
International Journal of Computer Applications (0975 – 8887)

 Volume 182 – No. 25, November- 2018

16

An Integrated Approach for Detecting Security

Vulnerabilities in Web Applications: A Theoretical

Perspective

Richard Amankwah
Presbyterian College of Education
P. O Box 27 Akropong-Akuapem

Ghana

Patrick Kwaku Kudjo
Sch. of Comp. Sci.
Datalink Institute

P.O. Box CO2481

Beatrice Korkor Agyemang
Presbyterian College of Education

P. O Box 27
Akropong-Akuapem

Ghana

Kofi Mensah
Presbyterian College of Education
P. O Box 27 Akropong-Akuapem

Ghana

Bright Brew
Presbyterian College of Education
P. O Box 27 Akropong-Akuapem

Ghana

Samuel Yeboah Antwi
Presbyterian College of Education
P. O Box 27 Akropong-Akuapem

Ghana

ABSTRACT
Software security vulnerability is a flaw in a software product

that could compromise the integrity, availability, or

confidentiality of a software system. The growth and

development of software have brought about a corresponding

increase in vulnerabilities, which has necessitated the need to

develop software security assurance tool that can detect and

prevent these vulnerabilities. Previous studies have suggested

both commercial and open source tools such as Ashcan, Web

Inspect, Web King, Skipfish, and OWASP ZAP just to

mention but a few to help mitigate against this security gaps.

However, each of this approach has its merits and demerits in

detecting vulnerabilities. As a result, this paper seeks to

develop a more proactive approach which is a merger or

integration of the strength of existing techniques into one

system: An integrated web vulnerability detector scanner:

which is a software assurance tool for detecting vulnerabilities

in web application. The analysis involves presenting a general

overview of web application, web application scanners and

web application vulnerabilities. Lastly, we present the

theoretical framework for detecting web application

vulnerabilities based on the proposed model. The preliminary

findings show that the concept is feasible within the domain

of vulnerability detection

General Terms
Software Engineering, Information Security

Keywords
Software Vulnerability, Static Analysis, Web Application

1. INTRODUCTION
The growth in technology has influence the use of web

application by individuals and organizations in the field of

Education, commercial, political, social etc. Most of the

aforementioned institutions and organization uses web

application such as blogs, social network, web mail, bank etc.

which have sensitive information stored in a centralized

database. The inevitable use of web application in our daily

life have also attracted the attention of hackers and intruders

whose aim is to target the weaknesses in these databases and

exploit it maliciously making the functioning of most web

application inefficient and ineffective. The cause of a number

of vulnerabilities exploited by these unscrupulous people

stems from design flaws or an implementation bugs [1] [2].

There exist a number of vulnerabilities including command

injection, buffer overflow, data manipulation, path

manipulation, authentication, session hijacking, cookie

misinterpretation, and others [3]. Recently, several empirical

studies have proposed varied tools and technique to aid the

detection of the aforementioned vulnerabilities. The most

widely applied technique or tool is commonly referred to as

web vulnerability scanners. Web vulnerability scanners are

tools that allow developers and security experts to test

applications against security breaches. Additionally, they

provide an automatic way to detect vulnerabilities to avoid the

manual repetitive and tedious task of inspecting several

hundred or even thousands of tests (i.e. source code). Akinetic

Web Vulnerability Scanner [4], IBM Rational Ashcan [5],

and HP Web Inspect [6] are some of the most widely used

commercial web scanners. Aside the commercial web

scanners, there are some publicly available web scanners

which include Found stone Snigger and fuzzier.

In addition to the aforementioned tools, there are other

techniques that have been applied in literature to detect web

application vulnerabilities. For example Jovanovic et al. [7]

used white box testing by analyzing the source code before it

is deployed on a sever. Furthermore, black box testing [8] can

also be applied in many ways to detect bugs in web

applications. Despite the significant development and growth

in the aforementioned techniques, their detection capability is

debatable. This is partly due to the fact that, it application

requires basic skills and technical know-how. [9]. Hence, we

proposed an integrated web vulnerability detector scanner to

merge the strengths of the various techniques into one

platform for efficient and effective detection of web

vulnerabilities. The contributions of this paper are the

following:

1. To present an integrated web vulnerability detection

scanner

2. To present a general overview of web application

architecture.

