
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

39

A Framework for the Simulation of Attack using Model

Checking

Ebot Ebot Enaw
University of Yaounde I

National Advanced School of Engineering

Djoursoubo Pagou Prosper
University of Yaounde I

National Advanced School of Engineering

ABSTRACT

Over the past couple of years, the number of cyber-attacks

and data breaches have considerably increased and so have the

damages they cause, making cyber risk one of the primary

concerns for top managers and world leaders around the

world.

Public and private organizations are therefore obliged to

deploy appropriate security solutions in a bid to protect their

assets against threats over time.

However the complexity of information systems coupled with

the interconnected nature of assets complicate efforts to

identify the loopholes in an information system especially

given the dynamism of cybersecurity where new

vulnerabilities are discovered around the world daily.

In an effort to provide IT administrators with a rapid and

reliable way of detecting loopholes, the paper proposes a

framework that leverages formal verification concepts to

provide an abstract model of an information system with

specific properties aimed at verifying the security of assets.

The paper is structured as follows: section 1 introduces the

article, section 2 presents some research papers related to this

paper’s topic, section 3 states the problem, section 4 presents

the paper’s contribution to research, and section 5 presents the

proposed framework

Keywords

Risk, vulnerability, attack surface.

1. INTRODUCTION
The diversity of assets and their interconnections within an

information system complicates the identification of attack

scenario as well as the application of appropriate security

control aimed at preventing cyberattacks.

Therefore a method for automatically and formally detecting

loopholes inherent in information systems is highly needed;

It is worth mentioning that due to the complexity of critical

software, formal methods for specification and verification of

models of software were developed to assist with the formal

specification and verification of properties that software are

supposed to satisfy.

In this vein, this paper proposes an approach inspired by

formal specification and verification of software properties to

develop an abstract model of an information system as well as

the properties that the information system should satisfy in an

effort to guarantee the security of its assets.

2. RELATED WORK
[1] Firstly, introduces the concept of software model checking

which differs from traditional model checking in the sense

that traditional model checking requires a manually written

model of an application while software model checking works

directly on the implementation of the software written in full-

fledged programming language. Software model checking has

two main components including abstraction that consists of

automatically extracting the model of the application before

verification and adaptation which consists of adapting model

checking to a form of systematic testing that is applicable to

industrial software. The latter technique was developed from

two main perspectives namely systematic testing of

concurrent software and systematic testing of sequential

software. Concerning the systematic testing of concurrent

software, the paper presents several methods namely software

model checking using dynamic semantics, systematic testing

with a run-time scheduler and also an approach of systematic

testing for multithreaded application named DPOR (Dynamic

Partial Order Reduction). Regarding the systematic testing of

sequential software, the paper presents the static test

generation, the dynamic test generation and the systematic

dynamic test generation.

[8] Presented timed automata as a formalism for model

checking real-time systems. It described in detail concepts

related to timed automata and the process of verification of

reachability inherent in them as well as concepts related to

linear timed temporal logic and branching timed temporal

logic. It then presented some extensions aimed at improving

timed automata namely weighted timed automata which

consists mainly of a timed automata added to an observer

variable and Timed Games.

[7] Surveyed application of model checking to security

especially in the domain of protocol verification where it is

used to verify the secrecy and weak aliveness properties. It

presented the Dolev and Yao model which has been one of the

prominent tools to model the behavior of malicious actor and

asserted that this tool is not efficient in real-world scenario. It

then presented some alternatives such as the combination of

symbolic and computational model and probabilistic model

checking.

[4] Firstly, presented the similarities and differences between

model checking and data flow analysis in terms of program

representation, property representation and analysis algorithm

and demonstrated that data flow analysis is efficient but not

very precise while model checking is very precise but poses

performance problems. It then proposed a method called

configurable program analysis that consists of combining

model checking and data flow analysis in an effort to improve

precision and efficiency. It also presented some examples of

an approach that combines model checking and data flow

analysis such as Predicate analysis + constant propagation,

Predicate analysis+ explicit-heap analysis and Predicate

analysis+ observer automata. Finally, it demonstrated through

some examples that the combination approach is very efficient

and precise.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

40

[6] Highlights the fact that when verifying some important

systems like hypervisors, some low level features like

memory management and cache are often left aside. It then

proposes a formal approach for the verification of integrity-

preserving countermeasures against cache storage side

channel. It subsequently identifies conditions that must be met

by a security mechanism to neutralize the attack vector and

verified correctness of some of the existing techniques to

counter both (instruction- and data-cache) integrity attacks.

These conditions were later translated into formal theorems

that can be applied to various hardware/software platforms.

