlation 

plots it was observed that ‘Date’ column did not add any 

predictive information on the target variable ‘Bitcoin Market 

Price’. Additionally columns ‘btc_market_cap’ and 

‘btc_miners_revenue’ were highly correlated with target and 

therefore these columns were removed from the dataset as it 

could affect the model accuracy and lead to overfitting. 

Moreover since the data columns had high variability the min-

max scaling technique was applied on the dataset. 

According to the model analysis, the K-Nearest Neighbors 

model provides the best accuracy of 98.77% of the training set 

and 98.81% on the test set. Additionally the KNN model has 

the lowest Mean Square Error and does not indicate 

symptoms of overfitting. Although the polynomial model 

gave 100% accuracy, it is highly likely that the model is 

overfit. 

7. FUTURE WORK 
The Bitcoin digital currency has evolved from a novel 

financial experiment to a major currency with exchanges all 

over the globe. The current market capitalization of Bitcoin is 

more than $125 billion. The blockchain technology is used to 

maintain a ledger of all bitcoin transaction and actively track 

and analyze at micro-economic level. Since Bitcoin presence 

is becoming dominant it is imperative to assess, predict and 

value this cryptocurrency. Statistical models need to be 

developed to forecast trading price of the Bitcoins by using 

data stream from the transaction network and other 

economical indicators in combination with Machine Learning 

algorithms like Convoluted Neural Networks, Recurrent 

Neural Network, and LSTM [10]. Additional investigation is 

required to identify unseen market conditions that can have a 

significant influence of the Bitcoin price. Work should be 

conducted to improve the performance of regression models 

by inducing additional hyper-parameters and optimizing 

trading strategy in correlation with the prediction. 

Furthermore, Wavelet coherence can be used to study the 

movement to digital currency alongside related factors and 

explore the relationship between different ciphercurrencies. 
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