International Journal of Computer Applications (0975 – 8887)

 Volume 182 – No. 25, November- 2018

17

3. To provide justification for the weaknesses in web

application scanners in detecting stored

vulnerabilities

The remaining sections of the paper are structured as follows:

Section 2 presents a review of related works. Section 3

presents background of the study. Section 4 discusses web

scanner and its approaches. Section 5 present details of web

application vulnerabilities with specific reference to OWASP

most critical vulnerability list. Section 6. Present the

theoretical framework for the study Section 7 conclude the

study and provides future research directions.

2. RELATED WORK
It is undoubtedly true that the availability of web application

in our daily routine activities anywhere and anytime makes it

vulnerable. As a result of these and many factors, hackers take

advantage of the situation and put in place all sort of dubious

plans to have access to sensitive information in order to

comprise software systems. We briefly discuss some of the

approaches presented in previous studies that aim at resolving

the menace.

2.1 Code analysis approach
This approach combines programing code examination and

analyses. It also combines two techniques static analysis and

runtime monitoring. With this approach the technique surveys

the web application and make a guess about what kind of

queries application could generate. After studying this they

generate some patterns of the legal queries using program

analysis. During dynamic analysis, queries which application

generates dynamically by using user input, checked using

runtime monitoring and observe whether they are according to

the statically built patterns or not. If the query model

generated during static analysis is more accurate the approach

is more successful. The demerit of this technique is that

Certain types of changes done in a source code of

application could make this step less precise and result in

both false positives and false negatives [10]

2.2 Clustering approach
This approach depends on the clustering of response pages

generated by the server. It starts with searching all injection

points then injects specially crafted request at each point and

observes the response pages. It detects the vulnerability by

providing the vulnerable input to all injection points. It has the

disadvantage of been good for SQL Injection and also

generates false positive and cannot find all injection areas [11]

2.3 Proxy-based approach
This approach act between the client and the server, serving as

a proxy, one of such is Nixes which detect the cross-site

scripting attacks over a client side. It detects the attack

manually or sometimes uses automatically generated rules for

reduction. We know working of firewall which works at

application-level to block and detect malware. Function of

Nixes is same as firewall. User can control every connection

coming or leaving the local machine. The decision is up to

the user whether accept the connection or blocked

because firewall prompts the user about mismatched

connection [12].this has the disadvantage of springing up false

positive due to protection of the unassuming link with no

examination of the bugs

2.4 Browser define approach

This approach is deployed to enable the browser to decipher

between authentic script and non-authentic scripts. This is

done in two-fold where detection of scripts done by the

browser is more accurate so that browser can be used to filter

the scripts and second is that the programmer of the web

application knows scripts that should be executed for proper

application functioning so the website can specify the

authentic scripts and filter the non-authentic scripts. In this

the website inserts a security policy in its pages that

fully describes or specifies allowed scripts to run and browser

execute these policies i.e. security policies specifies type of a

data that server sends to BEEP browsers [13] the demerit of

this approach is that some as vector can go round these

security policies

2.5 Template matching approach
Template is pre –define route, hence this is where the exact

format in which the html tags are executed and define

distinctively. The template system allows the code only in

define format to be executed and filter all the malicious code

injected from the third party website [14]. If we deploy a

strong template system on the client machine, we will able to

avoid these as attacks. If the developer defines the template

wrongly the original content of the web page will be filtered

out and that is the disadvantage to this approach

2.6 Path expression approach
One of the main roles of scanners is to capture malicious input

injected by user, the role of the Path expression is to intercept

XQuery, after parsing identify the user input and separates it

from XQuery, which is stored in the XML file after it has

been generated. Finally that file would be validated through a

schema [15] but it is not fully automated as schema is

generated manually and generates large no of false positives.

