
International Journal of Computer Applications (0975 – 8887) 

Volume 182 – No. 35, January 2019 

27 

Audio Enhancement and Synthesis using Generative 

Adversarial Networks: A Survey

Norberto Torres-Reyes 
Department of Electrical and Computer Engineering 

University of Nevada, Las Vegas 
 

Shahram Latifi 
Department of Electrical and Computer Engineering 

University of Nevada, Las Vegas 

ABSTRACT 

Generative adversarial networks (GAN) have become 

prominent in the field of machine learning. Their premise is 

based on a minimax game in which a generator and 

discriminator “compete” against each other until an optimal 

point is reached. The goal of the generator is to produce 

synthetic samples that match that of real data. The 

discriminator tries to classify the real data as real and the 

generated data as not real. Together, the generator improves to 

the point where the fake data and real data are identical to the 

discriminator. GAN has been successfully applied in the 

image processing field over a large range of GAN variant 

architectures. Although not as prominent, the audio 

enhancement and synthesis field has also benefitted from 

GAN in a variety of different forms. In this survey paper, 

different techniques involving GAN will be explored relative 

to speech synthesis, speech enhancement, music generation, 

and general audio synthesis. Strengths and weaknesses of 

GAN will be looked at including variants created to combat 

those weaknesses. Also, a few similar machine learning 

architectures will be explored that may help achieve 

promising results. 

General Terms 

Generative Adversarial Networks, Survey, Audio Synthesis, 

Audio Enhancement. 
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1. INTRODUCTION 
Generative adversarial networks (GAN) are a recent 

introduction to supervised and unsupervised machine 

learning. In 2014, Ian Goodfellow, et al introduced the 

concept of pairing a generator network along with a 

discriminative network in a minimax game [1]. The two 

networks compete until the optimal solution is met. The paper 

uses a detective and a forger as an example. As the detective 

gets better at recognizing fakes, the forger gets better at 

making them. The optimal solution is met when the detective 

cannot tell the difference between the real works of art and the 

fakes. Prior to GAN, success in deep learning has come from 

discriminative models and less so from generative models [1]. 

The original study uses a multi-layer perceptron for both the 

generator and the discriminator and is trained with back 

propagation. Random noise is fed into the generator which 

maps the noise to a generated data sample. The discriminator 

outputs a probability that the data it receives is from the real 

data distribution and not the generated data distribution. 

Audio synthesis has many practical applications in all 

different types of industries [2]. Many practical applications 

include speech enhancement, sound effect generation, and 

music generation[2][3]. A method that has been used to 

synthesize audio is statistical parametric speech generation. 

Pitfalls of this method are that they may seek to reduce the 

mean square error between the real and synthesized speech. 

Nevertheless, a reduction in error doesn’t necessarily mean a 

more realistic output to listeners [3]. Recurrent Neural 

Networks (RNN) have been used in speech enhancement and 

music generation using recursive operations which make it 

specifically well suited for learning sequences [4]. Due to the 

recursive nature though, they may not be as quick as with 

GAN which can be used in parallel with the raw audio [3]. 

Variational Autoencoders (VAE) have also been prominent 

and successful in the audio field. With VAE, the idea is to 

have the latent variables follow a Gaussian distribution, which 

the decoder will use to learn a mapping between the 

distribution and the examples [4]. 

This paper provides an overview of several studies related to 

audio synthesis and enhancement using generative adversarial 

network. First, it is necessary to explain what GAN is and 

what improvements have been made to the algorithm. Next is 

an overview of several GAN based architectures that have 

been successfully applied to the audio field. Some non-GAN 

alternatives are also mentioned that may be beneficial in 

future research. 

2. PRELIMINARIES 

2.1 What is GAN 
A more formal definition of GAN can now be described 

following the original paper [1]. For simplicity, both the 

generator and the discriminator are said to be a multilayer 

perceptron. Parameters for the generator and discriminator are 

θg and θd respectively. The real data is Px~X and the input 

noise variables are Pz~Z. The generator, G, maps Z to X to 

obtain generated data Pg and the discriminator, D, maps X to 

[0,1]. The goal is to maximize the discriminators probability 

of correctly labeling whether the data it receives came from X 

or not (Pg instead). At the same time, it is desirable for the 

generator to create samples that are good enough to be 

classified as real, thus fooling the discriminator. Both the 

generated data distribution Pg and the real data distribution 

Pdata are used as the training set. [1] Shows that the global 

optimum of the algorithm is obtained when Pg = Pdata , which 

means that the value of the discriminator becomes D(x) =  ½. 

