
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 35, January 2019

18

A Proposed Enhanced Transposition Cipher Algorithm

based on Rubik’s Cube Transformations

Frimpong Twum
Kwame Nkrumah University of

Science and Technology
Department of Computer Science

Kumasi - Ghana

J. B. Hayfron Acquah
Kwame Nkrumah University of

Science and Technology
Department of Computer Science

Kumasi - Ghana

Morgan-Darko William
Kwame Nkrumah University of

Science and Technology
Department of Computer Science

Kumasi - Ghana

ABSTRACT
It is unlikely any system can completely prevent unauthorized

interception to transmission signal hence a more practical

method that is traditionally employed for achieving privacy is

to alter the message so only an authorized receiver can

understand it. The method used to do this is termed encryption

and decryption of information. By encrypting the massage

before it is transmitted the message is unintelligible to

everyone that receives it except the rightful recipient. The

encryption/decryption methods process a message using an

algorithm and a key. Transposition Cipher which shuffles

characters around instead of substituting them with other

characters is one way achieving privacy of data thereby

assuring data owners of their data confidentiality. In this

paper the Rubik’s cube a modified Rubik’s cube puzzle is

employed at levels higher than as a transposition

cipher to encrypt data. Although no system is hundred percent

secured the proposed algorithm sufficiently encrypt data with

sufficient rotations of the cube.

General Terms

Encryption, Decryption, Cipher, Algorithm, Security, Privacy.

Keywords
Encryption, Decryption, Transpostion Cipher, Algorithm,

Rubik’s Cube, Character Level Encrption.

1. INTRODUCTION
Rubik’s cube puzzle has proven to be quite difficult to solve

at a level (Mitchell, 1992). This paper explores the

use of a modified Rubik’s cube at levels higher than
 as a transposition cipher. A transposition cipher is one

which rearranges the order of the letters in the ciphertext

(encoded text), according to some predetermined method,

without making any substitutions (nrich, 2018). The more

sophisticated the scrambling mechanism, the stronger the

encryption. Most transposition systems use a geometric

process. Plaintext is written into a geometric figure, most

commonly a rectangle or square, and extracted from the

geometric figure by a different path than the way it was

entered. When the geometric figure is a rectangle or square,

and the plaintext is entered by rows and extracted by columns,

it is called columnar transposition. When some route other

than rows and columns is used, it is called route transposition

(UMich, 2018).

2. LITERATURE REVIEW
For a perceptive operational critical data such as military or

business financial data to be transmitted over an un-trusted

public network such as the Internet, a system ought to be able

to guarantee users of their privacy. Privacy also called

confidentiality or secrecy has to do with making sure nosy

people cannot read and make sense of a message intended for

another recipient. Thus, the transmitted message should make

sense to only the intended receiver. The method used to do

this is termed encryption and decryption of information. By

encrypting the massage before it is transmitted the message is

unintelligible to everyone that receives it except the rightful

recipient. Thus, encryption means the sender of a message

transforms the original message (called plaintext) to another

unintelligible form (called ciphertext) and send the

transformed unintelligible message out over the network such

as the Internet to the intended receiver. On receiving the

ciphertext the rightful receiver apply a reverse process of the

encryption method used to re-transform the ciphertext back to

its original form (the plaintext) in a process called decryption

(Maiwald, 2003). The encryption/decryption methods process

a message using an algorithm and a key. Encryption and

Decryption methods fall into two broad categories as follows:

Conventional methods (aka. Secret key methods or Symmetric

methods) and Public key methods (aka. Asymmetric methods)

(Stallings, 2003; Stallings, 2011; Kessler, 2017).

