
International Journal of Computer Applications (0975 – 8887)

 Volume 182 – No. 25, November- 2018

12

A Theoretical Framework for Software Vulnerability

Detection based on Cascaded Refinement Network

Richard Amankwah
Presbyterian College of Education
P. O Box 27 Akropong-Akuapem

Ghana

Patrick Kwaku Kudjo
Sch. of Comp. Sci.
Datalink Institute

P.O. Box CO2481

Beatrice Korkor Agyemang
Presbyterian College of Education

P. O Box 27
Akropong-Akuapem

Ghana

Kofi Mensah
Presbyterian College of Education
P. O Box 27 Akropong-Akuapem

Ghana

Bright Brew
Presbyterian College of Education
P. O Box 27 Akropong-Akuapem

Ghana

Samuel Yeboah Antwi
Presbyterian College of Education
P. O Box 27 Akropong-Akuapem

Ghana

ABSTRACT
Software vulnerability detection is an active area of research

in the software engineering domain. This is partly due to the

continuous disclosure of security vulnerabilities. Although

previous studies demonstrate the usefulness of employing

several detection techniques, models, tools in detecting

software vulnerabilities, the improvement of effectiveness of

these detection models and tools is still a major challenge to

researchers and practitioners. Cascaded Refinement Network

(CRN) is novel model that has been successfully applied in

several domains of studies such as image analysis, however its

application to the field of vulnerability analysis has not been

investigated. Motivated by the model effectiveness in these

fields of studies, we investigate its feasibility within the

domain of vulnerability detection using a theoretical

framework. The analysis involves first presenting a general

overview of the static analysis tools, and then an overview of

the theoretical framework for vulnerability detection based on

the CRN. The preliminary findings show that the concept is

feasible within the domain of vulnerability detection.

General Terms
Software Engineering, Information Security

Keywords
Software Vulnerability; Static Analysis; Cascaded Refinement

Network

1. INTRODUCTION

The existence of vulnerabilities in software products are

catalyst for attack. Although there is no universal definition

for software vulnerability, previous studies have given varied

explanation of the concept. Kanga et al. [1] defined software

vulnerability as the fault that can be viciously cause damage

to software systems. In another study, Krsul [2] describe

software vulnerability as defects in software systems that

allows an attacker to violate an explicit or implicit security

policy to achieve some impact. Jimenez et al. [3] as well

defined software vulnerability as a flaw, weakness and

errors in software systems that can be exploited by an attacker

in order to alter the normal behavior of the system. The

aforementioned definitions clearly show that software errors

are the main causes of information security breaches. It is

worth noting that if these vulnerabilities are not detected and

corrected it creates an avenue for attackers to exploit that

weakness and break into the software product, hence the need

to investigate the various strategies and techniques that can be

used in detecting and fixing these weaknesses. Recently,

several models, techniques and tools have been proposed to

find such weaknesses, the most widely applied tool are the

static analysis tools. The static analysis involves analyzing

the source code of a program without executing the actual

programs, thus avoiding the risk associated with the execution

of the malicious programs [4]. According to Black and Fong

[5] static analysis techniques are software security assurance

tools that detect flaws at various stage of the software

development life cycle. Additionally, the static analysis

techniques and tools are very effective in bug identification

because of its rapidity, simplicity [6]. Generally, the static

analysis tools detect security vulnerabilities by scanning the

program source code. It is important to reiterate here that,

researchers and practitioners often expend more efforts to

detect and analysis static vulnerabilities in software

application written in high-level language, such as C, C++,

C#, Java, or PHP because it often involves the analysis of

several hundreds of source codes. This makes the detection of

vulnerability in source code a very difficult task.

Hence the need to investigate other alternative

techniques and tools that can effectively be applied for

improved vulnerability detection. Although researchers have

used static analysis tools to detect a lot of loopholes in

software in recent years and published them in major

databases [7],[8],[9], challenges still exist in relation to its

effectiveness and efficiency. In this study, we investigate the

feasibility of apply the cascaded refinement network for

improved vulnerability detection. Cascaded Refinement

Network is a semantic label map that produces an image with

photographic appearance that conforms to an input layout. We

chose the Cascaded Refinement Network because a

combination of these methods have achieved state-of-the-art

performance in other areas [10],[11]. The proposed method

would (1) enable developers, users and all stakeholders to pay

attention to the severe weakness and deal with it (2) resolve

the problem of false positive associated with static analysis

tools (3) reduce cost associated with bug management.