2.7 Static and dynamic analysis approach
This approach is almost similar to the code analysis approach

for SQL injection attack which is based on combination of

static and dynamic analysis approach. By examining location

of Path statement and version of its contents they identify

query. During a training phase valid XPath statements are

analyzed and build a pattern of valid queries. At runtime this

mechanism verifies all application generated queries with the

initially build query pattern. Detect the vulnerability if

mismatch is found [16] the disadvantage to this approach is

that when the when the application is altered, the new source

code structure invalidates existing query identifiers.

3. BACKGROUND OF THE STUDY

3.1 Overview
This section of the paper is dedicated to a brief background of

web application to help us comprehend well its attack and

security. The Web Application Security Consortium (WASC)

[17] defines a web application as “a software application,

executed by a web server, which responds to dynamic web

page requests over HTTP.” Web application as we see today

has really undergone a lot of transformation. It’s started with

use of HTML which was used to transform information into

visual images. But one disadvantage of this method was its

user unfriendliness. As a result, the Common Gateway

Interface (CGI) was introduce to improve upon the lapses of

HTML. It became the first standard environment which

generates dynamic web pages. It must be noted that the use of

CGI for website processing is called Web Application

[1].after CGI, there are a lot of web application development

tools such as PHP, Active Server Pages (ASP), Perl,

Java Server Pages (JSP), JavaScript, VBScript, etc. Some of

the broad categories of web application technologies are

communication protocols, formats, server-side and client-

side scripting languages, browser plug-ins, and web server

International Journal of Computer Applications (0975 – 8887)

 Volume 182 – No. 25, November- 2018

18

API and Others framework which are flexible and powerful

solution for transforming and managing data within web

application as shown in the figure 1

Fig: 1 Flow of development for web application

3.2 Architecture of web application

Web application has a distributed n-tiered architecture.

Typically, there is a client (web browser), a web server, an

application server (or several application servers), and a

persistence (database) server.

Figure: 2 Simplified view of a web application

4. WEB APPLICATION SCANNERS
A web application scanner is an automated program

that examines web applications for security vulnerabilities

[18]. In addition to searching for specific vulnerabilities in

web applications it performs other functions such as looking

for errors in codes of software, illegal input strings and buffer

overflow. Web application scanner examines an application

by going through its web pages and performs penetration

testing - an examination of a web application by simulating

attacks on it. This involves coming out with malicious inputs

and further evaluation of application’s response. Web

application scanner performs different types of attack. Web

vulnerability scanners consist of three main components: (1) a

crawling component (crawling function), (2) an attacker

component (fuzzing function), (3) and an analysis component

(scraping function) [8]. Basically there are two main

approaches [19] to test web application for available

vulnerabilities: White box testing: This involves the process

of analysis the source code of the web application either

manually or using a code analysis tools. The major drawback

of this approach is that due to the complexities of most of the

codes it may be very hard and difficult to find all bugs in the

application. Black box testing: this technique also involves the

process of execution the application to look for

vulnerabilities. This techniques is normally referred to as

penetration testing, the scanner does not know the internals of

the web application and it uses fuzzing techniques over the

web HTTP requests [20]. Examples of commercial web

application scanners: Ashcan [21] , Web King [22], Web

Inspect [23] Topsider [24] Others can also be obtain from this

references [25] [26] [27]

5. WEB-APPLICATION

VULNERABILITIES
In this section, we briefly discuss the Open Web Application

Security Project (OWASP) web application vulnerabilities

[28].

5.1 Cross-site scripting (XSS)

vulnerabilities
This type occurs when an attacker submits malicious data to a

web application. Examples of such data are client-side scripts

and hyperlinks to an attacker’s site. After receiving the data

without proper validation within, its generated web pages, it

will display the malicious data in a legitimate user’s browser.