Conventional encryption algorithms are broadly grouped into

two, character-level ciphers or bit-level ciphers. A cipher is a

character-for-character or bit-for-bit transformation without

regard to the linguistic structure of the message (Tanenbaum,

2003). Encryption under character-level method is achieved

via two techniques, Substitution ciphers or Transposition

ciphers. With Transposition Ciphers, the characters in the

plaintext are shuffled around instead of been substituted with

other characters as in the case of substitution ciphers. Like

substitution cipher, transposition cipher is another example

of character-level encryption however the plaintext characters

keep their original form while their positions are altered to

generate the ciphertext. The technique arranges the plaintext

in a 2-dimensional table (Tanenbaum, 2003). For example, the

ciphertext

‘PETHELTLDTSPLOEOOTEIRANUETGXSOCVAAX’

is transmitted for the plaintext ‘Please do not touch Steve pet

Alligator’. The ciphertext is obtained through entering the

characters of the plaintext into a table in row order where the

table size determined by the number of columns is the

encryption/decryption key and must be known to both the

sender and the receiver (five in this example). The ciphertext

is recorded vertically down the table from the first column

while the plaintext is entered horizontally into the table -

Figure 2.1 and Figure 2.2.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 35, January 2019

19

Figure 2.1: Transposition Cipher

Figure 2.2: Route Cipher

A transposition cipher is made more complex by specifying

the key to determine the order of recording the columns for

the ciphertext. For example the keyword ‘KWAME’ could be

used to transform the plaintext above as entered into figure

2.1 to this ciphertext,

‘EOOTEIRSOCVAAXPETHELTANUETGXLDTSPLO’.

The position of a character in the key and the order it appear

in the English alphabet determines the order in which the

columns are recorded to obtain the ciphertext. To decrypt, the

key is used by the receiver to determine the number of table

columns whiles the number of rows is determined by a count

of the number of characters in the received ciphertext divided

by the number of characters in the key. For instance, in the

example above 35 ciphertext characters / 5 key characters = 7

rows. The ciphertext are then entered into the table following

the order they appear in the English alphabet with their

position in the key used in determining the column they are

entered into. For example character ‘A’ in the key is

considered first and as it is at position 3 in the key, the first

seven characters of the ciphertext are entered into column 3.

Likewise ‘E’ at position 5 of the key is treated next and hence

the next 7 ciphertext characters are also entered into column 5

and so on. The plaintext is finally obtained by reading the

characters from the rows. Using a key this way for a

transposition cipher although makes it much harder for a

snooper to decrypt, the approach is not that secure as the

substitution cipher because the character frequencies are

maintained and hence a more experienced snooper can decode

through a trial and error attack or a frequency analysis attack

although could be much difficult or a brute-force attack

(Forouzan, 2001). Some other well-known examples of

transposition cipher include Route Cipher which when used

to encrypt the example message as entered into figure 2.2

would result with the ciphertext

XXROTAGPCOPLEASEDUVILLATEHNOTTOVETS
assuming the sender and the receiver agree a key start point to

be bottom right while routing up inward in anti-clockwise

direction. This ciphertext can be decoded easily by choosing a

route around the grid. Thus, the ciphertext is decrypted by

entering the characters back into the grid using the key

(comprising of the table size and the key start point). The

plaintext is obtained by recording the text from the columns

beginning from the first column. Rail Fence Cipher is another

example of transposition cipher.

3. METHODOLOGY
The experimental design research approach is adopted by

following three steps to encrypt a message to be transmitted

using the rotation of the Rubik’s Cube as a transposition

cipher as follows:

3.1 Initialization of the cube with text
The first activity to perform in using Rubik’s Cube as a

transposition model is to prepare the six faces of the cube to

receive the plaintext.

The size of the square grid on the faces of the cube needs to

be computed so that it can accommodate all the data, with

minimum padding. This can be achieved by following the

steps in Listing 3.1.

1. Take the integer ceiling from the division of the length of

the data by 6.

2. Take the integer ceiling of the square root of the result

from (1).

3. Define 6 two-dimensional arrays to function as the faces

of cube using the result from (2) as both dimensions of

the array.

Listing 3.1 – Setting up a minimum-padding cube

3.2 Generation of Rotation Sequence from

the Key
The key for encrypting the data has to be transformed into a

sequence of rotations in order for the encryption to be

performed. Two things are needed to perform one rotation –

the plane in which to perform the rotation and the index of the

row or column on which the rotation is to be done. Any

algorithm which can translate the key into a sequence of

rotations is useful at this stage of the transposition process.

3.3 Rotation of the Cube
To mimic the rotation of the cube, strips of data needs to be

copied from one face onto another in a set pattern. The pattern

in Listing 3.2 is one of several patterns that can be used to

implement the rotation activity. This pattern visualizes faces

1, 2, 3, 4, 5 and 6 as the front, right side, back, left side, top

and bottom faces respectively. is the number of row (and

columns) of each face of the cube.