[3] focuses on attacks exploiting human vulnerabilities or

weaknesses. It then presents some of these attacks and

proposes an approach to describe the behavior of users

through folk models. It then uses formal methods to describe

these behavior so as to verify whether they pose some risks to

an information system. It latter applied the proposed approach

on two case studies which revealed that this approach is

effective in the sense that it helps uncover inherent

vulnerabilities in IT policy which can be exploited through

human weaknesses.

[5] proposes a formal approach to verify the safety of critical

infrastructure while taking into consideration its dynamic

environment. Firstly, it proposes the Dynamic Parametrized

Architectures (DPAs), which allows for the modeling of

components of the infrastructure. It then proposed a way to

automatically translate the DPA and the properties into an

array-based transition system and verified the properties with

Model Checker Modulo Theories (MCMT).

3. RESEARCH PROBLEM
With the advent of cybecriminality, besides optimizing the

efficiency of processes and activities, ICTs also represent a

threat to them. In order to assess cyber threats that target

information systems, IT departments usually conduct

vulnerability scan on their assets or collect vulnerabilities

related to these assets from vendors and Computer Security

Incident Response Team (CSIRT). However, due to the fact

that each vulnerability is related to one asset and that assets

are interconnected, it becomes difficult though necessary for

IT administrators to have a holistic picture of the cyber risks

related to an information system that captures this

interconnection between assets. For example, a violation of a

security property (availability, confidentiality integrity) might

prompt the exploitation of several vulnerabilities inherent in

different assets and this might not be revealed by an informal

method of analysis of individual vulnerabilities and thus

might cause huge damages especially in sensitive systems

such as power plants, nuclear facilities and hospitals where

the fault tolerance is very low.

In a bid to provide a solution to this limitation, this paper

proposes an approach to formally verify the expected security

properties of IT assets in the assessment of risks.

4. CONTRIBUTION TO RESEARCH
The contribution of this paper is twofold:

 Firstly, it proposes an approach to formally specify the

expected security properties of an asset in terms of

availability, confidentiality and integrity and to model the

architecture of an information system incorporating the

logical and physical interconnection between assets.

Secondly, formal software verification techniques are

leveraged to verify the expected security properties of assets

given the physical and logical topology of an information

system. The proposed approach also allows the identification

of attack scenario involving the exploitation of several

vulnerabilities to compromise expected security properties of

assets.

5. THE SOLUTION

5.1 Overview of the Framework
In an effort to provide IT managers with a framework that

allows for the formal specification and verification of security

properties of information systems, two keys aspects are

covered by the proposed framework namely:

- A proposed methodology to formally specify the

architecture of an information system ;

- A proposed methodology to formally specify the expected

security properties of assets.

A framework for the specification of an information system

incorporating the interconnection between assets is latter

proposed.

5.2 Vulnerability Descriptor
An information system consists of a set of assets

interconnected through physical and logical links. Therefore,

the proposed framework provides a template for the

specification of assets, logical link, physical link and

forwarding or filtering rules. Unlike CVSS which associates

the environmental metrics with vulnerabilities, the proposed

framework however associates the environmental metrics with

assets since these metrics are specific to the architecture of an

information system which captures the environment.

5.2.1 Asset Model
Asset refers to any valuable entity in an information system.

Thus there are many types of assets such as computers,

servers, routers, switches. Based on [2], parameters used to

describe an asset include:

- Category: it refers to the type of the asset. This field can take

values such as router, switch, PC, server, software, etc.

- CPE id

- Id: it is a unique identifier of the asset within an information

system

- Physical interfaces: it refers to ports of a hardware asset

- Logical interfaces: it refers to virtual connection between the

asset in question and other assets.

- The function Send_packet (packet, physical interface) that

mimics the operations carried out within the asset in

question when sending a packet. This function takes as

parameters the packet and the physical interface through

which the packet is sent ;

- The function Receive_packet (packet, physical interface)

which mimics the operations carried out when a packet is

received. It is within this function that the forwarding and

blocking rules are implemented. This function takes as

parameters the packet and the physical interface through

which the packet is sent

In the proposed framework, the following template for asset

based on [2] is suggested:

Asset {

Id ;

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

41

Category;

Description ;

CPE_id ;

Send_packet ();

Receive_packet (); }

5.2.2 Physical Link Model
In the proposed framework, a physical link refers to any

physical port of a device. Therefore, the following parameters

are used to describe the physical port:

- type: it refers to the type of the asset. This field can take

values such as Ethernet, usb, hdmi, etc ;

- id: it represents the unique identifier of a port in a given

equipment ;

- description: describes the interface ;

- status: it represents the status of the interface and so it can

take values such as enable, disable ;

- next hop: it represents the physical port to which this

interface is connected to. The value of this field will be of

the type Asset.port type.id ;

- logical interfaces list: This parameter represents the list of

all the logical interfaces that are bound to the physical

interface in question.