At that point, the discriminator can no longer distinguish 

between the real data and the generated data. The minimax 

objective function can be seen below 

   
 

   
 

                            

                           

The algorithm alternates between gradient ascent on the 

discriminator and gradient descent on the generator. The 

corresponding gradients of the discriminator and generator 

respectively are shown below: 
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The most common issues seen with the GAN algorithm are a) 

vanishing gradients and b) mode collapse [1]. If the real data 

and the generated data have little overlap, the Jenson-Shannon 

(JS) divergence can saturate to a constant and cause vanishing 

gradients when using the gradient descent method of training 

[5]. Mode collapse is when the generator becomes 

concentrated near or at a single point and provides no 

meaningful result. This can occur because there is no explicit 

way for the generator to be forced to be diverse. Both these 

issues have been tackled and several approaches have been 

created to combat them. 

2.2 Wasserstein GAN 
Although GAN can perform well by itself, there have been 

numerous improvements and modifications[6][7]. One 

prominent modification that has been done is called WGAN 

(Wasserstein GAN) [5]. WGAN attempts to solve the issue 

with vanishing gradient. It does this by using the Wasserstein 

Distance instead of the JS divergence to calculate the 

difference between two probability distributions. This 

distance is also known as the Earth Mover’s (EM) distance. 

The Wasserstein metric provides a smooth measure as 

opposed to the JS divergence and therefore is more stable 

when used with gradient descent [5]. The Wasserstein 

distance can be written as: 

            
          

                    

where Pr and Pg are the real data and generator distributions 

respectively. The EM distance can be transformed to become 

a GAN loss function where the discriminator instead assists in 

computing the Wasserstein distance. First, the above equation 

is transformed to instead compute the maximum value instead 

of the minimum value. 

            
     

 
  

      
             

       

The function, f , is said to be K-Lipschitz continuous. To 

ensure that this continuity is maintained, weight clipping is 

used to maintain the weights within a small window. In [5], 

they use a window of -0.01 and 0.01. The WGAN loss 

function becomes: 

             
   

     
                            

While WGAN is an improvement from GAN, there are still 

some issues to be addressed. Specifically, the weight clipping 

used to maintain K-Lipschitz continuity can result in slow 

convergence or even a failure to converge. [8] proposed that 

instead of a weight clipping, a gradient penalty can be used. 

The WGAN-GP then becomes: 

                
              

      

         
              

 
   

 
  

Where                  is the penalty coefficient. 

Adding the gradient penalty to WGAN improves the overall 

performance and stability [1]. 

2.3 Deep Convolutional GAN 
Another prominent improvement to the GAN architecture is 

the adaptation to deep convolutional networks, otherwise 

known as DCGAN (deep convolutional GAN) introduced by 

[9]. DCGAN aims to provide a stable GAN that can be used 

in unsupervised learning by applying a set of architectural 

constraints, and then using the trained GAN in later learning 

tasks. Main components of DCGAN include replacing pooling 

layers with strided convolutions in the discriminator and 

fractional-strided convolutions in the generator. Also, a batch 

norm is used in the both the discriminator and the generator. 

Rectified Linear Units (ReLUs) are used as an activation 

function in every layer of the generator except for the final 

output layer, which uses the tanh function. LeakyReLU is 

used in the discriminator for all layers.  

3. PREVIOUS WORKS 
The majority of GAN research has been done in the image 

processing field. The synthesis of photorealistic images has 

had a significant improvement since the implementation of 

GAN. Papers such as [10] have been able to reproduce high 

quality images using datasets such as the CelebA-HQ and the 

LSUN bedroom set. Other applications noted by [6][7] 

include image to image synthesis, super-resolution, 

classification and regression, and speech and language 

processing. Although the latter may not necessarily be audio 

synthesis, it does provide insight and techniques used to apply 

audio to GAN. 