The study makes the following contributions:

i. We present a general overview of the static analysis

tools and methods

ii. We present a theoretical framework for software

vulnerability detection method based on cascaded

refinement network

The remaining sections of the paper are structured as follows.

Section 2 presents a review of the static analysis. Section 3

presents a detailed overview of the static analysis tools and

International Journal of Computer Applications (0975 – 8887)

 Volume 182 – No. 25, November- 2018

13

methods. The theoretical framework based on the cascaded

refinement network is presented in section 4. Section 5

summarizes the study and provides future research directions

2. STATIC ANALYSIS
The static analysis technology has grown from early lexical

analysis to formal verification method and its detection

capability has now improved a lot. But with the effort of

researcher, static analysis tools have become more and more

powerful. The most widely used static analysis techniques are

lexical analysis, type inference, theorem proving, data flow

analysis, model checking and symbolic execution. We briefly

describe these techniques below:

2.1 Lexical analysis
Lexical analysis is a grammar structure analysis, similar to the

C compiler. The analysis involves dividing the program into

several fragments and analysis the lines of codes of such

program to detect if there are flaws or loopholes in the syntax,

semantics subroutines of the program. Failure to consider the

aforementioned variables can result in high false positive.

2.2 Type Inference
Type inference is the process of inferring the type variables

and functions of the compiler and judging whether its access

of variables and functions are in accordance with the type

rules. Programming language system includes a mechanism

for defining the data types and rules

2.3 . Data Flow Analysis
Data flow analysis involves collecting semantic information

from the program code, and with algebraic method to

determine the definition and usage of the variables at

compiling time. By using the control flow graph data flow

analysis determines whether a value in the program is

assigned to the possible vulnerability.

2.4 Rule Checking
Rule checking involves analyzing the security of the program

by using pre-established safety rules. There are some safety

rules in program designing: Non-adherence to these rules

brings about security implications.

2.5 Constraint Analysis
Constraint analysis is divided into constraint generation and

constraint solving program analysis process. Constraint

generation is to establish variable types or analyze

restraint system between different states using the rules of

constraint generation; constraint solving is to solve the

constraint system.

2.6 Patch Comparison
Patch comparison includes source code patch

comparison and binary code patch comparison, and is mainly

used to find “known” loopholes. After the software security

vulnerabilities are found, the manufacturers usually release

corresponding patches, so you can compare the code with

patches to determine the location and causes of

vulnerability.

2.7 Symbolic Execution
Symbolic execution is to represent the program’s input by

using symbol values rather than actual data, and produce

algebraic expressions about the input symbols in the

implementation process. By constraint solving method

symbolic execution can detect possibility of errors.

2.8 Abstract Interpretation
Abstract interpretation is a formal description of program

analysis. Generally, it involves analyzing and tracking

program attributes and users concern.

2.9 Theorem Proving
Theorem proving is based on semantic analysis of the

program, and can solve problems of infinite state systems.

Theorem proving first converts the program into logic

formulas, and then proves the program is a valid theorem by

using axioms and rules.

2.10 Model Checking
Model checking process first constructs formal model for the

program such as state machine or directed graph, then

traverses and compares the model to verify whether the

system meets pre-defined characteristics.

3. STATIC ANALYSIS TOOLS
In this section, we briefly discuss eight widely used static

analysis tools.

3.1 ITS4
ITS4 [12] is a tool based on lexical analysis technique. It

maintains a vulnerability database to read out the contents of

the database at runtime and compare with the program codes.

The database can be added, modified and deleted.

3.2 SPLINT
SPLINT (Secure Programming Lint) [13] is the expansion of

LCLINT tool (for detecting buffer overflows and other

security threats). It employs several lightweight static

analyses. SPLINT need to use notes to perform

cross-program analysis. SPLINT set up models for control

flow and loop structure by using heuristic technology.

3.3 UNO
UNO [14] uses model checking to find loopholes in the code.

UNO is named for the first character of three software defects:

the use of uninitialized variables, dereferencing Nil-pointers,

and Out-of-bound array indexing.

3.4 Check style
Check style is the most useful tool to help programmers write

standard Java coding. Programmers can integrate Check style

in development environment and use it to automatically

check whether the Java codes are standard. Check style is

configurable and can almost support all the coding standards.

3.5 ESC / Java
ESC/Java (Extended Static Checker for Java) [8] is a static

detection tool based on theorem proving, and can find run-

time error in Java code. Programmers can build ESC/ Java

into the program verification environment, or install ESC /

Java plug-in in the Eclipse.

