Abstract

The current design and standardization of the next generation or Fifth Generation (5G) will enable new use cases, applications and impressive challenging requirements in terms of mobility performance. For example, next generation mobile networks should support seamless mobility with zero data interruption at each handover, even at high speeds. This work proposes a new research analysis of Mobility Management (MM) solutions in cellular network for next generation. Conventionally Mobility Management solutions were developed for LTE but, from last few years due to increase in demand for high speed seamless mobility without interruption for every handover, the solutions remained incompetent. Hence for improvement in QoS and reducing the delay, this proposed work method will involve the reduction of delay during handoff and analysis for mobility management in both Low speed and High speed scenarios. However, the measurements also reveal that the handover data interruption time can sometimes be hundreds of milliseconds and would try to fulfill the next generation demands. Studies of mobility are conducted for a variety of environments, including generic scenarios with hexagonal network topologies, non uniform site specific scenarios, pedestrian mobility and high speed.
using different network architectures we would implement dual connectivity as well.

References

1. Akshay Jain, Elena Lopez-Aguilera and Ilker Demirkol, "Mobility Management as a Service for 5G Networks".
4. 3GPP Technical report (TR) 38.913. 5G: Study on Scenarios and requirements for Next Generation Access Technologies (3GPP TR 38.913 version 14.3.0 Release 14), (2017-10).
5. Fabio Giust, Luca Cominardi, and Carlos J. Bernardos, "Distributed Mobility Management for Future 5G Networks: Overview and Analysis of Existing Approaches" IEEE Communications Magazine, January 2015.

Index Terms

Computer Science Networks
Keywords

Cellular network, 5G, Mobility Management(MM), LTE