3.1 Speech Generation 
After the success GAN has had with images, it is conceivable 

that speech and audio would be a natural extension [11][12] 

[13][3][14]. Speech generation and text-to-speech (TTS) 

systems sometime suffer from poor human perceptibility, or 

perceptual deficiency [3]. Other methods of applying GAN to 

speech and language processing have been used to generate 

sentences and poems or to generate text based on dialogue [7]. 

Statistical parametric speech synthesis (SPSS) has been 

successfully applied in this field but has had trouble when it 

comes perceptual quality. Paper [3] has attempted to address 

the issue by combining cGAN (conditional GAN) [15] and 

SPSS in a multi-task learning framework. This framework 

applies a mean squared error loss function along with the 

GAN loss function, as shown below. 
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Where Xreal has probability distribution pdata(x). The study 

tackles the issue of vanishing gradients by including the MSE 

loss function to improve stability. The results obtained by [3] 

showed that GAN can supplement SPSS by making up for the 

perceptual deficiency problem while only have a little 

increase in computational cost. Future works include 

optimizing the performance using a more stable form of GAN, 

such as WGAN [5].  Other recent studies [12] include 

improving speech in noisy environments using cGAN and 

spectrogram representations of audio. [11] focuses on the 

over-smoothing issue related to SPSS by creating a 

conditional GAN based post-filter to reconstruct a natural 

spectral structure in the synthesized speech. WGAN-GP was 

recently applied in [16] along with cGAN and WaveNet in a 

multi-speaker TTS synthesis system. The results showed that 

the WGAN-GP variant achieved the highest subjective 

evaluation score, as hypothesized by [3]. These several studies 

show that GAN can indeed improve synthesized speech 

quality and human perceptibility. 

3.2 Speech Enhancement GAN 
While many speech enhancement methods use spectrograms 

or SPSS methods, Speech Enhancement GAN (SEGAN) [17] 

operates on the waveform level. SEGAN can operate on raw 

audio and learn from different speaker and noise conditions. 

Speech enhancement in general takes in a noisy signal and 

enhances it. In this case, the generator performs the 

enhancement with the noisy inputs and a set of random 

variables and outputs the enhanced signal. The generator 

operation is fully convolutional, which is done to reduce 

training parameters and training time. The input signal is 

passed through several strided convolutions and parametric 

ReLUs. After decimation is completed, a thought vector c is 

concatenated with random variable z. Decoding of the signal 

follows a reversal of the encoding process. One key feature is 

the use of skip connections in which low level details of the 

signal pass straight through to the decoder [17]. The resulting 

loss function uses the L1 norm to help calculated the distance 

between the generated and actual distributions, resembling 

that of Least Squares GAN. 

   
 

         

 
 

 
                 

              

 
 

 
                     

              
    

   
 

          
 

 
                     

               

       

The results show that SEGAN works well as an end-to-end 

method for speech enhancement. It was preferred over a 

baseline method most of the time when compared to the 

original noisy signal. An issue that was stated was the need to 

remove high frequency artifacts. 

3.3 SpecGAN 
A prominent method of applying audio data to GAN is to 

convert audio-forms into spectrograms (see Figure 1) using 

methods such as a short-time Fourier transform (STFT). 

Although commonly used, spectrograms can be non-invertible 

(due to lost phase information) and require an inversion 

method, such as that of least-squares error estimation (LSEE) 

[2]. SpecGAN uses a spectrogram model that works well with 

GAN algorithms already adapted to images. The audio is 

processed, normalized, clipped, and scaled to be represented 

as a spectrogram. The algorithm used to train is DCGAN 

(explained previously). Phase shuffle is introduced with the 

discriminator to help distinguish between artifact and non-

artifact samples. Finally, the spectrogram is inverted, and the 

processing reversed to obtain an audio form [2]. SpecGAN 

was intended to serve as a baseline algorithm to compare to 

the WaveGAN algorithm. Both WaveGAN and SpecGAN 

were trained on speech command subset (SC09) of spoken 

positive integers 0-9. 