The physical link can then be modeled as follows:

Typedef physical_int {

Type ;

Id ;

Description ;

Status ;

Next_hop ;

Logical_int [];}

5.2.3 Logical Link Model
In the proposed framework, a logical link refers to any virtual

connection between two assets. Therefore, the following

parameters are used to describe the physical link:

- id: it represents the unique identifier of the logical interface

in a given equipment ;

- Source network address: it refers to the network address of

the source of the link. It can be the IP address for Ethernet

network ;

- Source port number: it refers to the port number used by the

source for a given logical link. It can be the TCP/UDP port

number for TCP/IP session ;

- Destination address: it refers to the network address of the

receiver of the link. It can be the IP address for Ethernet

network ;

- Destination port number: it refers to the port number used by

the receiver for a given logical link. It can be the TCP/UDP

port number for TCP/IP session ;

- description: describes the interface ;

- status: it represents the status of the interface and so it can

take values such as enable, disable ;

- physical interface id: It refers to the id of the physical

interface to which this logical interface is bound.

5.2.4 Packet
In a real information system, assets usually communicate by

exchanging packets. Thus, in order to model the interaction

between assets this paper proposes a model of packets that

will be exchanged in the simulated information system. The

paper considers the following parameters in the description of

a packet:

- source network address: it refers to the network address of

the source of the link. It can be the IP address for Ethernet

network ;

- source port number: it refers to the port number used by the

source for a given logical link. It can be the TCP/UDP port

number for TCP/IP session ;

- source physical address: it refers to the address of the exit

physical interface of the last asset through which the packet

transited ;

- destination network address: it refers to the network address

of the receiver of the link. It can be the IP address for

Ethernet network ;

- destination port number: it refers to the port number used by

the receiver for a given logical link. It can be the TCP/UDP

port number for TCP/IP session ;

- destination physical address: it refers to the address of the

input physical interface of the next asset to which the packet

is sent ;

- Content: it refers to the content of the packet.

Packets can thus be modeled as follows:

Typedef physical_int {

Source_network_address ;

Source_port ;

Source_physical_address ;

Destination_network_address ;

Destination_port ;

Destination_physical_address ;

}

5.2.5 Forwarding Rule Model
Forwarding rule refers to the process that networking

equipment or security appliances follow to handle a packet

they receive. They are at the heart of interactions between

assets. Parameters used to model a forwarding rule include:

- received-port: it refers to the id of the physical port through

which a packet is received by an equipment ;

- source physical address: It refers to the source physical

address of the packet ;

- source network address: it represents the source network

address of the packet ;

- destination address: it represents the destination network

address of the packet ;

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

42

- destination port: it represents the id of the port to which the

packet is forwarded

- content: it refers to the content of the packet ;

- action: it refers to the action to be carried out when a packet

with the specification that matches the aforementioned

values is received. This action can be drop, forward to

another asset or process by the equipment that receives it.

5.3 Security properties
Given that the paper is aimed at proposing a framework for

formal verification of security properties, this section

proposes an approach for specifying these security properties.

Usually, in model checking, there are three main types of

properties:

- Safety property: It refers to properties that express the fact

that undesired behavior never happen ;

- Liveness property: It refers to properties that express the fact

that a desired behavior could happen ;

- Fairness properties: It refers to properties that express the

fact that a particular choice is taken sufficiently often

provided that it is sufficiently often possible.

In cybersecurity, there are three main security properties that

must be verified to ensure the security of assets namely

confidentiality, integrity and availability which will be

described in the following sections.

5.3.1 Confidentiality

5.3.1.1 Definition
Confidentiality is the property that expresses the fact that an

information should be accessible only to authorized users or

no unauthorized user should be granted access to a resource.

In the model checking context, confidentiality is best

expressed as a safety property. Thus, the undesired behavior

that should never happen could be “an unauthorized user can

access an asset “.

5.3.1.2 Formal Specification
For the purposes of this specification the following

assumptions are made:

- send (X,Y) is a predicate that holds true if a packet sent by X

to Y is well received by Y.

- is_authorized (X, Y) is a predicate that holds true if

according to the policy, X is authorized to access Y

resources.