To rotate a strip in row clockwise in the -axis

1. Copy the data in row of face 1 to a temporary location.

2. Replace the data in row of face 1 with the data in row
of face 2.

3. Replace the data in row of face 2 with the data in row
of face 3.

4. Replace the data in row of face 3 with the data in row
of face 4.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 35, January 2019

20

5. Replace the data in row of face 4 with the data being

held in the temporary location.

To rotate a strip in column clockwise in the -axis

1. Copy the data in column of face 1 to a temporary

location.

2. Replace the data in column of face 1 with the data from

column of face 6.

3. Replace the data in column of face 6 with the data from

column of face 3, in reverse order.

4. Replace the data in column of face 3 with the

data from column of face 5, in reverse order.

5. Replace the data in column of face 5 with the data

being held in the temporary location.

To rotate a strip in column clockwise in the -axis

1. Copy the data in column of face 2 to a temporary

location.

2. Replace the data in column of face 2 with the data from

row of face 6, in reverse order.

3. Replace the data in row of face 6 with the data from

column of face 4.

4. Replace the data in column of face 4 with the

data from row of face 5, in reverse order.

5. Replace the data in row of face 5 with the data

being held in the temporary location.

Listing 3.2 – Clockwise rotations in the three axes of the cube

Anticlockwise rotations in the three axes can be achieved by

reversing the direction of copying of the clockwise rotations

shown in Listing 3.2.

4. IMPLEMNTATION

4.1 Initialization of the cube with text

Following the algorithm of listing 3.1, the cube is initialized

using the size of the data to be transposed as follows:

Assuming the message to be transported (the plaintext) is:

[As a second layer of security, the content of the file]

1. Number of Characters in plaintext is 54. Hence

following listing 3.1 take 54 ÷ 6 = 9

2. Take √9 = 3

3. Create array with dimensions = 6 X 3 X 3 (i.e.)

array [6][3][3]

In order to achieve minimum-padding, some computations

need to be performed to minimize the size of the cube while

still being able to accommodate all the data. The function in

listing 4.1 shows one way of achieving the minimum-padding

cube.

function initializeCube (data[])

 dataLength=data→length

 initSquare=ceil(dataLength/6)

 dimension=ceil(sqrt(initSquare))

 cube[]=new array[6][dimension][dimension]

 return cube[]

end function

Listing 4.1 – function to initialize the Rubik’s Cube

After the cube has been created the plaintext are copied onto

the faces of the cube sequentially as shown in figure 4.1 from

the first face to the sixth. The remaining cells on the face of

the cube are padded with null character or zero.

4.2 Generation of Rotation Sequence from

the Key

The key for encrypting the data is transformed into a sequence

of rotations in order for the encryption to be performed. Two

things are needed to perform one rotation – the plane in which

to perform the rotation and the index of the row or column on

which the rotation is to be done. Any algorithm which can

translate the key into a sequence of rotations is useful at this

stage of the transposition process. The algorithm used is as

below:

1. Take the Key for example “hippopotamus”

2. Take the SHA1 of the key =

a1219e634d04b405d90f13505c4d36578dc97241

3. Take the ASCII value (char) of each character in the

SHA1 representation of the key

a) Determine the plane (x, y, or z) for the rotation =

char % 3

b) Determine the index for the rotation

4. Save the result from 3(a) as the plane for the

rotation and the result from 3(b) as the index on the

plane at which the rotation should be done.

4.3 Rotation of the Cube

Figure 4.2 illustrates an example of rotation sequence of the

cube using the key while copying data from one face of the

cube to another using the rotation pattern giving in listing 3.2.