3.4 WaveGAN 
The more refined algorithm of WaveGAN is also introduced 

by [4] to serve as an improvement and comparison to 

SpecGAN. The WaveGAN architecture is also based off 

DCGAN. The WaveGAN parameters were adjusted to be able 

to be used with raw audio. Also, changes were made to have 

the same key features of DCGAN [4]. To do this, one 

dimensional filters with a length of 25 were used and an up-

sample factor of 4 was used. An extra layer was added so that 

the audio length was approximately one second. Phase shuffle 

was also introduced to improve the output [2]. WGAN-GP 

was used to train the examples presented in the paper. The 

study used several datasets including drum sounds, bird 

vocalizations, TIMIT dataset, and classical piano pieces. The 

SC09 dataset was used for qualitative human grading with 

categories including accuracy, quality, ease, and diversity. 

Quantitative scoring was also done using inception scoring 

Figure 1: Spectrogram of spoken words. Courtesy of 

https://en.wikipedia.org/wiki/Spectrogram 
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and nearest neighbor comparisons. The results found that 

most of the time, listeners preferred WaveGAN (with phase 

shuffle of n=2) [2]. Benefits of the WaveGAN architecture are 

that it can operate on raw audio and is fully parallelizable. 

Although relatively new, WaveGAN has shown that future 

GAN research in audio generation can be used successfully in 

an unsupervised setting. 

3.5 MuseGAN 
The complexity of music has made it difficult to model and 

synthesize without human supervision. Musical pieces not 

only contain coherent hierarchical structures but multiple 

instrument that flow together. Music is based on many other 

factors, such as timing, rhythm, chord progressions, emotion, 

and flow. Symbolic music (such as MIDI) is a form of 

electronic music communication that is common in the audio 

world. In Multi-Track Sequential GAN (MuseGAN) [18], a 

new GAN architecture is proposed to generate polyphonic 

symbolic music. The study does so via three separate 

methods, although only the hybrid model will be mentioned 

(see Figure 3). The hybrid model is a combination of the other 

two models (composer and jamming model). The hybrid 

model consists of M generators which takes inter-track 

random vector z and intra-track random vector zi. Each 

generator takes an individual intra-track vector while they all 

get one inter-track vector. Only one discriminator is used to 

evaluate the generators. Figure 3 shows the basic structure of 

the hybrid model. The results of MuseGAN give a coherent 

generation of polyphonic music. The tracks generated follow 

the structure of human made tracks that can pass for enjoyable 

music (subjectively). Audio samples are provided in [18] 

which show promise in the field of symbolic music generation 

using GAN. 

3.6 Applicable GAN Variants 
There are some notable GAN variants that show promise and 

may be adapted to the previous works shown. The progressive 

growing of GANs [10] is a method used to slowly grow the 

generator and discriminator progressively together. The study 

uses images as a dataset and can achieve high resolution 

images from the CELEBA database. The study begins training 

with low resolution datasets and increases image resolution by 

adding layers to generate finer details. By focusing training on 

low resolution data, comparable results are obtained two to six 

times faster [10]. 

Another study tries to obtain the benefits from GAN without 

having to train a discriminator [19]. Generative Latent 

Optimization (GLO) shows promising results that have the 

benefits of GAN, such as image synthesis, sample 

interpolation, and linear arithmetic with noise vectors. GLO 

can also be used in a conditional setting. Further work needs 

to be done to achieve the same quality as current GAN 

architectures. 

4. CONCLUSION AND FUTURE 

DIRECTION 
In conclusion, this paper serves to provide an overview of the 

current state of audio enhancement and synthesis using 

different GAN architectures. While audio has not received as 

much attention compared with images, it is still a growing 

field with room to grow and improve. The papers surveyed 

provide a general introduction as to what has and can be done 

with GAN regarding audio. There is a large focus on speech 

enhancement and synthesis [11][12][13][3][14] which is 

applicable in the real world and widely used across different 

platforms. Music generation has many challenges to overcome 

due to the complexity that comes with music. Still, there has 

been progress with GAN that can be applicable in the sound 

effect and music industry [2][18]. Further work may require 

combining the best properties of various GAN architectures 

[5][8][10][15][9] to improve existing structures. Also, 

architectures with a combination of audio, images, and video 

may also serve a purpose and can be used to train each 

element jointly, [20] is a good example of combining video 

with audio. Overall, GAN has been a wide success since its 

introduction in 2014 and a plethora of research has been done. 

Many variants exist, and each can be useful in their own 

respect. Further research can still be done to perfect the 

algorithms available or even to introduce new algorithms. 
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