3.6 Findbug
Findbug [15] is an open source static detection tools, which

check the class or JAR files? By comparing binary codes with

the defect model set, Findbug can detect latent problems.

Findbug is not to find loopholes through analyzing the

form and structure of class files, but by using the visitor

International Journal of Computer Applications (0975 – 8887)

 Volume 182 – No. 25, November- 2018

14

pattern. At present Findbug contains about 50 error pattern

detectors. Find bug [16],[17] is one of the ASA tool for bug

finding in Java; its detect error or violation in the

programming practice, design pattern and automatically

enumerate the violation into scariest, scary, troubling and

concern as shown Fig 1. There are many other classification

or prioritization of the bugs [18] such as according to

category, pattern, class, or package alphabetically which is not

the scope of this work. However, the gap is that errors ranking

method may lead to that some true errors are often residing at

the bottom of report list. As reported in previous work, these

false errors popularly called false positives can cause static

detection tools useless by hiding real errors in the code. This

may also frustrate users to stop using this tool in detecting

errors for large scale software product.

Fig 1: Flow Diagram of Findbug

3.7 PMD
PMD is an open source, rule-based static detection tool. PMD

scans Java source codes and finds some potential problems,

such as wrong code, duplicate code, fussy code or code to be

further optimized. PMD includes a default rule set. In

addition, it allows users to develop new rules and use it.

Automatic Static analysis tools detect bug in source code

without running the program. PMD works the same way very

similar to conventional static analysis tools. This naturally

means that the tool involves the generation and traversal of an

abstract syntax tree. There are three ways in which PMD can

be used: as a command line, an Eclipse plugin, or an Ant

target element. As an Eclipse plugin, the plugin comes with a

PMD perspective. In the Package Explorer, the files with

violations are marked with error marks, but those error marks

are a bit confusing because they are identical to compilation

error marks. In the source editors, the violations are shown

with markers. There is a Violation Overview window that is

meant to provide a summary of violations, and it also provides

the ability to toggle severity levels showed in the view;

however, this functionality doesn’t seem to be working yet.

As an Ant target element, Ant automates the running of PMD,

pretty similarly to what a batch file would do.

4. PROPOSED FRAMEWORK
This part of the paper presents the architecture and description

of the proposed approach as shown in in Figure 2. The figure

will be followed by a brief description of the main techniques

used and the motivations that justify their use.

Fig: 2 Proposed Framework Based on the Cascaded

Refinement Network

Cascaded Refinement Network [10] work by when presented

a semantic label map, the network produces an image with

photographic appearance that conforms to the input layout.

The approach thus functions as a rendering engine that takes a

two-dimensional semantic specification of the scene and

produces a corresponding photographic image. The approach

shows that photographic images can be synthesized from

semantic layouts by a single feedforward network with

appropriate structure, trained end-to-end with a direct

regression objective. The Cascaded Refinement Network

(CRN) is a cascade of refinement modules. Each module M I

operate at a given resolution. The resolution of the first

module (M0) is set to a default (i.e. 4x8). Resolution is

doubled between consecutive modules (from M I −1 to M i).

Let w i ×h i be the resolution of module i. The first module,

M0, receives an input (downsampled to w 0 ×h 0) and

produces a feature layer F0 at resolution w 0 × h 0 as output.

All other modules M I (for i 6= 0) are structurally identical: M

I receives a concatenation of the input (downsampled to w i

×h i) and the feature layer F i −1 (upsampled to w i ×h i) as

input, and produces feature layer F I as output. The number of

feature maps in F I is denoted by d i. Each module M I

consists of three feature layers: the input layer, an

intermediate layer, and the output layer. This is illustrated in

Figure 3. The input layer has dimensionality w i ×h i × (d i −1

+ c) and is a concatenation of the downsampled input (c

channels) and a bilinearly upsampled feature layer F i −1 (d i

−1 channels The intermediate layer and the output layer both

have dimensionality w i ×h i ×d i .Each layer is followed by

3×3 convolutions, layer normalization, and LReLU

nonlinearity [19].The output layer F¯I of the final module M¯I

is not followed by normalization or nonlinearity. Instead, a

linear projection (1×1 convolution) is applied to map F¯I

(dimensionality w ¯ı ×h ¯ı ×d ¯ı) to the output

(dimensionality w ¯ı ×h ¯ı ×3). The total number of

refinement modules in a cascade depends on the output.