Therefore, the confidentiality property can be modeled as:

G (┐is_authorized (x,y) → ┐send(x,y))

5.3.2 Integrity

5.3.2.1 Definition
Integrity is the property that states that an asset should never

be modified by any unauthorized user or that no unauthorized

user should ever modify a resource. In the context of model

checking this property is best expressed as a safety property.

In this light, the undesired behavior that should never happen

could be “During the transmission of a message between two

users, an unauthorized user or a malicious actor can never

modify the message”

5.3.2.2 Formal Specification

For the purposes of this specification the following

assumptions are made:

- Modif (X,Y) is a predicate that holds true if the user X

modifies the resource Y.

- is_authorized_modif (X, Y) is a predicate that holds true if

according to the policy, X is authorized to modify the

resource Y.

Therefore, the confidentiality property can be modeled as:

G(┐is_authorized_modify (x,y) → ┐Modify(x,y))

5.3.3 Availability

5.3.3.1 Definition
Availability is the property that expresses the fact that an asset

should be accessible when needed to all authorized resources.

In the context of model checking, availability can be

expressed both in terms of safety property of the sort “All

authorized users should never be denied access to a particular

resource” and in terms of liveness property of the sort “Each

authorized user may get access to an asset sometime”.

5.3.3.2 Formal Specification
For the purposes of this specification the following

assumptions are made:

- send (X,Y) is a predicate that holds true if a packet sent by X

to Y is well received by Y.

- is_authorized (X, Y) is a predicate that holds true if

according to the policy, X is authorized to access Y

ressources.

Therefore, the availability property can be modeled as:

G (is_authorized (x,y) → send(x,y))

6. CASE STUDY

6.1 Description
For illustrative purposes, some security properties of an

information system whose architecture is depicted in the

figure below will be verified.

Figure 1: Case study architecture

6.1.1 Assumptions
It is assumed that the security policy enforced in the said

information system contains the following rules:

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

43

- PC1 should never get access to the server

- PC2 could access the server

- PC1 and PC2 could communicate with each other

- PC1 could gain access to the management interface of the

router

- PC2 should never gain access to the management interface

of the server

- PC1 and PC2 could communicate with the router

It is also assumed that the router is vulnerable to an exploit

EXP1 which when sent through the management interface can

cause a crash or a denial of service.

6.1.2 Formal Verification of Security Properties
The interactions of the different components of the

information system depicted above with respect to the rules

implemented can be illustrated using the following automata.

Figure 2: automata representation

The different states of this automata are as follows:

- S0: Initial state

- S1: PC2 has sent a packet containing the destination IP

address of the server to the network. P2Srv holds true in this

state

- S2: The router receives a packet containing the destination

IP address of the server from PC2. RtP2 holds true in this

state

- S3: The server receives a packet originating from PC2.

SAkP2 holds true in this state.

- S4: The router crashes after receiving an exploit code. crash

holds true in this state.

- S5: PC2 sends a packet to PC1. P2P1 holds true in this state.

- S6: PC1 received a packet directly from PC1. P1AkP2 holds

true in this state.

- S7: PC1 sends a packet to PC2. P1P2 holds true in this state

- S8: PC2 received a packet directly from PC1. P2AkP1 holds

true in this state.

- S9: PC1 sends a packet containing the destination IP of the

server to the network. P1Srv holds true in this state

- S10: The router receives a packet containing the destination

IP of the server from PC1. RtP1 holds true in this state

- S11: The router drops the packet. Drop holds true in this

state.

The corresponding automata is then ATM (Q, E, T,Q0,λ)

where:

Q={S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11}

E={p1srv,p2srv,rtp2,sakp2,p2p1,p1akp2,p1p2,p2akp1,rtp1,dr

op, crash}

T={(S0,p2srv,S1), (S1,rtp2,S2), (S2,sakp2,S3), (S2,crash,S4),

(S0,p2p1,S5), (S5,p1akp2,S6), (S0,p1p2,S7), (S7,p2akp1,S8),

(S0,p1srv,S9), (S9,rtp1,S10), (S10,drop,S11)}

Q0=S0

λ= S0= {S0}, S1={S1}, S2={S2}, S3={S3}, S4={S4},

S5={S5}, S6={S6}, S7={S7}, S8={S8}, S9={S9}, S10={S10},

S11={S11}

The approach presented in previous sections is now used to

verify the following security properties:

P1: There is no way that PC1 could get access to the server

P2: The Router will be always available

P3: PC2 can always get access to the router

6.2 Verification
6.2.1 P1: There is no way that PC1 could get

access to the server
P1 is a confidentiality property and therefore can be expressed

as: G (p1srv → drop)

After running the verification of this property in SPIN, an

error was obtained which means that the property cannot be

verified as depicted in the following screenshot.