This will render the attacker access to manipulate or steal the

credentials of the legitimate user, impersonate the user, or

execute malicious scripts on the user’s machine. In [29] XSS

has been classified again into three main domains which are

reflected, stored or DOM-based. This grouping depends on

the feedback generated by the server, whether it’s as a result

of the scam script or save on the sever.

5.1.1 Reflected or Non-Persistent XSS: Reflected XSS

mostly found in search fields of a web page where the input is

get reflected in the output page. When server receives

malicious scripts, it does not store in a database, instead it is

used to form response pages without any validation.

5.1.2 Stored or Persistent XSS: Stored or Persistent

XSS occurs when vulnerability lies in server side which

allows malicious scripts injected by the attacker store in a

database permanently and then references it in a webpage.

Blogs, message forums and social networking sites are

example where Persistent XSS cause harm to user’s browser.

Whenever victim visit that site this malicious code is executed

in his browser every time. So, it is more dangerous.

5.1.3 DOM Based XSS: Document Object Model is

nothing but the convention for representing and working with

an object in an HTML document. Inappropriate handling of

an object with associated DOM makes it vulnerable. Here

client-side code itself is vulnerable; vulnerability not lies in

the server-side code. Therefore, if we modify the DOM

environment, the malicious code is executed in the victim’s

browser. In a DOM based XSS server does not include the

malicious in http response but the client-side code runs itself

in an unexpected way due to malicious content. The page

remains same but appearance get change. Environment. Both

reflected and stored XSS attacks are due to the vulnerability

lies in server-side scripts so it handles user input improperly.

5.2 Injection vulnerabilities
The various type of injection that may occur includes data

injection, command injection, resource injection, and SQL

injection. SQL Injection occurs when a web application does

not properly examine user input and places it directly into a

SQL statement. This can allow disclosure or modification of

data in the database [30]. In terms of attack performance, the

OWASP classified SQL injection into the following

categories:

5.2.1 Tautology: This attack injects malicious SQL tokens

inside where clause and causes conditional query statements

always evaluates to true. The main purpose is that to bypass

the authentication and access data through vulnerable input

field.

International Journal of Computer Applications (0975 – 8887)

 Volume 182 – No. 25, November- 2018

19

5.2.2 Illegal/Logically Incorrect Queries: The main

idea is that sending incorrect SQL query purposefully and

observe the descriptive error message coming from database

and take the advantage of it. This error may contain some

useful debugging information which can be used to form

further attack.

5.2.3 Union Queries: The Union keyword in SQL can be

used to gather information from more than one tables in the

database. Injected queries are combined with normal query

using union operator. And if used properly database takes the

result of the both queries union together and sends to the user.

5.2.4 Piggy-backed Queries: This is the kind of attack

where an attacker tries to appends another query to the

original legal query by using;(query delimiter). Database treat

it as two queries and execute both of them.

5.2.5 Stored Procedure: Stored procedures provide extra

layer of protection. Stored Procedures is a group of SQL

statements that form a logical unit stored in the database. It

provides benefits like encapsulation and strong validation.

Even though vulnerability may appear in stored procedures.

The vulnerability here is same as in web applications.

5.2.6 Blind Injection: In Blind Injection attacker can send

a number of Boolean type queries to gain data.

5.2.7 Timing Attacks: This attack act as a preliminary step

be- fore actually performing attack. Initially attacker fire

malicious queries and observe the responses. We can use

WAITFOR keyword to execute the queries at different times.

By observing timing delays between responses attacker can

guess sensitive information. This helps them to form a next

more dangerous attack.

5.2.8 Alternate Encodings: The main purpose of this

attack is escape detection approach. In this technique attacker

uses alternate encoding techniques, like ASCII to hide the

identity of actually malicious parameters. Cookie poisoning:

This technique is mainly for achieving impersonation and

breach of privacy through manipulation of session cookies,

which maintain the identity of the client. By forging these

cookies, an attacker can impersonate a valid client, and thus

gain information and perform actions on behalf of the victim.

