Abstract

This paper introduces the privacy, data privacy - Stakeholders and classifications of attributes for data hiding techniques. It also throws the light on various data hiding techniques such as randomization, k-anonymity, l-diversity, t-closeness and tokenization. Also, the importance of balancing privacy and utility is discussed.

References

4. V Ciriani, S De Capitani di Vimercati, S Foresti, and P Samarati. k-anonymity. security in
5. Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh Agrawal, and Johannes Gehrke.
7. A Hundepool, A Van deWetering, R Ramaswamy, L Franconi, A Capobianchi, PP
DeWolf, J Domingo-Ferrer, V Torra, R Brand, and S Giessing. μ-argus version 3.2 software and
8. Anco Hundepool and LCRJWillenborg. μ-and τ-argus: Software for statistical disclosure
eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages
full-domain k-anonymity. In Proceedings of the 2005 ACM SIGMOD international conference on
11. Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy beyond
12. Chong K Liew, Uinam J Choi, and Chung J Liew. A data distortion by probability
13. Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan
Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of
16. Pierangela Samarati and Latanya Sweeney. Generalizing data to provide anonymity
17. Latanya Sweeney. Guaranteeing anonymity when sharing medical data, the datafly
system. In Proceedings of the AMIA Annual Fall Symposium, page 51. American Medical
18. Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal of
22. Xiaokui Xiao and Yufei Tao. Anatomy: Simple and effective privacy preservation. In
Proceedings of the 32nd international conference on Very large data bases, pages 139–150.

Index Terms

Computer Science Security

Keywords

Randomization, k-anonymity, l-diversity, Tokenization, t-closeness