Figure 3: verification of property P1

In fact, PC1 could pass through PC2 to send a packet to the

server.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

44

6.2.2 P2: The Router will be always available
P2 is an availability property and therefore can be expressed

as: G ┐crash.

After running the verification of this property in SPIN, an

error was obtained which means that the property cannot be

verified as depicted in the following screenshot.

Figure 4: verification of property P2

In fact since the router can receive a packet containing the

exploit code EXP1, it can crash.

6.2.3 P3: PC2 can always get access to the router
P3 is also an availability property and it can be expressed as:

G(p2srv → sakp2).

After running the verification of this property in SPIN, no

error was obtained which means that this property is verified

as depicted in the following screenshot.

Figure 5: verification of property P3

7. CONCLUSION AND FUTURE WORK
Due to ubiquity and the widespread use of Internet and ICT,

cybersecurity has become a major concern for governments as

well as for private companies. Governments and critical

infrastructures (power plants, water plants, etc.) depend

heavily on ICT.

Therefore, given the high level of complexity of information

systems in general and critical infrastructures in particular,

there is a need for a system that can proactively identify in a

formal and automated manner the attack scenarios that can

target these infrastructures.

In a bid to secure IT infrastructure, IT security managers

generally start off by developing clear and concise security

objectives. These objectives are latter implemented in most

cases by manually deploying and configuring security

equipment such as firewall, IDS and IPS, which help detect or

prevent threats.

The fact that information systems are made up of complex

logical and physical interconnections between assets, coupled

with the fact that vulnerability scanners and repositories

generally address vulnerability from a standalone asset

standpoint, ignoring the interconnected nature of information

system, renders the manual approach described above

inappropriate in the context of information security, hence the

need for formal methods.

Model checking which has been used extensively to verify

key properties of critical and complex software and electronic

systems in an effort to prevent undesired behaviors that can

cause severe damages comes in handy in the information

system ecosystem where system failure is unacceptable.

Therefore, the approach proposed in this paper is twofold,

firstly, it proposes a way to formally specify the logical and

physical interconnections and interactions of IT assets of an

information system and secondly, it proposes a formalization

of security properties and a process to formally verify the

expected security properties of the information system in

question using model checking so as to ensure that assets

configuration effectively allows the enforcement of expected

security properties or security objectives.

The behavior of IT assets was captured in some functions

send_packet and receive_packet that mimic the operations

carried out within these equipments when sending or

receiving packets namely the forwarding and blocking rules of

networking and security devices that play an important role in

the security of an information system.

The methodology was then illustrated using a case study of an

information system where some properties were checked

using the SPIN tool. During the case study, it appears that

modeling the components of an information system and their

behaviors using SPIN was a bit cumbersome.

Future work could therefore include the realization of a

benchmark of existing model checking tools so as to identify

the best that fits the methodology proposed in this paper and

then improve it in an effort to obtain a dedicated tool for

information system security.

8. REFERENCES
[1] Patrice Godefroid, Koushik Sen. 2018. Combining model

checking and testing in Handbook of model checking pp

613-649

[2] Ebot Enaw, Djoursoubo Pagou. 2018. A Conceptual

Framework for the Design of a Nationwide Cyber-Risk

Monitoring System in International Journal of Computer

Applications volume 181 number 17.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

45

[3] Adam Michael Houser. 2018. Mental Models for

Cybersecurity: A Formal Methods Approach in A

dissertation submitted to the Faculty of the Graduate

School of the University at Buffalo, State University of

New York

[4] Dirk Beyer, Sumit Gulwani, David A. Schmidt, 2018.

Combining Model Checking and Data-Flow Analysis in

Handbook of Model Checking

[5] Alessandro Cimatti, Ivan Stojic, Stefano Tonetta. 2018.

Formal Specification and Verification of Dynamic

Parametrized Architectures in International Symposium

on Formal Methods pp 625-644

[6] Hamed Nemati, Christoph Baumann, Roberto Guanciale,

Mads Dam. 2018. Formal Verification of Integrity-

Preserving Countermeasures Against Cache Storage

Side-Channels in International Conference on Principles

of Security and Trust pp 109-133

[7] Jeffrey Voas, Kim Schaffer. 2016. Insights on Formal

Methods in Cybersecurity in IEE computer society, issue

N°5 pp 102-105

[8] Md Tawhid, Bin Waez∗, Juergen Dingel, Karen Rudie.

2013. A survey of timed automata for the development of

real-time systems in Computer science review

IJCATM : www.ijcaonline.org