5.3 Invalidated input:
Bugs such as XSS, SQL Injection, and cookie poisoning

vulnerabilities are some of the specific instances of this

problem. In addition, it includes tainted data and forms,

improper use of hidden fields, use of invalidated data in array

index, in function call, in a format string, in loop condition, in

memory allocation and array allocation.

5.4 Authentication
Authorization and access control vulnerabilities could allow

malicious user to gain control of the application or backend

servers. This includes weak password management, use of

poor encryption methods, use of privilege elevation, and use

of insecure macro for dangerous functions, use of unintended

copy, authentication errors, and cryptographic errors.

5.5 Incorrect error handling and reporting:
Incorrect error handling and reporting may reveal information

thus opening doors for malicious users to guess sensitive

information. This includes catch NullPointerException, empty

catch block, overly-broad catch block and overly-broad

“throws” declaration.

There are other vulnerabilities that happen but may not fall

under the above categories such as Denial of service (DoS),

Path manipulation, broken session management,

Synchronization timing problems

6. THEORETICAL FRAMEWORK
This part of the paper details the proposed approach that

integrated the existing web application scanner into a unified

model to detect Cross Site Scripting, and XPath Injection

attack. This approach is based on techniques from black-box

testing, static analysis and dynamic analysis. The merit of this

model is to complement the strength and weakness of the

scanners. Again, the model provides a reliable module that

allows users to easily generate reports all of all the integrated

scanners as an output, as compared to the existing scanners

where each scanner individually generate reports Fig. 3

depicts the proposed framework.

Fig: 3 Proposed Flow Chart

7. CONCLUSION
This study presented a theoretical framework that seeks to

unify web application scanners using related concepts from

black-box testing, static analysis and dynamic analysis.

Firstly, an overview of existing approaches that have been

developed by researchers to detect security vulnerabilities in

web application was discussed followed by a brief

background of web application and its architecture to help us

comprehend well its attack and security. The findings from

the study suggest that the proposed model is feasible for bug

detection in web applications.

8. REFERENCES
[1] S. Patil, N. Marathe, and P. Padiya, "Design of efficient

web vulnerability scanner," in Inventive Computation

Technologies (ICICT), International Conference on,

2016, pp. 1-6.

[2] O. Alhazmi, Y. Malaiya, and I. Ray, "Security

vulnerabilities in software systems: A quantitative

perspective," in IFIP Annual Conference on Data and

Applications Security and Privacy, 2005, pp. 281-294.

[3] P. Baral, "Web application scanners: a review of related

articles [Essay]," IEEE Potentials, vol. 30, pp. 10-14,

2011.

[4] M. Vieira, N. Antunes, and H. Madeira, "Using web

security scanners to detect vulnerabilities in web

services," in Dependable Systems & Networks, 2009.

DSN'09. IEEE/IFIP International Conference on, 2009,

pp. 566-571.

International Journal of Computer Applications (0975 – 8887)

 Volume 182 – No. 25, November- 2018

20

[5] N. Antunes and M. Vieira, "Detecting SQL injection

vulnerabilities in web services," in Dependable

Computing, 2009. LADC'09. Fourth Latin-American

Symposium on, 2009, pp. 17-24.

[6] D. D. Neal and S. S. Rahman, "Securing Systems after

Deployment," in Advances in Computer Science,

Engineering & Applications, ed: Springer, 2012, pp. 685-

693.

[7] N. Jovanovic, C. Kruegel, and E. Kirda, "Static analysis

for detecting taint-style vulnerabilities in web

applications," Journal of Computer Security, vol. 18, pp.

861-907, 2010.

[8] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic,

"Secubat: a web vulnerability scanner," in Proceedings of

the 15th international conference on World Wide Web,

2006, pp. 247-256.

[9] Y. Makino and V. Klyuev, "Evaluation of web

vulnerability scanners," in Intelligent Data Acquisition

and Advanced Computing Systems: Technology and

Applications (IDAACS), 2015 IEEE 8th International

Conference on, 2015, pp. 399-402.