The rotation of the cube requires three arguments – the plane

in which the rotation is to be done, the direction of the

rotation and the index of the strip that is to be rotated. The

pseudocode in listing 4.2 shows an example implementation

of the rotation function.

function rotate (plane, direction, index)

 if (direction = "clockwise")

 if (plane = "Y") temp = cube.fetchRow(1, index)

 cube.setRow(1, index, cube.fetchRow(2, index))

 cube.setRow(2, index, cube.fetchRow(3, index))

 cube.setRow(3, index, cube.fetchRow(4, index))

 cube.setRow(4, index, temp)

else if (plane = "X")

temp = cube.fetchColumn(1, index)

 cube.setColumn(1, index, cube.fetchColumn(6, index))

cube.setColumnInReverse(6, index, cube.fetchColumn(3, n -

index))

cubesetColumnInReverse(3, n - index, cube.fetchColumn(5,

index))

cube.setColumn(5, index, temp)

else if (plane = "Z")

temp = cube.fetchColumn(2, index)

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 35, January 2019

21

cube.setColumnInReverse(2, index, cube.fetchRow(6, index))

cube.setRow(6, index, cube.fetchColumn(4, n - index))

cube.setColumnInReverse(4, n - index, cube.fetchRow(5, n -

index))

cube.setRow(5, n - index, temp)

end if

else if (direction = "anti-clockwise")

if (plane = "Y")

temp = cube.fetchRow(1, index)

cube.setRow(1, index, cube.fetchRow(4, index))

cube.setRow(4, index, cube.fetchRow(3, index))

cube.setRow(3, index, cube.fetchRow(2, index))

cube.setRow(2, index, temp)

else if (plane = "X")

temp = cube.fetchColumn(1, index)

cube.setColumn(1, index, cube.fetchColumn(5, index))

cube.setColumnInReverse(5, index, cube.fetchColumn(3, n -

index))

cube.setColumnInReverse(3, n - index, cube.fetchColumn(6,

index))

cube.setColumn(6, index, temp)

else if (plane = "Z")

temp = cube.fetchColumn(2, index)

cube.setColumnInReverse(2, index, cube.fetchRow(6, index))

cube.setRow(6, index, cube.fetchColumn(4, n - index))

cube.setColumnInReverse(4, n - index, cube.fetchRow(5, n -

index))

cube.setRow(5, n - index, temp)

end if

end if

end function

Listing 4.2 – Implementation of the rotation function in

pseudocode

Face 1 (Front)

Face 2 (right side)

Face 3 (back)

Face 4 (left side)

Face 5 (Top)

Face 6 (Bottom)

Figure 4.1: Six faces of the Rubik’s Cube Initialized with data

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 35, January 2019

22

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 35, January 2019

23

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 35, January 2019

24

Figure 4.2: Cube rotation pattern with data

4.4 JAVA Implementation of encrypting a

file content using the proposed

transposition cipher algorithm based on

Rubik’s Cube

4.4.1 Preparation of Data for Encryption
The system writes the file’s byte data onto the face of a virtual

customized Rubik’s Cube and uses the custom algorithm

given in Listing 4.2 to create a sequence of rotations to

obfuscate the data. Listing 4.3 shows a snippet of code from

the method that creates the cube and writes the file data onto

its faces.

Cube(String fileName){

 byte [] data = new byte[0];

 try {

 data = FileUtils.readFileToByteArray(new

File(fileName));

 } catch (IOException e) {

 System.err.println("Could not read file");

 e.printStackTrace();

 }

 int ceiling = (int) Math.ceil(data.length / 6.0);

 size = (int) Math.ceil(Math.sqrt(ceiling));

 int square = size * size;

 int totalNumberOfCells = 6 * square;

 data = Arrays.copyOf(data, totalNumberOfCells);

 one = new Face(size, Arrays.copyOfRange(data, 0,

square));

 two = new Face(size, Arrays.copyOfRange(data, square,

2*square));

 three = new Face(size, Arrays.copyOfRange(data, 2*square,

3*square));

 four = new Face(size, Arrays.copyOfRange(data, 3*square,

4*square));

 five = new Face(size, Arrays.copyOfRange(data, 4*square,

5*square));

 six = new Face(size, Arrays.copyOfRange(data, 5*square,

6*square));

}

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 35, January 2019

25

Listing Error! No text of specified style in document..3 -

Cube constructor code in Java

4.4.2 Generation of the Rotation Sequence
Listing 4.4 shows a snippet of code from the program which

implements the generation of a rotation sequence.

private int [][] keyToSequence(String key, int size){

 char [] list;

 list = Hash.getHash(key, "SHA1").toCharArray();

 int [][] sequence = new int[list.length][2];

 int i = 0, plane = 0, index = 1;

 for (char a : list){

 sequence[i][plane] = a % 3;

 sequence[i][index] = (a * a * a * a + a * a * a + a * a) %

size;

 i++; } return sequence;