International Journal of Computer Applications (0975 – 8887)

 Volume 182 – No. 25, November- 2018

15

Fig: 3Architecture of CRN

The CRN consist of three layers of CNN: input layer,

intermediate layer and output layer. Each module doubles the

refinement process, Input layer upsampled feature maps of

previous module plus downsampled input. The network

reduces number of feature maps as cascade gets deeper until

final module outputs. A vulnerability report will be given as

output for further action and decisions. The potential

exploitability of each detected vulnerability will be evaluated.

5. SUMMARY AND CONCLUSION
This paper, presented a theoretical framework for software

vulnerability detection based on Cascaded Refinement

network vulnerability to improve the detection of bugs in

source code. The paper first provided an overview of the static

analysis tools and techniques and subsequently detailed the

proposed vulnerability detection based on the Cascaded

Refinement network. Initial findings suggest that CRN is an

effective tool for bug detection in large Java applications.

6. REFERENCES
[1] C. Kuang, Q. Miao, and H. Chen, "Analysis of software

vulnerability," in Proceedings of the 5th WSEAS

International Conference on Information Security and

Privacy, 2006, pp. 218-223.

[2] I. V. Krsul, "Software vulnerability analysis," Purdue

University, 1998.

[3] W. Jimenez, A. Mammar, and A. Cavalli, "Software

Vulnerabilities, Prevention and Detection Methods: A

Review1," Security in Model-Driven Architecture, p. 6,

2009.

[4] T. Wang, T. Wei, G. Gu, and W. Zou, "TaintScope: A

checksum-aware directed fuzzing tool for automatic

software vulnerability detection," in Security and privacy

(SP), 2010 IEEE symposium on, 2010, pp. 497-512.

[5] P. E. Black and E. Fong, "Proceedings of Defining the

State of the Art in Software Security Tools Workshop,"

NIST Special Publication, vol. 500, p. 264, 2005.

[6] A. Vetro, M. Morisio, and M. Torchiano, "An empirical

validation of FindBugs issues related to defects," in

Evaluation & Assessment in Software Engineering

(EASE 2011), 15th Annual Conference on, 2011, pp.

144-153.

[7] P. Mell, K. Scarfone, and S. Romanosky, "A complete

guide to the common vulnerability scoring system

version 2.0," in Published by FIRST-Forum of Incident

Response and Security Teams, 2007, p. 23.

[8] S. Hansman and R. Hunt, "A taxonomy of network and

computer attacks," Computers & Security, vol. 24, pp.

31-43, 2005.

[9] M. Roesch, "Snort: Lightweight intrusion detection for

networks," in Lisa, 1999, pp. 229-238.

[10] Q. Chen and V. Koltun, "Photographic image synthesis

with cascaded refinement networks," in IEEE

International Conference on Computer Vision (ICCV),

2017, p. 3.

[11] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, "Joint face

detection and alignment using multitask cascaded

convolutional networks," IEEE Signal Processing

Letters, vol. 23, pp. 1499-1503, 2016.

[12] I. Y.-L. Hsiao and C.-W. Jen, "A new hardware design

and FPGA implementation for Internet routing towards

IP over WDM and terabit routers," in Circuits and

Systems, 2000. Proceedings. ISCAS 2000 Geneva. The

2000 IEEE International Symposium on, 2000, pp. 387-

390.

[13] D. Evans and D. Larochelle, "Improving security using

extensible lightweight static analysis," IEEE software,

vol. 19, pp. 42-51, 2002.

[14] G. J. Holzmann, "Static source code checking for user-

defined properties," in Proc. IDPT, 2002.

[15] D. Hovemeyer and W. Pugh, "Finding bugs is easy,"

ACM Sigplan Notices, vol. 39, pp. 92-106, 2004.

[16] M. N. Al-Ameen, M. M. Hasan, and A. Hamid, "Making

findbugs more powerful," in Software Engineering and

Service Science (ICSESS), 2011 IEEE 2nd International

Conference on, 2011, pp. 705-708.

[17] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix,

and W. Pugh, "Using static analysis to find bugs," IEEE

software, vol. 25, 2008.

[18] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler,

"Correlation exploitation in error ranking," in ACM

SIGSOFT Software Engineering Notes, 2004, pp. 83-93.

[19] A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier

nonlinearities improve neural network acoustic models,"

in Proc. icml, 2013, p. 3.

IJCATM : www.ijcaonline.org