[10] W. G. Halfond and A. Orso, "Preventing SQL injection

attacks using AMNESIA," in Proceedings of the 28th

international conference on Software engineering, 2006,

pp. 795-798.

[11] A. Dessiatnikoff, R. Akrout, E. Alata, M. Kaâniche, and

V. Nicomette, "A clustering approach for web

vulnerabilities detection," in Dependable Computing

(PRDC), 2011 IEEE 17th Pacific Rim International

Symposium on, 2011, pp. 194-203.

[12] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic,

"Noxes: a client-side solution for mitigating cross-site

scripting attacks," in Proceedings of the 2006 ACM

symposium on Applied computing, 2006, pp. 330-337.

[13] T. Jim, N. Swamy, and M. Hicks, "Defeating script

injection attacks with browser-enforced embedded

policies," in Proceedings of the 16th international

conference on World Wide Web, 2007, pp. 601-610.

[14] C. Rajesh, K. Srikanth, I. Sarwani, and G. S. Rao, "A

Brief Study on Defining Templates to Avoid XSS

Vulnerabilities Using Auto Escape Templates for Web

Applications," IJCSIT) International Journal of

Computer Science and Information Technologies, vol. 6,

2015.

[15] V. Shanmughaneethi, R. Ravichandran, and S.

Swamynathan, "PXpathV: Preventing XPath Injection

Vulnerabilities in Web Applications," International

Journal on Web Service Computing, vol. 2, p. 57, 2011.

[16] D. Mitropoulos, V. Karakoidas, and D. Spinellis,

"Fortifying Applications Against Xpath Injection

Attacks," MCIS, vol. 2009, p. 4th, 2009.

[17] E. Fong and V. Okun, "Web application scanners:

definitions and functions," in System Sciences, 2007.

HICSS 2007. 40th Annual Hawaii International

Conference on, 2007, pp. 280b-280b.

[18] F. Elizabeth and O. Vadim, "Web application scanners:

Definitions and functions," HICSS 2007, pp. 280b-280b,

2007.

[19] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals

of software engineering: Prentice Hall PTR, 2002.

[20] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force

vulnerability discovery: Pearson Education, 2007.

[21] E. F. R. G. V. Okun, P. E. Black, and E. Dalci, "Building

a Test Suite for Web Application Scanners."

[22] O. Hamed and N. Kafri, "Performance Prediction of Web

Based Application Architectures Case Study: .NET vs.

Java EE," International Journal of Web Applications,

vol. 1, 2009.

[23] J. C. Fonseca, M. Vieira, and H. Madeira, "Correlating

security vulnerabilities with software faults," 2007.

[24] H. Le and P. Loh, "Unified approach to vulnerability

analysis of web applications," in AIP Conference

Proceedings, 2008, pp. 155-159.

[25] P. E. Black and E. Fong, "Proceedings of Defining the

State of the Art in Software Security Tools Workshop,"

NIST Special Publication, vol. 500, p. 264, 2005.

[26] S. Panguluri, W. Phillips, and P. Ellis, "Cyber security:

protecting water and wastewater infrastructure," in

Handbook of water and wastewater systems protection,

ed: Springer, 2011, pp. 285-318.

[27] A. J. Evans, "Software Security Quality: Testing

Taxonomy and Testing Tools Classification,"

Presentation viewgraph for OWASP APPSec DC, 2005.

[28] A. Makkar and K. Jain, "

Web application in healthcare: a solution to address the

security issues," International Journal Of Management

& Behavioural Sciences (IJMBS).

[29] A. Singh and S. Sathappan, "A Survey on XSS web-

attack and Defense Mechanisms," International Journal

of Advanced Research in Computer Science and Software

Engineering, vol. 4, pp. 1160-1164, 2014.

[30] A. Tajpour, S. Ibrahim, and M. Sharifi, "Web application

security by sql injection detectiontools," IJCSI

International Journal of Computer Science Issues, vol. 9,

pp. 332-339, 2012.

IJCATM : www.ijcaonline.org