}

Listing Error! No text of specified style in document..4 -

Method that converts the key into a rotation sequence

4.4.3 Encryption Function
During an encryption, the rotation sequence is followed

forwards and each rotation is carried out in the clockwise

direction. Listing 4.5 shows the method which performed the

encryption.

public void encrypt(String key, String fileName){

 Cube rubik = new Cube(fileName);

 int sequence [][] = keyToSequence(key, rubik.getSize());

 for (int [] rotation : sequence)

 rubik.rotate(rotation[0], rotation[1]);

}

Listing Error! No text of specified style in document..5 -

Method to encrypt a file using the Rubik’s cube

4.4.4 Decryption Function
During a decryption, the rotation sequence is read from the

last to the first and each rotation is carried out in the counter-

clockwise direction. This undoes the clockwise rotations done

during the encryption. Listing 4.6 shows the method which

performed the decryption.

public void decrypt(String key, String fileName){

 Cube rubik = new Cube(fileName);

 int sequence [][] = keyToSequence(key, rubik.getSize());

 for (int i = sequence.length - 1; i >= 0; i--)

 rubik.reverse(sequence[i][0], sequence[i][1]);

}

Listing Error! No text of specified style in document..6 -

Method to decrypt a file using the Rubik’s cube

5. RESULTS
Following the java implementation of the algorithm in Section

4.0, the content of a file was successfully encrypted using the

proposed transposition cipher algorithm based on the Rubik’s

Cube transformation and the results obtained is as shown in

figure 5.1 and figure 5.2.

Figure Error! No text of specified style in document..1 - Result from encrypting file content

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 35, January 2019

26

Figure Error! No text of specified style in document..2 - Result from encrypting file content

6. CONCLUSION
With sufficient rotations, the Rubik’s cube can be used to

efficiently scramble any data that needs to be encrypted. In

encryption and decryption processes the important thing is

that the algorithm must be reversible whether using a

substitution cipher which maintains the order of the plaintext

characters while simply disguising them or a transposition

cipher which simply rearrange the letters but do not disguise

them. Although several transposition cipher algorithms exist

for example route cipher and rail fence cipher, the proposed

transposition cipher algorithm based on the Rubik’s cube

transformations is much stronger for even the more

experienced snooper to decode through a trial and error attack,

a frequency analysis attack or even by a brute-force attack

owing to the concealed algorithm for the cube rotations by the

communication parties.

7. REFERENCES
[1] Douglas W. Mitchell (1992) “RUBIK'S CUBE” AS A

TRANSPOSITION DEVICE,Cryptologia, 16:3, 250-

256, DOI: 10.1080/0161-119291866928

https://www.tandfonline.com/doi/abs/10.1080/0161-

119291866928

[2] nrich (2018). Transposition Cipher:

https://nrich.maths.org/7940

[3] UMich, (2018). Transposition Systems

 http://www.umich.edu/~umich/fm-34-40-2/ch11.pdf

[4] Maiwald, E. (2003). Network Security: A Beginner’s

Guide. (2nd edn). McGraw-Hill/Osborne. New York.

ISBN: 0072229578

[5] Stallings, W. (2003). Network Security Essentials:

Applications and Standards. (2nd International edn).

Upper Saddle River, NJ: Pearson Education. Chapter 2.

ISBN: 0131202715

[6] Stallings, W. (2011). Network Security Essentials:

Applications and Standards. (4th edn). Pearson

Education, Inc., Prentice Hall. Chapter 2. ISBN:

9780136108054

[7] Kessler, G. C. (2017). An overview of Cryptography.

[Online]. Available from:

http://www.garykessler.net/library/crypto.html

[Accessed: 1st May, 2017]

[8] Tanenbaum, A. S. (2003). Computer Ntworks. (4th edn).

Upper Saddle River, N.J.: Prentice Hall. Chapter 8, pgs.

724-750. ISBN: 0130384887.

[9] Forouzan, B. A. (2001). Data Communications and

Networking. (2th edn). McGraw-Hill. ISBN: 0072822945

IJCATM : www.ijcaonline.org

